
Discretised Beta Regression for Analysis of Rating

Data: The R Package DBR

Mansour T.A. Sharabiani
School of Public Health

Imperial College London, UK

Alireza S. Mahani
Davison Kempner Capital Management

New York, USA

Cathy M. Price
Solent NHS Trust
Southampton, UK

Alex Bottle
School of Public Health

Imperial College London, UK

Abstract

The question of whether to treat rating data - often generated from survey responses
- as ordinal or numeric has received considerable attention over the years. Theoretical
arguments notwithstanding, when the number of response levels is high, practitioners
often seek a numeric interpretation of the response variable and the effect of predictors
on ‘mean’ response, thus using linear regression. In this paper, we introduce Discretised
Beta Regression (DBR) - mathematical framework and open-source software implementa-
tion - as a more suitable alternative to linear regression for numerical interpretation and
analysis of rating data. DBR is an adaptation of beta regression with several features:
First, it handles the forward and backward mapping between the observed range of re-
sponses and the standard range of the beta distribution. Secondly, it properly takes into
account the discrete nature of observations, including the use of cumulative-density terms
in constructing the likelihood function. Thirdly, DBR properly accounts for extreme-value
count inflation, often seen in survey responses, both in estimation and prediction steps.
Finally, by adopting a Bayesian framework using Markov Chain Monte Carlo sampling
for estimation, DBR benefits from robust estimation, credible interval calculation and
prediction functionalities. Unlike standard linear regression which is homoscedastic, DBR
successfully replicates the variability of slope and dispersion observed in ratings data,
making it a more realistic framework for analysis of such datasets.

Keywords: Discretised Beta Regression, Ordinal Regression, Likert, Bayesian, Markov Chain
Monte Carlo.
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1. Introduction

When analysing survey-response data, a key decision is whether the data should be treated
as nominal, ordinal or numeric. When there is no natural order in responses, the data should
clearly be treated as nominal. An example would be the type of lung cancer detected in
a patient. Choice models such as multinomial logit Hasan, Wang, and Mahani (2016) and
probit are suitable for regression analysis of nominal response variables. If responses present
a natural order but do not carry a clear numeric interpretation (ordinal data), one can use
ordered logit and probit regression models Goodrich, Gabry, Ali, and Brilleman (2018). An
example would be a patient’s degree of happiness in sending their child to school after a
prolonged period of remote learning.

The third type of survey response - referred to as ratings data - is similar to ordinal data, but
contains more levels, with levels often associated with numbers. When it comes to ratings
data, there has been considerable debate about whether the responses should be treated
as ordinal or numeric Harpe (2015); Liddell and Kruschke (2018); Jamieson (2004); Norman
(2010); Kuzon, Urbanchek, and McCabe (1996); Armstrong (1981); Knapp (1990); Pell (2005);
Carifio and Perla (2007, 2008). Examples of rating scales - used to elicit rating responses -
are Likert, numerical, fully-anchored and adjectival Harpe (2015). Numeric treatment of
ratings data allows for easier interpretation of regression coefficients, but has been shown
to lead to inconsistent results Liddell and Kruschke (2018) when there are few levels. When
dealing with many levels, the numeric treatment has the advantage of consuming significantly
fewer degrees of freedom compared with ordinal regression, but the underlying assumptions
of unboundedness and homoscedasticity remain at odds with the nature of ratings data.

In this paper, we offer a new mathematical framework - called Discretised Beta Regression
(DBR) - for regression analysis of ratings data, along with an open-source software imple-
mentation, the DBR R package. DBR offers a middle ground between linear regression - built
on a strict equidistant interpretation of the response scale - and ordinal regression with full
flexibility in partitioning a latent variable into sub-regions that are mapped to the observed,
discrete levels.

Discretised Beta Regression (DBR) is an adaptation of beta regression, following the specifi-
cation of Ferrari and Cribari-Neto (2004); Zeileis, Cribari-Neto, Grün, and Kos-midis (2010).
It is similar to ordinal regression, especially the ordered probit model, in that it maps a
continuous, latent variable to the observed discrete response by partitioning the range of the
latent variable. However, DBR has two important differences from ordered probit: 1- the
underlying distribution is assumed to be beta (with proper shift and scale factors applied)
rather than normal, 2- cutoff points in DBR are assumed to be halfway points between the
observed values. (However, see the discussion of left and right buffers in Section 2.4). This
setup allows DBR to create a numeric yet realistic interpretation of ratings data.

DBR is similar to beta-binomial regression, which has also been recommended for analysis of
ratings data Najera-Zuloaga, Lee, and Arostegui (2018). There are differences, however: first,
rather than directly mapping responses to a discrete distribution (binomial or beta-binomial),
DBR follows the latent-variable approach in ordinal regression, which is more in line with our
intuition about the process of response selection by survey respondents. Secondly, the DBR

software accounts for extreme-value count inflation using cumulative-density terms in the
log-likelihood function.

The rest of this vignette is organized as follows. In Section 2, we present the mathematical
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underpinnings of DBR. In Section 3, we illustrate the key features of DBR using progression
of examples. Section 4 offers discussion and concluding remarks. System setup is captured
in Appendix A.

2. Discretised Beta Regression (DBR)

We begin this section with a brief review of beta regression. This is followed by changes made
to beta regression in DBR for adapting it to rating responses.

2.1. Overview of Beta Regression

The probability density function (PDF) for beta distribution is given by:

f(y; α, β) =
Γ(α + β)

Γ(α) Γ(β)
yα−1 (1 − y)β−1, (1a)

Γ(z) ≡

∫

∞

0
uz−1e−udu. (1b)

where the random variable y is restricted to the interval [0, 1], α, β > 0 are the so-called shape
parameters of the distribution, and Γ(.) is the Gamma function, which is a generalisation
of the factorial function to real (and complex) numbers. For beta regression, we follow
Ferrari and Cribari-Neto (2004); Zeileis et al. (2010) by using the alternative, mean-precision
parameterisation of beta distribution:

f(y; µ, φ) =
Γ(φ)

Γ(µ φ) Γ ((1 − µ) φ)
yµ φ−1 (1 − y)(1−µ) φ−1 (2)

where the parameters µ (mean) and φ (precision) are linked to the shape parameters as
follows:

{

µ = α
α+β

(3a)

φ = α + β (3b)

and reversely:

{

α = µ φ (4a)

β = (1 − µ) (4b)

We also require that 0 < µ < 1 and φ > 0. The first and second moments of the distribution
can be expressed in terms of mean and precision parameters:

E[y] = µ (5a)

VAR[y] =
µ (1 − µ)

1 + φ
(5b)

We can see from the above that the model is heteroscedastic, i.e., the response variance is
reduced (approaching zero) - for a fixed precision parameter - as the mean approaches either
end of the (0, 1) range. This dispersion-compression at extreme ends of the response range is
consistent with our expectation.



4 Discretised Beta Regression: The DBR R Package

With the above mean-precision specification in hand, we can set up beta regression by assum-
ing that the mean parameter - via a link function - is a linear function of model predictors,
x:

g(µ) = x⊤β, (6)

where g(.) could be a suitable function that maps (0, 1) to real line, e.g., the logit function,
g(u) = log(u/(1 − u)). Further flexibility can be achieved by making the precision parameter
a function of predictors, also via a suitable link function such as log. Note that the nonlinear
link function causes the first derivative of mean response with respect to any explanatory
variable (or predictor), xk, to be non-constant, i.e.:

∂E[y]

∂xk

= βk
dg−1(z)

dz
|z=x

⊤β (7)

2.2. Forward and Backward Transformation of Response Variable

Most statistical software packages use the Maximum-Likelihood (ML) technique for parameter
estimation, which typically involves maximising the ‘logarithm’ of the likelihood function.
Note that setting x = 0 or x = 1 causes the beta-distribution PDF to become zero (Eq. 2),
and hence its logarithm to become infinite. For this reason, software packages only allow
an open-ended interval for x, i.e., they require x ∈ (0, 1). Therefore, the first step towards
adapting beta regression for DBR is to map the raw data to the (0, 1) range.

Consider K unique response values, sorted in increasing order: y1 < · · · < yK . A naive
transformation could be:

zk =
yk − y1

yK − y1
. (8)

But the above would map to [0, 1], rather than to (0, 1). Instead, we introduce left (bl) and
right (br) buffers:

bl ≡ (y2 − y1)/2 (9a)

br ≡ (yK − yK−1)/2 (9b)

We have essentially extended the ‘latent’ range of the data to y1 − bl on the left, and yK + br

on the right. This leads to the revised linear transformation:

y −→ z = u(y) ≡
y − δ

r
. (10)

where y ∈ {y1, . . . , yK}, and we have defined

δ ≡ y1 − bl (11a)

r ≡ yK − y1 + bl + br (11b)

It can be easily verified that the above transformation would map the data to the following
range:

bl/(yK − y1 + bl + br) ≤ u(y) ≤ (yK − y1 + bl)/(yK − y1 + bl + br) (12)

The above is what is needed for model training (i.e., regression). For prediction, we differen-
tiate between two modes. For ‘point’ prediction, we simply apply the reverse of u(.) defined
in Eq. 10. We refer to this reverse transformation as u−1

p (.), formally defined as

z −→ y = u−1
p (z) ≡ r z + δ (13)
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On the other hand, we can also generate ‘samples’ during prediction, in which case we must
add a discretisation step, where we report yk that is closest to the sample drawn from beta
distribution according to mean and dispersion parameters provided by the regression model.
Referring to this transformation as u−1

s (.), we formally define it as

z −→ y = u−1
s (z) ≡ yk s.t. |r x̂ + δ − yk| ≤ |r x̂ + δ − yk′ |, ∀k′ ∈ {1, . . . , K}. (14)

(Ties are theoretically possible given finite resolution of floating-point math on digital com-
puters, but rare cases can be handled by choosing the smallest of the (at most two) k’s.)

2.3. Discretisation Correction

The discretisation process must be reflected in the likelihood function for estimation. In other
words, if we observe the value zk, we cannot be certain that the latent sample drawn from the
beta distribution - before discretisation - was zk, but only that it was between

zk−1+zk

2 and
zk+zk+1

2 , when 1 < k < K. When k = 1, the left boundary is 0, and when k = K, the right
boundary is 1. We summarise the above by introducing boundary functions zl(.) and zr(.):

zl(yk) =

{

0 k = 1
u(yk−1)+u(yk)

2 1 < k ≤ K
(15)

and

zr(yk) =

{

u(yk)+u(yk+1)
2 1 ≤ k < K

1 k = K
(16)

Given the above, we assert that the contribution of a data point with response yk to the
likelihood is

P (y = yk) = F (zr(yk)) − F (zl(yk)) (17)

where F (.) is the cumulative density function for beta distribution (Eq. 1a or 2), defined as:

F (x) =

∫ x

0
f(u) du. (18)

2.4. Handling Extreme Responses

Extreme response to survey questions is one of several known types of bias in survey data Furn-
ham (1986). For example, in Likert scales, the proportion of 0’s and 10’s for a 0-10 scale may
be higher than 1 and 9, respectively. Researchers have discussed reasons for, impact of, and
ways to handle this bias Meisenberg and Williams (2008); Greenleaf (1992).

Aside from study/question-design approaches, one method for analysis of extreme responses
is a mixture model, similar to zero-inflated Poisson distribution Lambert (1992). In the case
of beta distribution, we can modify Eq.17 as follows

P (y = yk) = (1 − πl − πr) {F (zr(yk)) − F (zl(yk))} +















πl k = 1

0 1 < k < K

πr k = K

(19)
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The new parameters πl, πr are both probabilities, and thus must be between 0 and 1. In a
regression context, they can be both made to be linear functions of predictors, via a suitable
link function.

We take a different approach in DBR, however, and utilise the existing framework for handling
discretisation by allowing the left and right buffers, bl, br to be estimated from the data, rather
than being fixed according to Eqs. 9a and 9b.

Besides boundary values, extreme response can also be observed for midpoint/neutral points
on a Likert scale. While the inflation/mixture-density approach of Eq. 19 can be deployed for
this case as well, we refrain from including it in our implementation of DBR due to increase
in parameter count and hence risk of overfitting. Including a neutral point on the Likert
scale may encourage the respondent to take an easy way out, thus providing more noise than
information. Hence some have argued in favor of removing the neutral options, e.g., by using
an even number of levels instead of an odd number Allen and Seaman (2007).

2.5. Bayesian Estimation

Due to the complexity of likelihood function, especially when including left and right buffers
in estimation, we opt for a Bayesian framework, which allows for consistent estimation of
credible intervals. The conditional probability of observed responses is given by:

P (y|X; φ, β, bl, br) =
N
∏

n=1

{

F
(

zr(yk[n]; bl, br); g−1(β⊤xn), φ
)

− F
(

zl(yk[n]; bl, br); g−1(β⊤xn), φ
)}

(20)
In the above, zl(y; bl, br) and zr(y; bl, br) are functions that map each observed response to
its left and right intervals over the (0, 1) scale that is the domain of the beta distribution,
g−1(β⊤x) is the ‘mean function’, i.e., function that calculates the mean of the beta distribution
by forming the linear predictor βT x, followed by the logistic function. From the above, we
obtain the following log-posterior:

L(φ, β, bl, br) = log
(

F
(

zr(yk[n]; bl, br); g−1(β⊤xn), φ
)

− F
(

zl(yk[n]; bl, br); g−1(β⊤xn), φ
))

+Φ(φ)+B(β)+Bl(b

(21)
where Φ(φ), B(β), Bl(bl) and Br(br) are the log-prior functions specified for precision pa-
rameter of beta distribution (φ), coefficients for the mean parameters (β) and the left and
right buffers (bl, br), respectively. For results shown in this work, we use non-informative, flat
priors for all parameters (with conservative boundaries).

For parameter estimation, we use the Markov Chain Monte Carlo (MCMC) sampling tech-
nique, using our MfUSampler R package Mahani and Sharabiani (2017). This software relies
on a Gibbs wrapper around the univariate slice sampler Neal (2003). MCMC has the inherent
advantage of being able to escape local optima and finding the true global optimum, which is
highly desirable for complex functions such as 21. (However, this is not guaranteed to happen
in every problem.) In addition, the fact that slice sampler is derivative-free provides further
convenience.

3. Using DBR

We begin by loading the necessary libraries and the dataset:
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R> library("DBR")

R> data("pain")

R> df <- pain

R> df$age <- as.integer(df$age)

Pain severity and interference are two aggregate scores calculated from patient survey re-
sponses, each between 0 and 10:

R> summary(df)

severity interference age

Min. : 0.000 Min. : 0.000 Min. : 6.0

1st Qu.: 5.000 1st Qu.: 5.286 1st Qu.:50.0

Median : 6.500 Median : 7.000 Median :61.0

Mean : 6.318 Mean : 6.584 Mean :59.6

3rd Qu.: 7.750 3rd Qu.: 8.286 3rd Qu.:71.0

Max. :10.000 Max. :10.000 Max. :96.0

We can also examine the scatterplots:

severity

0
2

4
6

8
1
0

0 2 4 6 8 10

0 2 4 6 8 10

interference

0
2

4
6

8
1
0

20 40 60 80

2
0

4
0

6
0

8
0

age

We observe a clear positive correlation between pain severity and pain interference scores,
but the impact of age on pain interference is less clear, The spearman test below indicated a
statistically-significant negative correlation between age and pain interference.
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R> ret <- with(df, {

+ print(cor.test(severity, interference, method = "spearman"))

+ print(cor.test(age, interference, method = "spearman"))

+ })

Spearman's rank correlation rho

data: severity and interference

S = 136306075, p-value < 2.2e-16

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho

0.6427926

Spearman's rank correlation rho

data: age and interference

S = 417536805, p-value = 0.0006158

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho

-0.09420837

3.1. Discretized Beta Regression - First Attempt

Using the DBR is as simple as a one-line call to the dbr function. The following call specifies
only the two required parameters, formula and data, relying on the default values for the
others:

R> est.1 <- dbr(

+ formula = interference ~ severity + age

+ , data = df

+ )

We can review the estimated model via the summary function, which produces MCMC diag-
nostic plots as well as credible intervals for estimated model parameters:

R> summary(est.1)
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left_buffer right_buffer precision (Intercept) severity age

2.5% 0.07142857 0.07142857 2.201476 -0.76076143 0.2997927 -0.012266314

50% 0.07142857 0.07142857 2.294415 -0.47196006 0.3361209 -0.011025895

97.5% 0.07142857 0.07142857 2.481968 -0.07421716 0.3519739 -0.007347752

A couple of observations can be made upon examining the above figures and table:

1. The left and right buffer trace plots show constant values. This is because, by default,
dbr does not estimate their values; instead it uses fixed values according to the details
described earlier in the paper. To instruct the software to estimate these buffers from
data, we need to set the flags estimate_left_buffer and estimate_right_buffer to
TRUE in the call to dbr.control.

2. By default, MCMC runs for 100 iterations and discards the first 50 as the burn-in
period. The MCMC diagnostics plots suggest that we need more iterations: 1) Trace
plots for model parameters have not stabilized, 2) Log-likelihood trace plot also has not
reached a stable, and is still rising at the end of iterations.

In addition to above issues, we check on another point: Do we expect the unique levels of
the response variable to be all represented in the training data? As we said in description of
the data before, the pain interference score is an average of 7 individual responses, each an
integer between 0 and 10. Therefore, the average ratings form a sequence with increments of
1/7. However, as seen below, there are a couple of gaps:

R> setdiff(0:70, round(7 * sort(unique(df$interference))))

[1] 2 3

In other words, values of 2/7 and 3/7 have not occurred in the training data. This could distort
the DBR algorithm’s calculation of cutpoints. To correct this, we can explicitly override the
yunique argument in the call to dbr.

3.2. Revised Model

Given above observations, we re-estimate the model, but with several function arguments
overridden:
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R> est.2 <- dbr(

+ formula = interference ~ severity + age

+ , data = df

+ , control = dbr.control(

+ nsmp = 1000

+ , nburnin = 500

+ , estimate_left_buffer = T

+ , estimate_right_buffer = T

+ ), yunique = 0:70 / 7)

R> summary(est.2)
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g
−

lik
e

left_buffer right_buffer precision (Intercept) severity age

2.5% 2.484779 0.4212212 2.512354 -0.6170400 0.2506109 -0.008801291

50% 4.059479 0.6505089 2.697751 -0.3197953 0.2742341 -0.006879292

97.5% 4.954448 0.9459980 2.876430 -0.1281612 0.2993229 -0.005126241

We can see that the MCMC chains show relative stability, and so does the log-posterior trace
plot. Also, examining the credible intervals for severity and age coefficients indicates that
they are both significant at the 95% level. Let’s discuss interpretation of DBR coefficients.

Firstly, the left and right buffers represent the scale of the latent, continuous variable. For
example, a left buffer of 4.5 means that when the latent variable is anywhere between −4.5
and +1/70, it is mapped to the observed response 1. Similarly, a right buffer of 0.7 means that
when the latent variable is between 10−1/70 and 10.7, it is mapped to an observed value of 10.
The coefficients of severity and age are interpreted on the standard beta-distribution scale.
For example, a severity coefficient of 0.27 means that, every unit increase in pain severity
increases the logit of the mean of the beta distribution that generates pain interference score
(before reverse scaling) by +0.27.

3.3. Model Prediction

DBR offers two prediction modes, point prediction and sample prediction. The point pre-
diction returns expected response value, and is thus a continuous value. This is achieved via
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a call to the predict function and by setting the type argument to point (which is also the
default value) .

R> pred_point <- predict(est.2, newdata = df, type = "point")

R> hist(pred_point, breaks = 100, col = "grey"

+ , xlab = "Pain Inteference"

+ , main = "Histogram of Point Predictions"

+ )

Histogram of Point Predictions
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The reader may wonder why the extreme-value inflation is not seen in the histogram of
predicted values. This is because these are mean responses. To see the full dispersion of
predictions, we have to switch to sample mode:

R> pred_sample <- predict(est.2, newdata = df, type = "sample")

R> hist(pred_sample, breaks = 100, col = "grey"

+ , xlab = "Pain Inteference"

+ , main = "Histogram of Sample Predictions"

+ )
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Histogram of Sample Predictions

Pain Inteference

F
re

q
u

e
n

c
y

0 2 4 6 8 10

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0

4. Discussion

We have presented the DBR mathematical framework for analysing ratings data (preferably
with many levels of response) using a discretised version of beta distribution. DBR allows for
quantifying the impact of predictors on the response while relaxing the unrealistic assumptions
of fixed slope and variance, which are present in linear regression. We have also prepared an
open-source implementation of the DBR framework as an R package, also called DBR, available
in Supplementary Material for this paper. A tutorial for how to use DBR has also been provided
in Supplementary Material, with more help available as part of package documentation.

The Bayesian framework, along with Markov Chain Monte Carlo (MCMC) sampling technique
offers several advantagesKruschke and Liddell (2018); Liddell and Kruschke (2018), including
robust credible-interval calculation without resorting to unrealistic assumptions about the
asymptotic behavior of the log-likelihood function. While MCMC can be time-consuming
for large datasets, there are several techniques proposed in the literature for speeding it
up Mahani and Sharabiani (2015).

One future step in taking full advantage of the Bayesian framework is to allow for users of
the DBR R package to supply or select non-uniform (non-informative) priors for regression
parameters. Another direction of future work is to add support in the software for inflated
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midpoint values using the mixture framework described in Section 2.4. Another direction for
future work is to embed DBR in composite settings such as multi-level and mixture models.
The Bayesian framework adopted for DBR would facilitate such extensions. Finally, another
direction for future research is to systematically compare DBR and beta-binomial regression,
e.g., using the PROreg R package Najera-Zuloaga, Lee, and Arostegui (2020).
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A. Setup

Below is the corresponding R session information.

R> sessionInfo()

R version 4.1.1 (2021-08-10)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 20.04.3 LTS

Matrix products: default

BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0

LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0

https://doi.org/10.18637/jss.v078.c01
https://doi.org/10.18637/jss.v078.c01
https://CRAN.R-project.org/package=PROreg
https://CRAN.R-project.org/package=PROreg


Alireza S. Mahani, Mansour T.A. Sharabiani 15

locale:

[1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C

[3] LC_TIME=C.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8

[7] LC_PAPER=C.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods

[7] base

other attached packages:

[1] DBR_1.2.3

loaded via a namespace (and not attached):

[1] compiler_4.1.1 ars_0.6 tools_4.1.1

[4] HI_0.4 coda_0.19-4 grid_4.1.1

[7] MfUSampler_1.0.6 lattice_0.20-44
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