Bayes Estimation of Latent Class Mixed Multinomial Probit Models


[Up] [Top]

Documentation for package ‘RprobitB’ version 1.0.0

Help Pages

choice_probs Compute choice probabilities of an 'RprobitB_model'.
classify Classify deciders.
compare Compare fitted models.
compute_log_likelihood Compute log-likelihood of an 'RprobitB_model'.
delta Difference operator.
dmvnrm_arma_mc Multivariate normal density
is_covariance_matrix Check covariance matrix properties.
mcmc Perform Markov chain Monte Carlo simulation for fitting a (latent class) (mixed) (multinomial) probit model.
overview_effects Overview of effects.
plot.RprobitB_model Plot method for 'RprobitB_model'.
predict Predict choices.
prepare Prepare empirical choice data.
print.RprobitB_data Print method for 'RprobitB_data'.
print.RprobitB_gibbs_samples_statistics Print method for 'RprobitB_gibbs_samples_statistics'.
print.RprobitB_latent_classes Print method for 'RprobitB_latent_classes'.
print.RprobitB_model Print method for 'RprobitB_model'.
print.RprobitB_normalization Print method for 'RprobitB_normalization'.
print.summary.RprobitB_data Print method for the summary of 'RprobitB_data'.
print.summary.RprobitB_model Print method for the summary of 'RprobitB_model'.
rdirichlet Draw from Dirichlet
RprobitB_data Create object of class 'RprobitB_data'.
RprobitB_gibbs_samples_statistics Compute parameter statistics.
RprobitB_latent_classes Create object of class 'RprobitB_latent_classes'.
RprobitB_model Create object of class 'RprobitB_model'.
RprobitB_normalization Create object of class 'RprobitB_normalization'.
RprobitB_parameter Create object of class 'RprobitB_parameter'.
rwishart Draw from a Wishart
R_hat Compute Gelman-Rubin statistic.
set_mfrow Balancing visualization of multiple figures.
simulate Simulate choice data.
summary.RprobitB_data Summary method for 'RprobitB_data'.
summary.RprobitB_model Summary method for 'RprobitB_model'.
transform Change the length of the burn-in period, the thinning factor and the scale after Gibbs sampling.
undiff_Sigma Transform differenced to non-differenced error term covariance matrix.