Using ‘Copernicus Data Space Ecosystem’ API Wrapper

Contents

Introduction

API authentication

Collections

Catalog search

Scripts

Retrieving AOI satellite image as a raster object

Retrieving AOI satellite image as an image file

Compiled on 2023-12-05 11:57:01.

Introduction

The CDSE package for R was developed to allow access to the ‘Copernicus Data Space Ecosystem’ data
and services from R. The 'Copernicus Data Space Ecosystem', deployed in 2023, offers access to the EO
data collection from the Copernicus missions, with discovery and download capabilities and numerous data
processing tools. In particular, the ‘Sentinel Hub’ API provides access to the multi-spectral and multi-temporal
big data satellite imagery service, capable of fully automated, real-time processing and distribution of remote
sensing data and related EO products. Users can use APIs to retrieve satellite data over their AOI and
specific time range from full archives in a matter of seconds. When working on the application of EO where
the area of interest is relatively small compared to the image tiles distributed by Copernicus (100 x 100 km),
it allows to retrieve just the portion of the image of interest rather than downloading the huge tile image file
and processing it locally. The goal of the CDSE package is to provide easy access to this functionality from R.

The main functions allow to search the catalog of available imagery from the Sentinel-1, Sentinel-2, Sentinel-3,
and Sentinel-5 missions, and to process and download the images of an area of interest and a time range in
various formats. Other functions might be added in subsequent releases of the package.

API authentication

Most of the API functions require OAuth2 authentication. The recommended procedure is to obtain an
authentication client object from the GetOAuthClient function, and to pass it as the client argument to
the functions requiring the authentication. For more detailed information, you are invited to consult the
“Before you start” document.

id <- Sys.getenv("CDSE_ID")
secret <- Sys.getenv("CDSE_SECRET")
OAuthClient <- GetOAuthClient(id = id, secret = secret)

Note

In this document, the data.frames are output as tibbles since it renders better in PDF. However, all the
functions produce standard data.frames.

Collections

We can get the list of all the imagery collections available in the 'Copernicus Data Space Ecosystem'. By
default, the list is formatted as a data.frame listing the main collection features. It is also possible to obtain
the raw list with all information by setting the argument as_data_frame to FALSE.

collections <- GetCollections(as_data_frame = TRUE)

collections

#> # A tibble: 6 z 12

#> td title description since instrument gsd bands constellation long.min
#> <chr> <chr> <chr> <chr> <chr> <int> <int> <chr> <dbl>
#> 1 sentine~ Sent~ Sentinel 2~ 2015~ msi 10 13 sentinel-2 -180
#> 2 sentine~ Sent~ Sentinel 3~ 2016~ olct 300 21 <NA> -180
#> 3 sentine~ Sent~ Sentinel 3~ 2016~ slstr 1000 11 <NA> -180
#> 4 sentine~ Sent~ Sentinel 1~ 2014~ c-sar VA NA sentinel-1 -180
#> 5 sentine~ Sent~ Sentinel 2~ 2016~ mst 10 12 sentinel-2 -180
#> 6 sentine~ Sent~ Sentinel 5~ 2018~ tropom? 7000 NA <NA> -180
#> # 1 3 more vartables: lat.min <dbl>, long.maz <dbl>, lat.max <dbl>

https://dataspace.copernicus.eu/
https://documentation.dataspace.copernicus.eu/APIs/SentinelHub.html

Catalog search

The imagery catalog can be searched by spatial and temporal extent for every collection present in the
'Copernicus Data Space Ecosystem'. For the spatial filter, you can provide either a sf or sfc object
from the sf package, typically a (multi)polygon, describing the Area of Interest, or a numeric vector of four
elements describing the bounding box of interest. For the temporal filter, you must specify the time range by
either Date or character values that can be converted to date by as.Date function. Open intervals (one
side only) can be obtained by providing the NA or NULL value for the corresponding argument.

dsn <- "CDSE")
aoi <-

images

system.file("extdata", "luxembourg.geojson", package =

sf::read_sf(dsn, as_tibble = FALSE)

<- SearchCatalog(aoi = aoi, from = "2023-07-01", to = "2023-07-31",
collection = "sentinel-2-12a", with_geometry = TRUE,
client = OAuthClient)

images

#> # A tibdble: 70 x 12

#> acquisitionDate tileCloudCover areaCoverage satellite acquisitionTimestamp~1
#> <date> <dbl> <dbl> <chr> <dttm>

#> 1 2023-07-31 98.9 1.84 sentinel-~ 2023-07-31 10:47:29
#> 2 2023-07-31 99.8 20.3 sentinel-~ 2023-07-31 10:47:25
#> 3 2023-07-31 99.7 5.93 sentinel-~ 2023-07-31 10:47:23
#> 4 2023-07-31 99.9 16.3 sentinel-~ 2023-07-31 10:47:14
#> 5 2023-07-31 99.9 92.5 sentinel-~ 2023-07-31 10:47:11
#> 6 2023-07-31 99.4 22.2 sentinel-~ 2023-07-31 10:47:09
#> 7 2023-07-28 100. 4.99 sentinel-~ 2023-07-28 10:37:28
#> 8 2023-07-28 100. 5.66 sentinel-~ 2023-07-28 10:37:27
#> 9 2023-07-28 100. 4.29 sentinel-~ 2023-07-28 10:37:21
#> 10 2023-07-28 100 6.85 sentinel-~ 2023-07-28 10:37:20

#>
#>

1 60 more rows

1 abbreviated name: 1: acquisitionTimestampUIC

#> # 1 7 more vartables: acquistitionTimestampLocal <dttm>, sourceld <chr>,
#> # long.min <dbl>, lat.min <dbl>, long.maxz <dbl>, lat.maxz <dbl>,
#> # geometry <POLYGON [°]>

We can visualize the coverage of the area of interest by the satellite image tiles by plotting the footprints of
the available images and showing the region of interest in red.

library (maps)

days <- range(as.Date(images$acquisitionDate))

maps: :map(database = "world", col = "lightgrey", fill = TRUE, mar =
xlim = c¢(3, 9), ylim = c(47.5, 51.5))

plot(sf::st_geometry(aoi), add = TRUE, col = "red", border =

plot(sf::st_geometry(images), add = TRUE)

title(main = sprintf("AOI coverage by image tiles for period %s",

paste(days, collapse = " / ")), line = 1L)

c(o’ O, 4’ 0),

FALSE)

Some tiles cover only a small fraction of the area of interest, while the others cover almost the entire area.

summary (images$areaCoverage)
#> Min. 1st Qu. Median Mean 3rd Qu. Mazx.
#> 1.845 5.603 15.113 19.758 20.346 92.463

The tile number can be obtained from the image attribute sourceld, as explained here. We can therefore
summarize the distribution of area coverage by tile number, and see which tiles provide the best coverage of
the AOL

https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/naming-convention

AOI coverage by image tiles for period 2023-07-01 / 2023-07-31

)

1

—

Figure 1: Luxembourg image tiles coverage

tileNumber <- substring(images$sourceld, 39, 44)
by (images$areaCoverage, INDICES = tileNumber, FUN = summary)
#> tileNumber: T31UFQ

#> Min. 1st Qu. Median Mean 3rd Qu. Maz.

#> 1.845 1.845 1.845 1.845 1.845 1.845

B> o
#> tileNumber: T31UFR

#> Min. 1st Qu. Median Mean 3rd Qu. Maz.

#> 16.32 16.32 16.32 16.32 16.32 16.32

B> m
#> tileNumber: T31UGR

#> Min. 1st Qu. Median Mean 3rd Qu. Maz.

#> 4.294 4.909 12.705 12.586 20.346 20.346

B> m
#> tileNumber: T31UGR

#> Min. 1st Qu. Median Mean 3rd Qu. Mazx.

#> 6.855 15.608 54.299 53.426 92.463 92.463

B
#> tileNumber: T32ULA

#> Min. 1st Qu. Median Mean 3rd Qu. Maz.

#> 6.169 14.951 18.815 17.972 22.236 22.236

B> o
#> tileNumber: T32ULV

#> Min. 1st Qu. Median Mean 3rd Qu. Maz.

#> 4.944 5.603 5.820 5.723 5.934 5.934

Scripts

As we shall see in the examples below, we have to provide a script argument to the GetArchiveImage
function.

An evalscript (or “custom script”) is a piece of JavaScript code that defines how the satellite data shall be
processed by the API and what values the service shall return. It is a required part of any request involving
data processing, such as retrieving an image of the area of interest.

The evaluation scripts can use any JavaScript function or language structures, along with certain utility
functions provided by the API for user convenience. Chrome V8 JavaScript engine is used for running the
evalscripts.

The evaluation scripts are passed as the script argument to the GetArchiveImage function. It has to be
either a character string containing the evaluation script or the name of the file containing the script. The
scripts folder of this package contains a few examples of evaluation scripts.

It is beyond the scope of this document to provide guidance for writing scripts, we encourage users to consult
the API Beginners Guide and Evalscript (custom script) documentation.

https://docs.sentinel-hub.com/api/latest/user-guides/beginners-guide/
https://docs.sentinel-hub.com/api/latest/evalscript/

Retrieving AOI satellite image as a raster object

One of the most important features of the API is its ability to extract only the part of the images covering the
area of interest. If the AOI is small as in the example below, this is a significant gain in efficiency (download,
local processing) compared to getting the whole tile image and processing it locally.

dsn <- system.file("extdata", "centralpark.geojson", package = "CDSE")

aoi <- sf::read_sf(dsn, as_tibble = FALSE)

images <- SearchCatalog(aoi = aoi, from = "2021-05-01", to = "2021-05-31",
collection = "sentinel-2-12a", with_geometry = TRUE,
client = OAuthClient)

images

#> # A tidbble: 12 z 12

#> acquisitionDate tileCloudCover areaCoverage satellite acquisitionTimestamp~1
#> <date> <dbl> <dbl> <chr> <dttm>

#> 1 2021-05-30 100 100. sentinel-~ 2021-05-30 16:01:47
#> 2 2021-05-27 16.3 100. sentinel-~ 2021-05-27 15:51:51
#> 3 2021-05-25 26.5 100. sentinel-~ 2021-05-25 16:01:47
#> 4 2021-05-22 100 100. sentinel-~ 2021-05-22 15:51:51
#> 5 2021-05-20 24.3 100. sentinel-~ 2021-05-20 16:01:47
#> 6 2021-05-17 7.17 100. sentinel-~ 2021-05-17 15:51:50
#> 77 2021-05-15 28.2 100. sentinel-~ 2021-05-15 16:01:47
#> 8 2021-05-12 1.35 100. sentinel-~ 2021-05-12 15:51:50
#> 9 2021-05-10 92.7 100. sentinel-~ 2021-05-10 16:01:45
#> 10 2021-05-07 89.6 100. sentinel-~ 2021-05-07 15:51:48
#> 11 2021-05-05 100. 100. sentinel-~ 2021-05-05 16:01:45
#> 12 2021-05-02 78 100. sentinel-~ 2021-05-02 15:51:48

#> # 1 abbreviated name: 1: acquisitionTimestampUIC
#> # 1 7 more variables: acquisitionTimestampLocal <dttm>, sourceld <chr>,

#> # long.min <dbl>, lat.min <dbl>, long.mazxz <dbl>, lat.maxz <dbl>,
#> # geometry <POLYGON [°]>

summary (images$areaCoverage)

#> Min. 1st Qu. Median Mean 3rd Qu. Maz.

#> 100 100 100 100 100 100

As the area is small, it is systematically fully covered by all available images. We shall select the date with
the least cloud cover, and retrieve the NDVI values as a SpatRaster from package terra. This allows further
processing of the data, as shown below by replacing all negative values with zero. The size of the pixels is
specified directly by the resolution argument. We are also adding a 100-meter buffer around the area of
interest and masking the pixels outside of the AOIL.

day <- images[order(images$tileCloudCover),]$acquisitionDate[1]
script_file <- system.file("scripts", "NDVI_float32.js", package = "CDSE")
ras <- GetArchivelImage(aoi = aoi, time_range = day, script = script_file,

collection = "sentinel-2-12a", format = "image/tiff",
mosaicking order = "leastCC", resolution = 10,
mask = TRUE, buffer = 100, client = OAuthClient)
ras
#> class : SpatRaster
#> dimensions : 383, 355, 1 (nrow, mcol, nlyr)
#> resolution : 0.0001003292, 0.0001003292 (z, y)
#> extent : =73.98355, -73.94794, 40.76322, 40.80165 (zmin, zmaz, ymin, ymazx)
#> coord. ref. lon/lat WGS 84 (EPSG:4326)
#> source(s) : memory
#> name : file38ccl2d1367e9

#> min value 5 -0.5069648
#> maz value 5 0.9507549
ras[ras < 0] <- 0
terra: :plot(ras, main = paste("Central Park NDVI on", day),
col = colorRampPalette(c("darkred", "yellow", "darkgreen")) (99))

Central Park NDVI on 2021-05-12

©
@ |
<
§_ 0.80
o
<
o
~
2
0.60
3
l__
o
<
®
S 0.40
n
Nl
o
<
g 0.20
o
<
S
e 2
g : : 0.00

Figure 2: Central Park NDVI raster

Retrieving AOI satellite image as an image file

If we don’t want to process the satellite image locally but simply use as image file (to include in a report or
a Web page, for example), we can use the appropriate script that will render a three-band raster for RGB
layers (or one for black-and-white image). Here we specify the area of interest by its bounding box instead
of the exact geometry. We also demonstrate that the evaluation script can be passed as a single character
string, and provide the number of pixels in the output image rather than the size of individual pixels - it
makes more sense if the image is intended for display and not processing.

bbox <- as.numeric(sf::st_bbox(aoi))
script_text <- paste(readLines(system.file("scripts", "TrueColor.js",
package = "CDSE")), collapse = "\n")
cat(script_text, sep = "\n")
#> //VERSION=3
#> //True Color
#>
#> function setup() {
#> return {

#> input: ["BO2", "B0O3", "B04"],
#> output: { bands: 3 }

#> }

#> }

#>

#> function evaluatePizel (sample) {
#> return [2.5 * sample.B04, 2.5 * sample.B03, 2.5 * sample.B02]

#> }
png <- tempfile("img", fileext = ".png")
GetArchiveImage(bbox = bbox, time_range = day, script = script_text,

collection = "sentinel-2-12a", file = png, format = "image/png",
mosaicking order = "leastCC", pixels = c(600, 950), client = OAuthClient)
terra: :plotRGB(terra: :rast(png))

Figure 3: Central Park image as PNG file

	Introduction
	API authentication
	Collections
	Catalog search
	Scripts
	Retrieving AOI satellite image as a raster object
	Retrieving AOI satellite image as an image file

