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1 Introduction

Data relating to a set of non-overlapping spatial units occur in many application areas,
including agriculture (Besag and Higdon (1999)), ecology (Brewer and Nolan (2007)),
education (Wall (2004)), epidemiology (Lee (2011)) and image analysis (Gavin and
Jennison (1997)). The areal units can form a regular lattice or differ largely in both
shape and size, with examples of the latter including a set of electoral wards or census
tracts corresponding to a city or county. Data that occur on such areal units typically
exhibit spatial correlation, with observations from units close together tending to have
similar values. The spatial pattern in such data can be modelled by a hierarchical
Bayesian regression model, that includes covariates and a set of random effects. The
latter are included to allow for any extra variation or spatial correlation in the response
data, that is not accounted for by the available covariates. The class of conditional
autoregressive (CAR, Besag (1974)) models are most commonly used to capture the
spatial correlation in the random effects, and are most often specified as a set of uni-
variate conditional distributions, where the conditioning is only on the values of the
random effects in geographically adjacent areal units. This geographical information
is contained in a binary neighbourhood matrix W, where element wy; equals one or
zero depending on whether areal units (k,j) share a common border. Thus, if areas
(k,7) share a common border their random effects are correlated, whereas otherwise
they are conditionally independent.

In this vignette we provide a tutorial describing how to implement a number of the
commonly used conditional autoregressive models in the R package CARBayes, as
well as the recently created localised spatial smoothing method proposed by Lee and
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Mitchell (2012). This latter approach does not force the random effects to exhibit a
single level of spatial smoothness across the entire region under study, unlike the com-
monly used CAR models. In realistic urban contexts a single level of spatial smoothness
in the response is unlikely, as there are often areas of smooth evolution, as well as lo-
cations at which step changes occur. These step changes are known as boundaries in
the response surface, and may occur, for example, where rich and poor communities
live side by side. In this context, one might expect spatial correlation to be present
within each community, but not at the border where the two communities meet. The
identification of these boundaries (step changes) in the response surface has a number
of benefits to researchers, including the ability to detect the spatial extent of a cluster
of areas that exhibit overly high or low values.

The remainder of this vignette is organised as follows. In Section 2 a brief review of
the general hierarchical Bayesian model is provided, which includes the commonly used
methods and a generalisation of the localised spatial smoothing approach proposed by
Lee and Mitchell (2012). Then in Section 3 a tutorial of how to implement these
methods in the R package CARBayes is presented, via a case study of alcohol disease
cases in Greater Glasgow, Scotland.

2 General hierarchical Bayesian model

Recall that the region under study is split into n non-overlapping areal units, and the
aim is to estimate the spatial pattern of the response across these n areas. The vector
of responses is denoted by Y = (Y1,...,Y,), while if a vector of offsets is required
(see Section 3 for an example of where an offset could be used), it is denoted by O =
(O1,...,0,). In addition, there are a matrix of p covariates X = (x7,...,x}), where
Xy = (1, 2k, ..., Xp), the first of which corresponds to an intercept term. Finally, the
vector of random effects is denoted by ¢ = (¢4, ..., ¢,), which are included to model
any spatial correlation that remains in the residuals after the covariate effects have
been accounted for. A general specification of the Bayesian hierarchical model is given
by

Vilue ~  flylpn,v?)  for k=1,....n,

9() = xpB+ ¢+ Oy, (2.1)
Bi ~ N(mgv;) fori=1,...,p,
vy ~ Uniform(0, M,).

The response data Y} come from an exponential family of distributions f(Y|ux,v?),
and at present the Gaussian, binomial and Poisson families are available in the CAR-
Bayes package. The expected value of Y} is denoted by E[Y:] = px, while 2 is an
additional scale parameter if required (for example if Y} is Gaussian). The expected



values of the responses are related to the linear predictor via an invertible link function
g(.), and at present, the link functions supported are the identity (for Gaussian data),
the natural log (for Poisson data) and the logit (for binomial data) functions. Inde-
pendent Gaussian priors (means m; and variances v;) are specified for the p regression
parameters ;. A weakly informative yet proper prior distribution is assigned for the
scale parameter v (if required), as little is likely to be known about its value before
the analysis is conducted. We note that a common alternative would be a conjugate
inverse-gamma prior for 2, although it is not used here because it is difficult to choose
the hyperparameters so that such a prior is non-informative (for details about choosing
prior distributions for variance parameters see Gelman (2006)).

The random effects model any extra variation or spatial correlation in the response
data, that is not accounted for by the available covariates. However, we note that if
no covariates are included in this model then the random effects represent the spatial
pattern in the response surface, where as if covariates are included, they capture any
structure in the residuals. The rest of this section describes a number of random effects
priors for ¢, which represent different types of spatial correlation structure. All of the
models described can be implemented in the CARBayes package.

2.1 Independent random effects

If the covariate component has modelled all of the spatial correlation in the response,
then only non-spatial variation (overdispersion) will remain in the residuals. In this
case we denote the random effects by @ = (64, ..., 6,) rather than ¢ = (¢1,...,¢,) (to
aid notational clarity in the following sub-sections), which leads to the altered mean
model g(ug) = X3 + 0 + Og. The uncorrelated random effects can then be modelled
as

Oxlo* ~ N(0,0%) fork=1,...,n, (2.2)
o? ~ Uniform(0, M,),

where each 6, is independent and identically distributed with a mean of zero and a
constant variance of o2. A diffuse uniform prior is assigned to the random effects
variance o2, where M, is large enough to allow a very wide range of values.

2.2 Strong spatially correlated random effects

If the data contain spatial correlation then a common class of models for the random
effects ¢ are conditional autoregressive (CAR) priors, which are a type of Markov
random field. As such, these models can be specified as n univariate full conditional
distributions f(¢g|¢_), where ¢_, = (d1, ..., Pp_1, Okt1,- .-, Pn). Spatial correlation
is induced into these random effects via an n x n neighbourhood matrix W, which
typically contains only the numbers one and zero. In this case, if the kjth element wy;
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equals one then the corresponding random effects (¢, ¢;) are correlated. In contrast,
if wy; equals zero then the two random effects are conditionally independent given the
values of the remaining random effects. A common specification for this neighbourhood
matrix is that wy; = 1 if areas (k, j) share a common border (and hence are spatially
close), denoted k ~ j, otherwise wy; equals zero. Other specifications are also possible,
including wy; equalling one if the centroids of areas (k, j) are within a threshold distance
of each other, or if they are one of the ¢ closest neighbours. Conditional on this
neighbourhood information, the simplest model within the CAR class is the intrinsic
autoregressive (IAR) model, which is given by

D et Wi & 7
Z;L=1 Wi ’ 2?21 Wi

7%~ Uniform(0, M,).

Ol . TP W~ N( )forkal,...,n, (2.3)

In this model the conditional expectation of ¢, is the average of the random effects in
neighbouring areas (those sharing a common border and hence having wy; equalling
one), while the conditional variance is inversely proportional to the number of neigh-
bouring areas. The latter recognises the fact that in the presence of strong spatial
correlation, the more neighbours an area has the more information there is in the data
about the value of its random effect. As before a diffuse uniform prior is specified for
the variance 72. Finally, we note that this model can only represent strong spatial cor-
relation, as the only hyperparameter 72 controls the amount of variation amongst the
random effects and not the level of spatial correlation. For example, multiplying each
¢ by 10 will increase the variance 72, whilst leaving the spatial correlation structure
unchanged. A further drawback of the intrinsic model is that the set of full conditional
distributions above do not correspond to a proper multivariate Gaussian distribution
for ¢, as the corresponding precision matrix is singular.

2.3 Varying strength spatially correlated random effects

The priors in the previous two sub-sections assume that the random effects are either
independent or strongly spatially correlated, which may be too restrictive for real data.
Therefore a number of generalisations exist, which allow the level of spatial correlation
to be estimated from the data. A number of these models are also within the class of
CAR priors, and three of the most commonly used specifications can be implemented
in the CARBayes package.

2.3.1 Besag, York and Molli (BYM) model

The BYM (Besag et al. (1991), or convolution) model is the most commonly used prior
for the random effects, and combines the independent and intrinsic models described



above. The model for the mean p; includes two sets of random effects and is given by
g(pr) = xiB + 0k + ¢r + Ok. The two sets of random effects (0, ¢x) are modelled as
described above, that is

7.1_ Wi D 2
Oelp T2 W~ N Zﬂ:ﬁ '“%, 7 fork=1,...,n,
Zj:l W Zj:l Wi

Olo* ~ N(0,0%) for k=1,...,n, (2.4)
7%~ Uniform(0, M,),
o? ~ Uniform(0, M,).

The advantage of this model over those described above is that it can represent varying
strengths of global spatial correlation, depending on the relative sizes of the two vari-
ance parameters (72,02). However, the disadvantage of this model is that each data
point Y}, is represented by two random effects (¢y, 6x), and as a result, only their sum is
identifiable. Therefore, the estimates of the individual random effects will be unstable,

and MCMC convergence may be very slow.

2.3.2 Proper model

An alternative to having two random effects is the model proposed Stern and Cressie
(1999), which extends the intrinsic autoregressive model by having a correlation pa-
rameter p. The univariate full conditional distributions are given by

p le W j 72
¢k‘¢, a7—27p7W ~ N Jn ) n
g Zj:l Wi Zj:l Wi
7% ~ Uniform(0, M,),
p ~ Uniform(0,1).

)forkzl,...,n, (2.5)

This set of conditional distributions corresponds to a proper multivariate distribution
for p € [0,1). The conditional mean is equivalent to a weighted average of the random
effects in neighbouring areas and a global mean of zero (i.e. the numerator is equal to
P Z;'L:1 wi;®; + (1 — p) x 0). The correlation parameter p allows the random effects to
exhibit independence, weak or strong spatial correlation, with p = 0 corresponding to
independence, while p close to one represents strong spatial correlation. When p equals
one the model simplifies to the intrinsic model, while when p equals zero the random
effects are independent and have zero mean. However, the downside of this model is
that in this latter independence case the variance is still inversely proportional to the
number of neighbours, even though they contain no information about ¢y.



2.3.3 Leroux model

An alternative to the above model which has a more natural conditional variance
structure was proposed by Leroux et al. (1999), and has full conditional distributions
given by

Py Weid; 72
¢k|¢— ) T p7W ~ N n : ) n ) (26)
g ijzlwkj‘l'l_p (ijzlwkj+1_p)
7%~ Uniform(0, M,),
p ~ Uniform(0,1).

The conditional expectation is still a weighted average of the random effects in neigh-
bouring areas and a global mean of zero (the numerator is equivalent to p Z?:l W@+
(1—p) x0). The single parameter p again determines the global level of spatial correla-
tion between the random effects, with p = 0 corresponding to independence everywhere,
while p close to one defines strong spatial correlation throughout the region. However,
for this model when p equals zero the random effects have a constant variance, which
is in keeping with the independence model.

2.4 Localised spatial smoothing models

The models described above specify a single global level of spatial smoothness or corre-
lation for the random effects ¢ across the entire study region, for example by specifying
a global spatial smoothness parameter p. However, this is unlikely to be realistic in
practice, as the spatial structure is likely to be much more localised, and include sub-
regions of smooth evolution as well as boundaries where abrupt changes occur. The
paper by Lee and Mitchell (2012) proposes a method for capturing such localised spa-
tial structure, including the identification of boundaries in the random effects surface.
Their paper was set in a disease mapping context utilising a Poisson log-normal model,
and is a special case of the more general class of models that can be implemented using
the CARBayes package. The boundaries that can be identified are in the random
effects surface ¢, which measures the residual pattern in disease risk after the covariate
effects have been adjusted for. As a result, the model can be used in two separate ways,
which effects the interpretation of any boundaries that are identified.

e If there are no covariates in the model, i.e. x;8 = By, (only an intercept term),
then the mean response surface g = (ju1, ..., it,) and the random effects surface
¢ have the same spatial structure, as they are related by the function g(.). There-
fore, any boundaries identified in the random effects surface are also boundaries
in the mean response surface. It is boundaries in this latter surface that are
likely to be of direct interest to researchers, in which case covariates should not
be included in the model. Such a model is appropriate if the aim of the study is
to identify such boundaries.



e If there are covariates in the model then the spatial structures of the random
effects and response surfaces are different, so any boundaries identified may not
be boundaries in the response surface. This model is appropriate if the aim of the
study is to provide a realistic description of the spatial structure in the response.

The boundaries in the random effects surface are identified by modelling the set of {wy;}
as random quantities if areas (k, j) share a common border, rather than assuming they
are fixed at one. Conversely, if areas (k,j) do not share a common border then wy;
is fixed at zero. The random quantities can be modelled as binary (wy; € {0,1}) or
continuous (wy; € [0,1]), and the choice will depend on the context of the problem.

e If a binary specification wy; € {0,1} is used, then if wy; is estimated as zero
(¢, ¢;) are conditionally independent, while if wy; = 1 they are correlated. Thus
the former corresponds to a boundary in the random effects surface between areas
(k,7), while the latter corresponds to no boundary.

e In contrast, if wy; € [0, 1] then the identification of boundaries is not possible, as
wy; can take any real number within the interval. However, unlike the previous
case where wy; = 1 or wy; = 0, this approach does allow for varying strengths
of partial correlation between (¢, ¢;), because its value depends on wy;. Thus,
this approach may be more appropriate if the goal of the analysis is to model the
spatial structure in the random effects surface.

Both the binary and the continuous models for {wy;} use a small number of regression
parameters o = (oy, ..., qq), rather than treating each wy; as a separate unknown
quantity. This leads to a parsimonious covariance model for ¢, whist still allowing the
values of wy; to be identified by the data, rather than a-priori by the investigator.
The model is based on the hypothesis that small values of wy; (hence small partial
correlation between (¢, ¢;)) will occur between populations living in neighbouring
areas that are very different, because homogeneous populations should have similar
values of the reponse. Therefore, wy; is modelled as a function of ¢ non-negative
dissimilarity metrics zgj; = (2gi1, - - -, 2kjq), Where

Zhji = |2k — zjilJoi,  fori=1,...,q.

Each zj; measures the absolute difference in the value of a covariate between the two
areas in question, and the re-scaling by o;, the standard deviation of |zj; — z;;| over all
pairs of contiguous areas, improves the mixing and convergence of the MCMC algo-
rithm. These dissimilarity metrics largely determine the spatial correlation structure
across the study region, and examples could include social or physical factors. For
example, social characteristics could include average income or smoking prevalence. In
contrast, physical factors could include the distance between the central points of two
areas, or the proportion of the boundary between the two areas that cannot be crossed
on foot. Examples of the latter could include the border being a railway line, river



or motorway, and such physical barriers may prevent mixing between the two popula-
tions. Using these metrics, the proposed random effects model extends that proposed
by Leroux et al. (1999) and is given by

ilb . o ~ N ( an;;l wij (o), | ] 72 ) |
pzjzl wyj(o) +1—p ij:1 wij(a) +1—=p
7% ~ Uniform(0, M,),
p ~ Uniform(0,1).

Here p determines the maximum level of spatial correlation globally, while wy;(c) rep-
resents by how much the correlation between (¢y, ¢;) differs from this global value.
These neighbourhood relations wy;(c) are treated as weights that range between zero
and one, and if each one equals one then the global smoothing model of Leroux is
obtained. The binary and continuous models for wy; are given by:

Binary model

B 1 if exp(—> 7, zxjic;) > 0.5 and j ~ k
wij(@) = { 0 otherwise ’ (2.7)
a; ~ Uniform(0, M;) fori=1,...,q.
Continuous model
' B exp(— > 0, zpjicy) if j~k
wij(@) = { 0 otherwise ’ (2.8)

a; ~ Uniform(0, M;) fori=1,...,q.

For areas that are contiguous large values of (zyj;, ;) result in low partial correla-
tions, where in the binary model if exp(— Y7 | zxj;;) is less than 0.5 then (¢y, ¢;) are
conditionally independent. The regression parameters, a, are constrained to be non-
negative, so that the greater the dissimilarity between two areas the more likely there
is to have a low (or zero) value of wy;. In addition, there is no intercept term in the
above model so that two areas with homogeneous populations (i.e. all zj; = 0) have
wi; = 1. A non-informative uniform prior is assigned for each regression parameter,
«;, which corresponds to our prior ignorance about the set of wy; values.

2.5 Inference

Inference for all models described in this vignette is based on Markov Chain Monte
Carlo (MCMC), simulation, which is implemented in the CARBayes package using
a combination of Metropolis and Gibbs sampling steps. The variance parameters are



Gibbs sampled from their full conditional inverse-gamma distributions, while the re-
maining parameters are updated using Metropolis steps with random walk proposal
distributions (unless the response is Gaussian in which case Gibbs sampling can be
used). Finally, to improve convergence each set of random effects is centered to have
mean zero, which is implemented numerically at each iteration of the MCMC algorithm.

3 Worked example - Disease mapping

3.1 Background

Disease maps display the spatial pattern in disease risk over an extended geographical
region, so that any clusters of high risk areas can be identified. For each unit only
the total numbers of cases of the disease in question over a fixed time interval are
available, which is compared to the number of cases expected to have occurred based
on the size and demographic structure of the population living in that area. These data
are typically denoted by Y = (Y1,...,Y,) and E = (Fy,..., E,), which respectively
comprise the set of observed (Y) and expected (E) numbers of disease cases in each of
the n areal units. Using these data, the simplest measure of disease risk in area k is
the ratio Yj/Ej, known as the standardised incidence ratio (SIR) or the standardised
mortality ratio (SMR). A value of one represents the null risk, where the numbers of
disease cases observed and expected are the same. Values above one correspond to
increased risks of disease, while values below one represent relatively healthy (low risk)
areas. The general form of the model used in this context is given by

Yilue ~ Poisson(pg) for k=1,...,n,

In(ur) = %38+ ¢p + In(Ey).
(3.1)

This model has a mean function that can be expressed as up = Ey Ry, where Ry, is the
risk of disease in area k. Thus we have that

In(pur) = In(Eg) +In(Rx) = In(Ey) +x.8 + ¢,
meaning that disease risk is represented by Ry = exp(x;8 + ¢x).

3.2 Data description

We illustrate the utility of the CARBayes package by mapping the spatial pat-
tern in alcohol disease in Glasgow, Scotland, between 2001 and 2004. The data
are publicly available from the Scottish Neighbourhood Statistics (SNS) database
(hitp://www.sns.gov.uk). The study region is the Greater Glasgow and Clyde health
board, which contains the city of Glasgow in the east, and the river Clyde estuary in



Figure 1: Standardised Incidence Ratios (SIR) for alcohol admissions.
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the west. Glasgow is the largest city in Scotland, with a population of around 600,000
people. It is also known to contain some of the poorest people in Europe, and has rich
and poor communities that are geographically adjacent. This study region is parti-
tioned into n = 271 Intermediate Geographies (IG), which were developed specifically
for the distribution of small-area statistics, and have a median area of 124 hectares and
a median population of 4,239.

The disease data we model are the numbers of people admitted to acute and psychiatric
hospitals in each IG with a main or secondary diagnosis of alcohol related conditions,
during the four year period spanning 2001 to 2004. The expected numbers of cases
were calculated by external standardisation, using age and sex adjusted rates for the
whole of Scotland. These rates were obtained from the Information Services Division
(ISD), which is the statistical arm of the National Health Service in Scotland. The
simplest measure of disease risk is the standardised incidence ratio, which is presented
in Figure 1 as a choropleth map. The Figure shows that the risk of admission to hos-
pital is highest in the heavily deprived east end of Glasgow (east of the study region),
as well as along the banks of the river Clyde (the thin white line running south east).

We consider two covariates here, both of which have been shown to effect alcohol
dependence and abuse rates. The first is a measure of poverty, as numerous studies
(see for example Catalano et al. (1993) and Khan et al. (2002)) have shown a link
between unemployment and increased alcohol dependence. The variable we consider
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here is the percentage of people in each IG that are defined to be income deprived,
which means they are in receipt of a combination of means-tested benefits. The second
variable we consider is ethnicity, because previous studies (for example Grant et al.
(2004)) have also shown a link to alcohol dependence. The only variable available to
measure ethnicity is the percentage of school children in each IG from ethnic minorities
(non-white). While we appreciate this variable is imperfect in many ways (e.g. it relates
to children not adults, and it does not differentiate between the different ethnic groups),
it is the only measure of ethnicity available for our study. The data required for this
study are in two parts:

1. A data file containing the response, the expected numbers and covariates.

2. A binary n x n neighbourhood matrix containing the information on which pairs
of areas are neighbours.

The following R code loads the package and reads in and formats these data

#### Load the package
library(CARBayes)

#### Read in the data

## Ensure the file path is correct

data <- read.csv(file="alcohol_data.csv", header=TRUE)
W <- read.table(file="W.txt", header=TRUE)

W <- as.matrix(W)

#### Format the variables
Y <- data$y

E <- data$E

ethnic <- data$ethnic
incomdep <- data$incomedep

3.3 Running the independence model

The simplest random effects model assumes independence, which is summarised in
Section 2.1. This model would be appropriate if, after adjusting for the covariate
effects, the data contain overdispersion but not spatial correlation. This model can be
run by the following code:

formula <- Y ~ ethnic + incomedep + offset(log(E))

burnin <- 2500

n.sample <- 5000

modell <- poisson.independent(formula=formula, burnin=burnin, n.sample=n.sample)
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The function can take multiple arguments, but only the formula one is actually re-
quired for the function to run a model. The formula argument takes the standard form
specified for linear models using the Im() function.

The remaining arguments either have default values used by the function, or have val-

ues that are randomly generated inside the function. Default values are specified

for burnin, n.sample, blocksize.beta, blocksize.theta, prior.mean.beta, prior.var.beta,
prior.maz.sigma?, which relate to the numbers of samples generated and used for
inference (burnin, n.sample), quantities for the MCMC algorithm (blocksize.beta, block-
size.theta) and hyperparameters for the prior distributions (prior.mean.beta (m; ), prior.var.beta
(v;), prior.maz.sigma2 (M, )). Initial values for the model parameters in the MCMC
algorithm are randomly generated if they are not specified, which includes beta (3),

theta (0) and sigma2 (0?).

Upon completion, the function produces the following summary table.

HHHHH R AR
#### Model fitted
HHHHHHHHHBR R HEH

Likelihood model - Poisson (log link function)

Random effects model - Independent
Regression equation - Y ~ ethnic + incomedep + offset(log(E))

it
#### Results
H#HS

Posterior quantiles and acceptance rates

Median 2.5% 97.5% n.sample % accept

(Intercept) -1.1958 -1.2441 -1.1482 2500 36.1
ethnic 0.0023 0.0007 0.0038 2500 36.1
incomedep 0.0477 0.0454 0.0495 2500 36.1
sigma2 0.1414 0.1171 0.1718 2500 100.0

Acceptance rate for the random effects is 32.3Y%

DIC = 2334.536 p.d = 246.2667

The table gives posterior medians and 95% credible intervals for the regression param-
eters B and the random effects variance o2, as well as the number of samples on which
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they are based (n.sample - burnin) and the acceptance rates (variance parameters are
Gibbs sampled, hence the 100% rate). Also provided is the Deviance Information Cri-
terion (DIC, Spiegelalter et al. (2002)) and the effective number of parameters (p.d),
the former of which is a measure of how well a model fits a given data set. This can
be used to compare the fit of different models to the same data set, with lower values
indicating a better fitting model. The function returns a list object, which contains
the following elements.

Length Class Mode

formula 3 formula call

samples.beta 7500 mcmc numeric
samples.theta 677500 mcmc numeric
samples.sigma?2 2500 mcmc numeric
fitted.values 1355 -none- numeric
random.effects 1355 -none- numeric
residuals 271 -none- numeric
DIC 1 -none- numeric
p.d 1 —-none- numeric
summary.results 20 -none- numeric

e The elements samples.beta, samples.theta, samples.sigma? contain matrices of
the MCMC samples for the parameters in the model.

e The elements random.effects and fitted.values contain summaries of the posterior
distributions of the random effects @ and the means p respectively for all n areas,
including means, medians, standard deviations and 95% confidence intervals.

e residuals contains the raw residuals (i.e. Y; — i) for all n areas, where [, is the
posterior median.

These elements can be extracted from the model object using code such as

modell$fitted.values[1:5, ]

Mean Sd Median 2.5% 97.5%
[1,] 153.3785 12.9791 152.4718 128.8241 180.4727
[2,] 29.9123 4.9164 29.2682 20.9858 41.0977
[3,] 49.7347 5.8273 49.6295 38.9435 60.8026
[4,] 20.8570 3.9114 21.0078 13.4794 28.4519
[6,] 81.6947 8.8957 81.5456 64.4440 98.8314

which extracts the summary table of the posterior distribution of the fitted values.
Note, only the values from the first five areas are shown here to save space.

The estimated regression parameters are on their original scale, which is not particu-
larly interpretable for Poisson regression models. Instead, the relative risk is typically

13



Table 1: Relative risks for a one standard deviation increase in each covariates value

Covariate Estimate 95% Credible interval
Income deprivation 1.990 (1.952, 2.054)
Ethnicity 1.012 (0.981, 1.050)

specified, which measures the effect on disease risk (R) of increasing each covariates
value. For example, the relative risk for an w increase in a covariates value measures
the increase / decrease in disease risk that would occur if that covariate increased by w.
It is calculated by applying the transformation exp(w x -) to the posterior distribution
of B3, i.e. to the median and the limits of the 95% credible interval. To illustrate,
Table 1 displays the relative risk relating to a one standard deviation increase in each
covariate’s value. The table shows that ethnicity does not have a substantial effect
on alcohol disease risk, as the 95% credible interval contains the null risk of one. In
contrast, income deprivation does have a substantial effect, with a 13.8% (one standard
deviation) increase in deprivation leading to a near doubling of the risk (1.990).

3.4 Running the spatial CAR models

The above model assumes the random effects are independent, which is typically an
unrealistic assumption for spatial data. A number of conditional autoregressive mod-
els for capturing spatial correlation were described in the previous section, and the
implementation of one of them is described here. All these models only require one
additional argument compared with the independent model, namely a binary n x n
neighbourhood matrix W, which contains the information on which pairs of areas are
spatially close (e.g. share a common border). The remaining arguments are either
identical or similar to those used for the independence model, and are described in the
help files. The code to run the Leroux model is given below. As before, the remaining
arguments to the function are not required for it to run.

#### Run the Leroux model

formula <- Y ~ ethnic + incomedep + offset(log(E))

burnin <- 2500

n.sample <- 5000

modell <- poisson.lerouxCAR(formula=formula, W=W, burnin=burnin, n.sample=n.sample)

On completion the model produces a similar summary table to that of the independence
model, which is given by
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it A
#### Model fitted
HS

Likelihood model - Poisson (log link function)

Random effects model - Leroux CAR
Regression equation - Y ~ ethnic + incomedep + offset(log(E))

it
#### Results
it

Posterior quantiles and acceptance rates

Median 2.5% 97.5% n.sample % accept

(Intercept) -1.1542 -1.2060 -1.1049 2500 33.9
ethnic -0.0036 -0.0070 -0.0001 2500 33.9
incomedep 0.0477 0.0460 0.0498 2500 33.9
tau?2 0.3356 0.2674 0.4189 2500 100.0
rho 0.8015 0.5844 0.9498 2500 80.3

Acceptance rate for the random effects is 36
DIC = 2318.834 p.d = 236.7427

while the function again returns a list object similar to before.

summary (modell)

Length Class  Mode
formula 3 formula call
samples.beta 7500 mcmc numeric
samples.phi 677500 mcmc numeric
samples.tau2 2500 mcmc numeric
samples.rho 2500 mcmc numeric
fitted.values 1355 -none- numeric
random.effects 1355 -none- numeric
residuals 271 -none- numeric
DIC 1 -none- numeric
p.d 1 -none- numeric
summary.results 25 -none- numeric
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3.5 Running the localised spatial smoothing model

We illustrate the localised spatial smoothing model with binary neighbourhood rela-
tions wy; and p fixed at 0.99 (as in Lee and Mitchell (2012)), by using it to identify
boundaries in the risk surface of alcohol disease, between two areas that are geo-
graphically close but have very different risks. The identification of such boundaries
is important for public health professionals, as it aids them in identifying clusters of
high risk areas. As a result we do not include any covariates in the mean model (i.e.
in Xg ), but instead use them as dissimilarity metrics to identify possible boundaries
between the random effects and risk surfaces.

The only difference between implementing this model and the other spatially correlated
CAR models is the specification of the dissimilarity metrics. Each dissimilarity metric
Z; should be specified in the form of a symmetric n x n matrix, with kj** element:

o |2k — zji|/o; if areas (k, j) share a common border
METL0 Otherwise

Note zpr; = 0. In this study we use our two covariates income deprivation and ethnicity
as dissimilarity metrics, and as both are continuous, the corresponding matrix can be
created using the following code.

#### Create the dissimilarity metric matrices

## Income deprivation

Z.incomedep <- as.matrix(dist(cbind(incomedep, incomedep), method="maximum",
diag=TRUE, upper=TRUE)) * W

Z.incomedep <- Z.incomedep / sd(as.numeric(Z.incomedep[as.numeric(Z.incomedep)!=0]))

## Ethnicity

Z.ethnic <- as.matrix(dist(cbind(ethnic, ethnic), method="maximum", diag=TRUE,
upper=TRUE)) * W

Z.ethnic <- Z.ethnic / sd(as.numeric(Z.ethnic[as.numeric(Z.ethnic)!=0]))

For both variables, the first line creates the unscaled dissimilarity matrix, while the
second scales by dividing by o;. Finally, these variables can be combined into a list
object as follows.

## Combine the matrices into a list
Z <- list(Z.incomedep=Z.incomedep, Z.ethnic=Z.ethnic)

Once this list object is created, the model can be run using the following code.
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## Run the model

formula <- Y ~ offset(log(E))

burnin <- 2500

n.sample <- 5000

modell <- poisson.localisedbinaryCAR(formula=formula, rho=0.99, fix.rho=TRUE, W=W,
Z=Z, burnin=burnin, n.sample=n.sample)

On completion, the model produces the following summary table

HHESHHHHH AR HEH
#### Model fitted
HHHHHHHHHBRRHHHEH

Likelihood model - Poisson (log link function)
Random effects model - Localised CAR binary weights
Regression equation - Y ~ offset(log(E))
Dissimilarity metrics - Z.incomedep, Z.ethnic

it
#### Results
S

Posterior quantiles and acceptance rates

Median 2.5% 97.5% n.sample % accept alpha.min

(Intercept) -0.1789 -0.1897 -0.1670 2500 35.8 NA
tau2 0.3662 0.3015 0.4506 2500 100.0 NA
Z.incomedep 0.4869 0.4781 0.5136 2500 6.0 0.1252
Z.ethnic 0.0190 0.0012 0.0694 2500 6.0 0.0992

The global spatial correlation parameter rho is fixed at 0.99
Acceptance rate for the random effects is 32.2J
DIC = 2308.99 p.d = 230.0672

The dissimilarity metrics have identified 255 borders in the study region

which tells us that the dissimilarity metrics have identified 255 borders in the random
effects and hence the risk surface. The alpha.min column in the summary table gives
the critical value for the parameters, below which, each dissimilarity metric has not
identified any boundaries (for details see Lee and Mitchell (2012)). Thus, the table
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shows that ethnicity is not responsible for identifying any boundaries, as its estimate
and 95% credible interval lie below alpha.min. In contrast, the 95% credible interval
for income deprivation lies entirely above alpha.min, suggesting that this variable has
identified boundaries. The output from this model contains the following elements:

summary (modell)

Length Class Mode
formula 3 formula call
samples.beta 2500 mcmc numeric
samples.phi 677500 mcmc numeric
samples.tau2 2500 mcmc numeric
samples.alpha 5000 mcmc numeric
fitted.values 1355 -none- numeric
random.effects 1355 -none- numeric
W.posterior 73441 -none- numeric
W.border.prob 73441 -none- numeric
residuals 271 -none- numeric
DIC 1 -none- numeric
p.d 1 -none- numeric
summary.results 24 -none- numeric

The only additional elements compared to the other models are W.posterior and
W.border.prob, which respectively give the posterior median values of wy; (recall wy; =
0 represents a boundary and wy; = 1 represents no boundary), and the posterior prob-
ability that wy; corresponds to a boundary (i.e. wy; = 0). Finally, a map of the
estimated risk surface and the locations of the boundaries is displayed in Figure 3,
where the boundaries are shown in bold white lines.
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