
Distance Weighted Discrimination and Second Order Cone

Programming

Hanwen Huang, Xiaosun Lu,
Yufeng Liu, J. S. Marron, Perry Haaland

November 5, 2011

1 Introduction

This vignette demonstrates the utility and flexibility of the R-package dwd in conducting
classification and optimization problems. Distance Weighted Discrimination (DWD) is a
recently developed powerful classification method which was originally motivated for solv-
ing the High Dimensional Low Sample Size (HDLSS) examples (Marron et al. (2007)),
but can be applied to many other examples as well. One of the big advantages of DWD
over Support Vector Machine (SVM) is that it can overcome data piling problem in high
dimensional situations. The original DWD paper (Marron et al. (2007)) only describes the
implementation of the binary classification method. The multiclass version of DWD has
also been developed in Huang et al. (2011). It is suggested that all users refer to these
publications in order to understand the DWD terminology and principles in greater detail.

The implementation of DWD is more challenging than the implementation of SVM
because it requires solving an optimization problem called Second Order Cone Programming
(SOCP). The existing DWD software was written in Matlab and employed a very efficient
SOCP sovler from SDPT3 (semidefinite-quadratic-linear programming) package developed
by Toh et al.. SDPT3 implemented an infeasible path-following algorithm for solving conic
optimization problems involving semidefinite, second-order and linear cone constraints.

The R-package dwd was developed on the basis of the existing Matlab version but
includes some additional features. The key step was to build a R SOCP solver which
was implemented using exactlly the same algorithm as used by the corresponding Matlab
version. For the convenience of the users who are familiar with using SVM in R, the main
classification functions and arguments in dwd are formatted in a similar way to the one used
by the SVM functions in the kernlab package. To help the users in using this software, some
examples to illustrate the coding of problem data are provided. In addition, an efficient R
Quadratic Programming (QP) solver based on the SOCP is also included in this package
which provides a useful tool for those users who want to develop their own SVM package.

2 DWD implementation and output

Both SVM and DWD are margin-based classification methods in the sense that they build
the classifier through finding a decision boundary to separate the classes. DWD uses a
different criterion from SVM. It seeks to achieve the goal by maximizing the average distance
rather than the minimum distance among the classes. Similar to the ksvm function from

1



kernlab, which has been widely used in SVM analysis, we developed a function called kdwd

in this package for doing DWD analysis.
To solve multiclass classification problem, two different methods are used. The first

one is to use the “one-versus-one” approach, in which classifiers are trained on each pair of
classes and the class label is predicted by a voting scheme. The second one is to build a
single classifier including all classes simultaneously and solve a big optimization problem.

Every DWD analysis requires two elements from a dataset: (1) a matrix of predictor,
which should be in the form of an n× d matrix, where n represents the sample size and d
represents the dimension. (2) a response vector of length n with each element corresponding
to one sample. The appropriate scaling steps can be taken by using scaled option. It should
be noted that in the current version of dwd, missing values are not allowed, and must be
imputed prior to analysis. In this vignette, we will use the iris dataset as illustration.

> library(DWD)

> data(iris)

iris is a data frame of 4 measurements across 150 samples with response variabe being
the species of each sample. The goal of interest is to predict the species based on the given
measurement. This is a 3-class classification problem since there are total 3 different species
in the samples which are provided in iris$Species.

> table(iris$Species)

setosa versicolor virginica

50 50 50

An example for the kdwd function is shown below.

> results <- kdwd(Species~., data=iris)

> predict(results,iris)

The basic output from kdwd is an object of class kdwd. Showing objects of class kdwd
will print details on the results for all classifier included in the model. For each classifier,
the optimal solution of the parameters are displayed along with the final primal and dual
objective values. The cross validation error rate can also be returned with the argument
cross = k, where k is the number of the folds used in the cross-validation.

DWD is different from SVM in that it allows all data points rather than only support
vectors to have direct influence on the determination of the decision boundary. So unlike
ksvm, the outputs of kdwd do not include any information about the support vectors. The
current version of dwd can only solve linear DWD problems. We are still working on in-
corporating into the kernel trick such that it can be used to solve the general nonlinear
problems as well.

More examples of the implementation and the changes to functional arguments of kdwd
are detailed in help documents.

3 The Second Order Cone Programming solver

SOCP is a nonlinear convex problem that includes linear and (convex) quadratic programs
as special cases. It can be formulated in the following equations:

min

nq∑
i=1

〈cqi , x
q
i 〉+ 〈cl, xl〉+ 〈cu, xu〉

2



s.t.

nq∑
i=1

Aq
ix

q
i + Alxl + Auxu = b

xqi ∈ Kqi
q ∀i, ˜xl ∈ Knl

l , ˜xu ∈ Rnu

Here cqi , x
q
i are vectors in Rqi and Kqi

q is the quadratic or second-order cone defined by

Kqi
q := {x = [x0; x̄] ∈ Rqi : x0 ≥

√
x̄T x̄}. Similarly, cl, xl are vectors of dimension nl, K

nl
l

is the nonnegative orthant Rnl
+ , and cu, xu are vectors of dimension nu. The dual problem

associated with the problem above is:

min bT y

s.t. (Aq
i )

T y + zqi = cqi , ˜z
q
i ∈ Kqi

q , ˜i = 1, · · · , nq

(Al)T y + zl = cl, ˜zl ∈ Knl
l ,

(Au)T y = cl, ˜y ∈ Rm.

DWD is one of the important applications of SOCP, but SOCP can be used to solve
many other problems as well. The package kdwd provides a stand-alone SOCP solver called
sqlp. The algorith implemented in sqlp is an infeasible primal-dual path-following algo-
rithm, described in detail in Toh et al.. The basic idea is that, at each iteration, we first
compute a predictor search direction aimed at decreasing the gap between the primal and
dual objective values. After that, the algorithm generates a corrector step with the intention
of keeping the iterates close to the central path. The most crucial part is to solve a linear
system which is especially challenging in situations when a big sparse matrix is included.
To increase the speed and effeciency, the sparse matrix package Matrix is incorporated to
deal with high dimensional large datasets.

The calling syntax of is sqlp as follows:

output = sqlp(blk,At,C, b,OPTIONS,X0, y0,Z0)

Input arguments:

• blk: a list describing the block structure of the SOCP problem, which will be described
in detail in the following.

• At, C, b: SOCP data.

• OPTIONS: a list of parameters (optional).

• X0,y0,Z0: an initial iterate.

If the input argument OPTIONS is omitted, default values specified in the function
sqlparameters are used.
Output arguments:

• x: the optimal solution to the SOCP.

• y,Z: the dual solutions.

• info: summary information.

• runhist: run history.

3



The names chosen for the output arguments explain their contents. The argument info
is a list containing performance information such as info$termcode, info$obj, info$gap,
info$pinfeas, info$dinfeas, info$cputime whose meanings are explained in sqlp. The
argument runhist is a list which records the history of various performance measures during
the run; for example, runhist$gap records the complementarity gap at each interior-point
iteration.

While (X, y, Z) normally gives approximately optimal solutions, if info$termcode is 1
the problem is suspected to be primal infeasible and (y, Z) is an approximate certificate
of infeasibility, with bT y = 1, Z in the appropriate cone, and AT y + Z small, while if
info$termcode is 2 the problem is suspected to be dual infeasible and X is an approximate
certificate of infeasibility, with 〈C,X〉 = −1, X in the appropriate cone, and AX small.

The implementation requires the user to specify the block structure of the given SOCP
problems. Let L be the total number of blocks in the SOCP problem. The block structure
of the problem data is described by a list of length L called blk . The content of each of the
elements of the list is given as follows. If the ith block is a quadratic block consisting of p
sub-blocks, of dimensions qi1, qi2, · · · , qip such that

∑p
k=1 = qi, then

blk$type[i] = “q”

blk$size[[i]] = c(qi1, qi2, · · · , qip)

At[[i]] = [qi ×m]

C[i],X[i],Z[i] = [q1 × 1]

If the kth blocks is the linear block, then

blk$type[k] = “l”

blk$size[[k]] = nl

At[[i]] = [nl ×m]

C[i],X[i],Z[i] = [nl × 1]

Similarly, if the kth blocks is the unrestricted block, then

blk$type[k] = “u”

blk$size[[k]] = nu

At[[i]] = [nu ×m]

C[i],X[i],Z[i] = [nu × 1]

The following example shows how sqlp call a data file that is stored in the package

> data(sqlpData)

> soln <- sqlp(blk=sqlpData$blk,At=sqlpData$At,C=sqlpData$C,b=sqlpData$b,X0=sqlpData$X0,

+ y0=sqlpData$y0,Z0=sqlpData$Z0)

4 The Quadratic Programming solver

The optimization program involved in SVM is called Quadratic Programming (QP) which
is a special case of SOCP. Similar to SOCP, the application of QP is not limited to SVM, it

4



can be used to many other areas as well. The package dwd also provides a QP solver based
on SOCP for solving the following problem

min−dT b +
1

2
bTDb

s.t.AT b ≥ b0.

SOCP based QP solver is formatted in a similar way but has been shown to be more
efficient than existing QP solver: solve.QP in quadprob package.

The main routine is solve_QP_SOCP, whose calling syntax is as follows:

output = solve QP SOCP(Dmat, dvec,Amat,bvec)

Input arguments.

• Dmat: matrix appearing in the quadratic function to be minimized.

• dvec: vector appearing in the quadratic function to be minimized.

• Amat: matrix defining the constraints under which we want to minimize the quadratic
function.

• bvec: vector holding the values of b0.

Output arguments.

• solution: vector containing the solution of the QP problem.

The following example shows how solve_QP_SOCP call a simulated data file

> Dmat <- matrix(0,3,3)

> diag(Dmat) <- 1

> dvec <- c(0,5,0)

> Amat <- matrix(c(-4,-3,0,2,1,0,0,-2,1),3,3)

> bvec <- c(-8,2,0)

> solve_QP_SOCP(Dmat,dvec,Amat,bvec)

5 References

• Marron, J. S., Todd, M. J. and Ahn, J. (2007) “Distance-Weighted Discrimination”,
Journal of the American Statistical Association, Vol. 102, No. 480, pp. 1267-1271.

• H. Huang, Y. Liu, Y. Du, C.M. Perou, D.N. Hayes, M.J. Todd, and J.S. Marron,
“Multiclass distance weighted discrimination with applications to batch adjustment”,
submitted.

• K.C. Toh, M.J. Todd, and R.H. Tutuncu, “SDPT3 — a Matlab software package
for semidefinite programming”, Optimization Methods and Software, 11 (1999), pp.
545–581.

• Alexandros Karatzoglou, Alex Smola, Kurt Hornik, “Kernel-based Machine Learning
Lab”, CRAN - Package kernlab.

• Berwin A. Turlach,“quadprog: Functions to solve Quadratic Programming Problems”,
CRAN - Package quadprog

5


