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Tables in R – A quick practical overview 
<preliminary blueprint version> by	Andri	Signorell	(elsana	Versicherungen	AG,	(ealth	Sciences,	Zurich	(WZ	University	of	Applied	Sciences	in	Business	Administration,	Zurich	andri@signorell.net		August	ͳͶ,	ʹͲͳͷ						Tabulating	data	 is	both,	 trivial	and	complicated.	After	all	 it	 is	 just	about	counting	data.	But	the	underlying	data	structures	are	diverse	and	technically	abstract,	especially	when	there	are	more	than	two	dimensions	 involved.	Thus	 there	are	many	functions	 to	handle	and	process	tables	 in	 the	 respective	 representation,	 which	 makes	 the	 situation	 somewhat	 confusing.	There	are	some	gaps	in	base	R	function	list	that	are	filled	by	DescTools.	This	document	aims	to	briefly	summarise,	how	to	create,	handle	and	describe	count	data	in	tables.	Some	examples	from	the	SAS‐documentation	FREQ	are	reproduced.					
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1 Starting Point Data	will	normally	be	given	in	one	of	the	following	three	data	structures.			AȌ	Single	case		The	raw	data	in	form	of	a	data.frame	ȋor	a	matrixȌ,	each	row	contains	one	case,	here	one	person:	
BȌ	Frequency		Unique	combinations	of	factors	extended	with	their	counts,	often	called	weights	ȋcolumn	ǲFreqǳȌ:	

CȌ	Table		A	multidimensional	table	ȋor	an	array,	matrixȌ:		
head(d.col, 20) 
 
    Hair   Eye  Sex 
1  Black Brown Male 
2  Black Brown Male 
3  Black Brown Male 
4  Black Brown Male 
5  Black Brown Male 
6  Black Brown Male 
7  Black Brown Male 
... 
 
32 Black Brown Male 
33 Brown Brown Male 
 
 
... 

d.weight 
 
    Hair   Eye    Sex Freq 
1  Black Brown   Male   32 
2  Brown Brown   Male   53 
3    Red Brown   Male   10 
4  Blond Brown   Male    3 
5  Black  Blue   Male   11 
6  Brown  Blue   Male   50 
7    Red  Blue   Male   10 
8  Blond  Blue   Male   30 
9  Black Hazel   Male   10 
10 Brown Hazel   Male   25 
 
 
 
... 

tab 
 
, , Sex = Male 
 
       Eye 
Hair    Brown Blue Hazel Green 
  Black    32   11    10     3 
  Brown    53   50    25    15 
  Red      10   10     7     7 
  Blond     3   30     5     8 
 
, , Sex = Female 
 
       Eye 
Hair    Brown Blue Hazel Green 
  
... 	Either	 we	 have	 the	 raw	 data	 organised	 case‐by‐case	 in	 a	 data.frame	 ȋcase	 AȌ.	 Then	 a	contingency	table	can	be	built	by	tabulating	the	data.	There	are	several	commands	for	this	described	in	chapter	ǲTabulateǳ.		Or	 the	 data	 are	 given	 as	 a	 combination	 of	 factor	 levels	 and	 one	 count	 variable	 ȋtypically	organised	as	a	data.frame	tooȌ	ȋcase	BȌ.	The	first	line	in	this	representation	means,	that	we	have	͵ʹ	men	with	black	hair	and	brown	eyes	in	our	sample.	This	corresponds	to	the	cell	[ͳ,	ͳ,	ͳ]	 in	 the	 representation	 CȌ.	 )n	 representation	 A	we	 have	 ͵ʹ	 rows	with	 the	 same	 content	Black/Brown/Male.		(ow	to	create	such	a	structure	 is	described	 in	ǲExpandingǳ.	There	are	 functions	to	convert	this	 structure	 to	 a	 table	 or	 to	 recreate	 the	 raw	 dataset.	 This	 is	 detailed	 in	 the	 chapter	ǲConvertǳ.	When	 the	data	 are	 given	directly	 as	 a	 table	 ȋcase	CȌ,	 there	 are	 again	 several	ways	how	 to	enter	that	into	R.	This	is	the	content	of	the	first	chapter	ǲCreate	tablesǳ.		(ow	 to	 process	 tables	 is	 described	 in	 the	 chapters	 ǲReorganizeǳ,	 ǲAggregateǳ,	 ǲAppendǳ,	ǲConvertǳ.		Usually	BȌ	is	the	most	economic	representation	of	frequency	data	whereas	the	case‐by‐case	form	 in	 AȌ	 is	 the	 least	 ȋprovided	 the	 data	 set	 is	 purely	 categoricalȌ.	 The	 built‐in	 data	 sets	from	the	R	base	system	that	are	purely	categorical	usually	come	in	the	form	of	tables	ȋCȌ.			
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2 Create Table Some	remarks	about	creating	tables	in	general.		
2.1 Creating from the scratch There	 are	 several	 ways	 to	 enter	 contingency	 table	 data	 into	 R.	 Letǯs	 illustrate	 some	approaches	with	a	table	concerning	party	affiliation	by	gender:		

Gender	 Party		 Democrat )ndependent Republican	M	 ͹͸ʹ ͵ʹ͹ Ͷ͸ͺ	F	 ͶͺͶ ʹ͵ͻ Ͷ͹͹			The	first	approach	uses	the	function	rbind 	and	builds	a	matrix	row	by	row.	The	as.table() 	function	lets	R	know	that	the	matrix	represents	a	contingency	table	of	counts.:		
tab <- as.table(rbind(c(762, 327, 468), c(484, 239, 477))) 
dimnames(tab) <- list(gender = c("M", "F"), 
                      party  = c("Democrat", "Independent", "Republican")) 
tab 
 
##      party 
## gender Democrat Independent Republican 
##     M      762         327        468 
##     F      484         239        477 

  The	exactly	same	result	can	be	created	by	the	second	approach,	using	the	function	matrix .	Note	that,	by	default,	matrix() 	uses	the	elements	supplied	by	columns	in	the	result,	unless	you	specify	byrow=TRUE.		
 
as.table(matrix(c(762, 327, 468, 484, 239, 477), nrow=2, byrow=TRUE, 
                dimnames=list(gender= c("M", "F"), 
                              party = c("Democrat", "Independent", "Republican"))) 
) 	The	third	way	uses	TextToTable 	to	convert	a	text	to	a	table.	Within	this	function	
read.table 	is	used	to	enter	the	data	and	to	convert	the	data.frame	to	a	table.	header=TRUE 	will	take	the	names	of	the	variables	from	its	first	line.		The	column	names	and	row	names	will	automatically	be	chosen,	if	the	first	row	contains	one	fewer	field	than	the	number	of	columns.	The	dimension	names	can	be	provided	with	the	specific	argument: 	
 
txt <- " 
   Democrat, Independent, Republican 
M, 762, 327, 468 
F, 484, 239, 477" 
 
TextToTable(txt, sep=",", dimnames=c("gender", "party")) 	

rbind

as.table 

TextToTable

matrix

Table	2.1				Tabulating	Party	versus	Gender,	Agresti	ȋʹͲͲ͹Ȍ	p.	͵ͻ	
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(igher	dimensional	 arrays	 can	be	defined	with	 the	 function	array 	 by	using	 the	 argument	
dim :	
 
salary <- array( 
      c(38, 12, 102, 141, 12, 9, 136, 383), 
      dim=c(2, 2, 2), 
      dimnames=list(exposure = c("exposed", "not"),  
                    disease  = c("case", "control"), 
                    salary   = c("<1000", ">=1000")) 
                    ) 		Note	how	the	dimensions	are	organised:					The	first	dimension	corresponds	to	the	rows,					the	second	to	the	columns,	the	third	to	the	depth,	and	so	on.		(igher	dimensional	 tables	 condensed	 in	 flat	 tables	with	more	 than	one	 column,	 resp.	 row	variable,	 can	 be	 created	 from	 the	 appropriate	 text	 chunk	 by	 means	 of	 the	 base	 function	
read.ftable .	ȋBeware	not	to	insert	spaces	at	the	beginning	of	the	lines.Ȍ	
 
txt <-  
"          Sex  Male                  Female                  
           Eye Brown Blue Hazel Green  Brown Blue Hazel Green 
Hair                                                     
Black        32   11    10     3     36    9     5     2 
Brown        53   50    25    15     66   34    29    14 
Red          10   10     7     7     16    7     7     7 
Blond         3   30     5     8      4   64     5     8 
" 
tab <- as.table(read.ftable(textConnection(txt))) 		
2.2 Expanding For	small	frequency	tables,	it	is	often	convenient	to	enter	them	in	frequency	form	using	
expand.grid() 	for	the	factors	and	c() 	to	list	the	counts	in	a	vector.		
 
tab <- data.frame(expand.grid( 
   Hair  = c("Black", "Brown", "Red", "Blond"), 
   Eye   = c("Brown", "Blue", "Hazel", "Green"), 
   Sex   = c("Male", "Female")), 
   count = c(32,53,10,3,11,50,10,30,10,25,7,5,3,15,7,8, 
             36,66,16,4,9,34,7,64,5,29,7,5,2,14,7,8) 
) 
 

expand.grid 	 will	 create	 all	 the	 interactions	 between	 the	 given	 factors.	 data.frame 	 will	bind	them	with	the	count	variable,	denominating	the	number	of	observations.	This	will	be	a	type	 B	 representation	 of	 count	 data,	 which	 can	 be	 converted	with	 xtabs 	 to	 a	 table.	 ȋSee	Chapter	ǲConvertǳȌ			
2.3 SAS datalines Longstanding	 predominance	 of	 SAS	 entails,	 that	 small	 data	 tables	 in	 examples	 and	documents	are	often	reported	in	the	SAS	datalines	format.	Creating	a	table	based	on	this	in	R	is	not	 straight	 forward,	 as	 there	might	be	more	 than	one	 case	per	 row	 ȋas	 in	 the	 example	belowȌ.	The	 function	ParseSASDatalines 	 parses	 the	 syntax	 and	 creates	 a	 table	 named	 after	 the	
data	statement,	using	given	column	names	ȋspecified	by	the	keyword	inputȌ.		
   

, , salary = >=1000 
 
         disease 
exposure  case control 
  exposed   12     136 
  not        9     383 

, , salary = <1000 
 
         disease 
exposure  case control 
  exposed   38     102 
  not       12     141 ͳ

ʹ	͵dim

expand.grid

array

read.ftable
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ParseSASDatalines(" 
  data SummerSchool; 
  input Gender $ Internship $ Enrollment $ Count @@; 
  datalines; 
  boys  yes yes 35  boys  yes no 29 
  boys   no yes 14  boys   no no 27 
  girls yes yes 32  girls yes no 10 
  girls  no yes 53  girls  no no 23 
;") 	The	 command	 above	 will	 create	 a	 new	 data	 object	 named	 SummerSchool	 in	 the	GlobalEnvironment.					
3 Tabulate The	built‐in	data	set	HairEyeColor	has	the	class	table.	Letǯs	take	this	table	and	turn	it	into	a	case‐by‐case	data	frame	first.		
 
d.col <- Untable(HairEyeColor) 
head(d.col, 3) 
 
## Hair   Eye  Sex 
## 1 Black Brown Male 
## 2 Black Brown Male 
## 3 Black Brown Male 
 From	here	we	can	start	tabulating	again.	The	simplest	case	is	to	tabulate	a	single	vector.	The	function	table 	yields	the	absolute	frequencies	and	prop.table 	the	proportions:	
 
table(d.col$Hair) 
 
## Black Brown   Red Blond  
##   108   286    71   127 

 
prop.table(table(d.col$Hair)) 
 
##    Black     Brown       Red     Blond  
## 0.1824324 0.4831081 0.1199324 0.2145270 

 A	 combination	 of	 both	 extended	with	 the	 cumulative	 sums	 for	 both,	 absolute	 and	 relative	frequencies,	can	be	produced	by	Freq 	ȋhere	ordered	by	decreasing	frequencyȌ:	
 
Freq(d.col$Hair, ord="desc") 
 
##   level freq  perc cumfreq cumperc 
## 1 Brown  286 0.483     286   0.483 
## 2 Blond  127 0.215     413   0.698 
## 3 Black  108 0.182     521   0.880 
## 4   Red   71 0.120     592   1.000 
 By	means	of	the	table 	function	we	can	produce multidimensional	contingency	tables	ȋaka.	crosstabsȌ	as	well.	We	use	the	command	with 	here,	so	we	can	avoid	having	to	qualify	every	column	name	with	the	name	of	the	data.frame	ȋwhich	makes	the	code	more	readableȌ.	
 
with(d.col, table(Hair, Eye)) 
 
##        Eye 
## Hair    Brown Blue Hazel Green 
##   Black    68   20    15     5 
##   Brown   119   84    54    29 
##   Red      26   17    14    14 
##   Blond     7   94    10    16 	The	first	entered	variable	will	be	the	row	variable,	the	second	one	the	column	variable.	Missing	values	are	ignored	by	default.	)n	order	to	include	NA	as	a	category	in	counts,	use	the	option	useNA="always" .	

ParseSAS‐
   Datalines 

Untable

Freq

table

prop.table 



‐	͸	‐	
 

A	 relative	 frequency	 table	 can	be	produced	using	 the	 function	prop.table ,	which	 takes	 a	table	object	as	argument:	
 
with(d.col, prop.table(table(Hair, Eye), margins=NULL)) 
 
##        Eye 
## Hair          Brown        Blue       Hazel       Green 
##   Black 0.114864865 0.033783784 0.025337838 0.008445946 
##   Brown 0.201013514 0.141891892 0.091216216 0.048986486 
##   Red   0.043918919 0.028716216 0.023648649 0.023648649 
##   Blond 0.011824324 0.158783784 0.016891892 0.027027027 
 The	function	PercTable 	combines	that	and	allows	adding	marginal	sums	in	one	step:		
 
PercTable(Hair ~ Eye, data=d.col, rfrq="111", margins=c(1,2)) 
 
##             Eye  Brown   Blue  Hazel  Green    Sum 
## Hair                                               
## Black freq          68     20     15      5    108 
##       perc        .115   .034   .025   .008   .182 
##       p.row       .630   .185   .139   .046      . 
##       p.col       .309   .093   .161   .078      . 
## Brown freq         119     84     54     29    286 
##       perc        .201   .142   .091   .049   .483 
##       p.row       .416   .294   .189   .101      . 
##       p.col       .541   .391   .581   .453      . 
## Red   freq          26     17     14     14     71 
##       perc        .044   .029   .024   .024   .120 
##       p.row       .366   .239   .197   .197      . 
##       p.col       .118   .079   .151   .219      . 
## Blond freq           7     94     10     16    127 
##       perc        .012   .159   .017   .027   .215 
##       p.row       .055   .740   .079   .126      . 
##       p.col       .032   .437   .108   .250      . 
## Sum   freq         220    215     93     64    592 
##       perc        .372   .363   .157   .108  1.000 
##       p.row          .      .      .      .      . 
##       p.col          .      .      .      .      . 	There	are	more	options,	as	expected	values	or	standard	residuals,	which	can	optionally	be	integrated.			The	marginal	tables	can	be	produced	by	R	base	function	margin.table 	or	by	the	somewhat	extended	function	MarginTable 	in	DescTools:	
 
MarginTable(tab, ord="desc") 
 
## $Hair 
##   level freq  perc cumfreq cumperc 
## 1 Brown  286 0.483     286   0.483 
## 2 Blond  127 0.215     413   0.698 
## 3 Black  108 0.182     521   0.880 
## 4   Red   71 0.120     592   1.000 
 
## $Eye 
##   level freq  perc cumfreq cumperc 
## 1 Brown  220 0.372     220   0.372 
## 2  Blue  215 0.363     435   0.735 
## 3 Hazel   93 0.157     528   0.892 
## 4 Green   64 0.108     592   1.000 

 

table 	does	not	come	with	a	formula	interface,	but	the	xtabs 	function	has	one.	This	allows	us	to	create	multidimensional	crosstabulations	using	formula	style	input.	The	result	is	a	contingency	table	in	array	format,	whose	dimensions	are	determined	by	the	terms	on	the	right	side	of	the	formula.		

PercTable

MarginTable
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4 Reorganize Say	we	created	a	three	dimensional	table	with	Hair,	Eye	and	Sex	as	variables	and	typically	got	a	͵‐dim	array	as	result.	This	will	be	displayed	as:	
 
(tab <- with(d.col, table(Hair, Eye, Sex))) 
 
## , , Sex = Male 
## 
##        Eye 
## Hair    Brown Blue Hazel Green 
##   Black    32   11    10     3 
##   Brown    53   50    25    15 
##   Red      10   10     7     7 
##   Blond     3   30     5     8 
 
##, , Sex = Female 
## 
##        Eye 
## Hair    Brown Blue Hazel Green 
##   Black    36    9     5     2 
##   Brown    66   34    29    14 
##   Red      16    7     7     7 
##   Blond     4   64     5     8 
## 	To	combine	this	multidimensional	structure	into	a	flat	table	while	preserving	all	the	details,	thereǯs	 the	 function	 ftable .	 The	variables	 to	be	placed	 in	 the	 rows	 can	be	defined	by	 the	argument	 row.vars ,	which	 can	be	 a	 vector	 ȋdenoting	multiple	dimensionsȌ.	 So	 to	put	Eye	ȋvariable	ʹȌ	and	Sex	ȋvariable	͵Ȍ	in	the	rows	and	Hair	as	column	variable,	we	write:	
 
ftable(tab, row.vars = c(2,3)) 
 
##              Hair Black Brown Red Blond 
## Eye   Sex                               
## Brown Male           32    53  10     3 
##       Female         36    66  16     4 
## Blue  Male           11    50  10    30 
##       Female          9    34   7    64 
## Hazel Male           10    25   7     5 
##       Female          5    29   7     5 
## Green Male            3    15   7     8 
##       Female          2    14   7     8 
 The	tab,	as	we	constructed	it,	has	the	Hair	as	rows	ȋͳȌ,	the	Eye	as	columns	ȋʹȌ,	and	the	Sex	as	third	dimension	ȋ͵Ȍ	defined.	The	dimensions	and	dimension	names	follow	the	defined	order:	
 
dimnames(tab) 
 
## $Hair 
## [1] "Black" "Brown" "Red"   "Blond" 
## 
## $Eye 
## [1] "Brown" "Blue"  "Hazel" "Green" 
## 
## $Sex 
## [1] "Male"   "Female" 
 )f	we	would	 like	 to	have	 the	dimensions	 in	a	different	order,	we	can	use	 the	base	 function	
aperm .	Letǯs	say	we	wanted	Eye	as	row	variable	and	Sex	a	column	variable	and	consequently	
Hair	 as	 ͵th	 variable,	 we	 can	 tell	 aperm 	 to	 set	 dimension	 ʹ	 on	 the	 first	 position,	 ͵	 on	 the	second	and	ͳ	on	the	third	position.	So	we	get:	
 
   

ftable

aperm
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aperm(tab, c(2,3,1)) 
 
##, , Hair = Black 
## 
##        Sex 
## Eye     Male Female 
##   Brown   32     36 
##   Blue    11      9 
##   Hazel   10      5 
##   Green    3      2 
## 
##, , Hair = Brown 
## 
##        Sex 
## Eye     Male Female 
##   Brown   53     66 
##   Blue    50     34 
## 
... 	The	following	would	by	the	way	not	work:	
 
tab["Eye", "Sex", "Hair"] 
Error in tab["Eye", "Sex", "Hair"] : subscript out of bounds 		To	 reorder	 the	 sequence	 of	 the	 levels	 ȋwithin	 a	 dimensionȌ	 in	 our	 table,	 we	 could	 use	
reorder.factor .	Say	we	would	like	to	have	the	sequence	Blue,	Green,	Hazel,	Brown	for	the	
Eye	colour.	Of	course,	when	having	the	raw	data,	we	would	use		
factor(d.col$Eye, levels=c("Blue", "Green", "Hazel", "Brown")) and	 any	 table	 afterwards	 would	 take	 this	 level	 order.	 But	 how	 can	 we	 change	 this	 in	 an	already	created	 table?	The	answer	 is	obvious	 ȋbut	may	yet	be	unexpected	 in	 this	contextȌ:	Use	the	index!	This	works	with	the	level	names	as	well	as	with	the	index	positions.		
 
 
tab[ , c("Blue", "Green", "Hazel", "Brown"), ] 
 
## , , Sex = Male 
## 
##        Eye 
## Hair    Blue Green Hazel Brown 
##   Black   11     3    10    32 
##   Brown   50    15    25    53 
##   Red     10     7     7    10 
##   Blond   30     8     5     3 
## 
##, , Sex = Female 
## 
##        Eye 
## Hair    Blue Green Hazel Brown 
##   Black    9     2     5    36 
##   Brown   34    14    29    66 
##   Red      7     7     7    16 
##   Blond   64     8     5     4 		 	
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For	 simply	 reversing	 the	 levels	 thereǯs	 the	 function	 Rev,	 which	 has	 a	 table	 interface	implemented.	 The	 function	 accepts	 a	 margins 	 argument,	 defining	 the	 dimensions	 whose	levels	should	be	reversed.	Compare	the	reversed	levels	of	Hair	and	Sex:	
 
tab 
 
## , , Sex = Male 
## 
##        Eye 
## Hair    Brown Blue Hazel Green 
##   Black    32   11    10     3 
##   Brown    53   50    25    15 
##   Red      10   10     7     7 
##   Blond     3   30     5     8 
## 
## , , Sex = Female 
## 
##        Eye 
## Hair    Brown Blue Hazel Green 
##   Black    36    9     5     2 
##   Brown    66   34    29    14 
##   Red      16    7     7     7 
##   Blond     4   64     5     8 
 

Rev(tab, margin = c(1, 3)) 
 
## , , Sex = Female 
## 
##        Eye 
## Hair    Brown Blue Hazel Green 
##   Blond     4   64     5     8 
##   Red      16    7     7     7 
##   Brown    66   34    29    14 
##   Black    36    9     5     2 
## 
## , , Sex = Male 
## 
##        Eye 
## Hair    Brown Blue Hazel Green 
##   Blond     3   30     5     8 
##   Red      10   10     7     7 
##   Brown    53   50    25    15 
##   Black    32   11    10     3 Renaming	level	names	can	be	achieved	by	refining	the	dimension	names.	

dimnames(tab)$Sex <- c("men", "women") 				
5 Aggregate Sometimes	we	might	want	to	aggregate	an	existing	table	along	one	or	several	dimensions..	Say	weǯd	like	to	get	rid	of	the	Hair	dimension,	but	retain	all	the	frequency	information	for	the	other	 dimensions.	 For	 this	 we	 can	 use	 apply 	 as	 we	 would	 in	 the	 case	 of	 a	 matrix.	 The	function	takes	as	well	vectors	for	the	margins.		So	we	just	sum	up	all	cases	along	the	ͳst	dimension	ȋHairȌ	and	retain	the	other	two	ȋʹ,	͵Ȍ	and	we	get:	
 
apply(tab, c(2,3), sum) 
 
##        Sex 
## Eye     Male Female 
##   Brown   98    122 
##   Blue   101    114 
##   Hazel   47     46 
##   Green   33     31 
 

 
apply(tab, 1, sum) 
 
## Black Brown   Red Blond  
##   108   286    71   127 

Single	margins	could	be	calculated	analogously,	as	demonstrated	above.		)f	 tab	was	 created	with	 xtabs ,	 the	 aggregation	 can	 be	 done	 directly	 by	 using	 the	 formula	interface,	which	typically	is	clearer	and	more	readable.		
 
xtab <- xtabs(~., d.col) 
xtabs(Freq ~ Eye + Sex, xtab) 
 
##       Sex 
## Eye     Male Female 
##   Brown   98    122 
##   Blue   101    114 
##   Hazel   47     46 
##   Green   33     31 	

Rev

apply

xtabs
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)f	 we	 wanted	 to	 consolidate	 some	 levels,	 we	 can	 with	 CollapseTable .	 Say	 we	 want	 to	combine	brown	and	hazel	eyes	to	a	new	category	Browny,	as	well	as	just	have	two	groups	of	
Hair,	namely	Dark	and	Fair:	
 
CollapseTable(tab, Eye=c("Browny","Blue","Browny","Green"),  
                   Hair=c("Dark","Dark","Fair","Fair")) 
 
## , , Sex = Male 
## 
##       Eye 
## Hair   Browny Blue Green 
##   Dark    120   61    18 
##   Fair     25   40    15 
## 
##, , Sex = Female 
## 
##       Eye 
## Hair   Browny Blue Green 
##   Dark    136   43    16 
##   Fair     32   71    15 			
6 Append Tables	 can	be	pasted	 together.	This	 can	especially	be	useful,	when	 two	 tables	of	 the	 same	dimension	 should	 be	 put	 together	 to	 a	 ͵‐dimensional	 array.	 But	 in	 contrast	 to	 the	ʹ‐dimensional	case,	where	the	 functions	 rbind 	and	cbind 	exist,	base	R	does	not	contain	a	respective	 function	 for	higher	dimensional	 tables.	 )n	DescTools	 thereǯs	 the	 function	Abind 	included	for	this	purpose	ȋborrowed	from	the	abind	packageȌ.		
a <- HairEyeColor[,,1]     # male table 
b <- HairEyeColor[,,2]     # female table 
 
Abind(Male=a, Female=b, along=3) 
 
## , , Male 
## 
##       Brown Blue Hazel Green 
## Black    32   11    10     3 
## Brown    53   50    25    15 
## Red      10   10     7     7 
## Blond     3   30     5     8 
## 
## , , Female 
## 
##       Brown Blue Hazel Green 
## Black    36    9     5     2 
## Brown    66   34    29    14 
## Red      16    7     7     7 
## Blond     4   64     5     8 	The	first	step	separates	the	table	 for	males	 from	the	females.	Abind 	 reverses	this	step	and	binds	the	two	tables	together	again.	This	can	happen	along	all	possible	dimensions.		)n	the	example	above	a	new	dimension	is	introduced	by	setting	along	=	͵.			
Abind(a,b,along=2) would	 bind	 the	 tables	 by	 columns	 ȋas	 cbind 	 doesȌ,	 whereas	
Abind(a,b,along=1) would	give	the	same	result	as	rbind(a,b). 			
   

CollapseTable

Abind
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7 Convert Time	and	again	newbies	wonder	how	to	convert	tables	from	one	to	the	other	form.	Base	R	comprises	most	of	the	required	functions,	but	not	quite	all.		Letǯs	say	we	have	the	three	forms	of	table	given	as:	
d.col <- Untable(HairEyeColor)  # case-by-case, A) 
d.weight <- as.data.frame(HairEyeColor) # frequency,   B) 
tab <- HairEyeColor    # table,   C) 	The	conversions	can	be	made	as	follows.		AȌ	 BȌ	 1) as.data.frame(table(d.col))  

2) aggregate(rep(1, nrow(d.col)),  

             by=d.col, FUN=length) 

This	is	actually	AȌ	to	CȌ	to	BȌ!	Solution	ʹȌ	will	yield	the	nonzero	entries	only.	AȌ	 BȌ	 Untable(d.weight) libraryȋDescToolsȌ	AȌ		 	 CȌ	 table(d.col) 	AȌ	 	 CȌ	 Untable(tab) 		 BȌ	 CȌ	 xtabs(Freq ~ ., d.weight) 		 BȌ	 CȌ	 as.data.frame(tab) )f	tab	is	defined	as	matrix,	as.data.frame	has	to	be	specified	explicitly	as	as.data.frame.table!						
8 Print and Format All	 table	 connected	 classes	 have	 their	 print	 methods	 which	 do	 not	 call	 for	 any	 further	explanation.	There	are	several	approaches	out	there,	how	to	turn	tables	into	XML,	(TML	or	LATEX.	DescTools	contains	 two	 functions	 for	sending	 tables	 to	MS‐Word.	WrdTable 	would	create	the	table	in	Word	and	transfer	the	cell	information	appropriately.		Letǯs	create	an	artificial	 table,	with	one	cell	being	Ͳ	and	one	being	NA.	Then	we	format	the	counts	with	a	big.mark	and	set	Ͳ	digits.	The	zero	values	should	be	expressed	as	ǲ‐ǲ	and	the	NAs	as	ǲmissingǳ.	Finally	all	is	to	be	aligned	to	the	right.	
 
(tab <- as.table(matrix(c(2000, 0, 34, NA), nrow=2))) 
##      A    B 
## A 2000   34 
## B    0      
 
tab[] <- Format(tab, big.mark = "'", digits=0, zero.form="-", na.form="Missing") 
tab[] <- StrAlign(tab, "\\$") 
tab 
 
##         A       B 
## A   2'000      34 
## B       - Missing 
 The	counts	and	percentages	in	PercTable 	can	be	formatted	by	setting	the	options	fmt.abs 	and	 fmt.per .	 The	 percentages	 are	 formatted	 as	 .ͲͲͲ	 and	 the	 counts	 with	 a	 space	 for	big.mark.	
 
   

as.data.frame
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Untable 
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options(fmt.abs=structure(list(digits=1, big.mark=" "), class="fmt")) 
options(fmt.per=structure(list(digits=3, leading="drop"), class="fmt")) 
PercTable(tab) 
         
##               A       B 
##                         
## A freq  2 000.0    34.0 
##   perc     .720    .012 
##                         
## B freq      0.0   745.0 
##   perc     .000    .268 
 Note	that	by	applying	formats	to	the	cells,	the	numeric	values	turn	to	strings	and	cannot	be	subsequently	used	for	further	calculating.		
FixToTab 	 is	 trying	 to	chop	 the	 fixed	 font	output	of	a	 table	given	as	 text	 to	a	 tab	delimited	table.							
9 Plot The	usual	representation	of	a	table	 is	a	mosaicplot.	Such	a	plot	will	display	the	conditional	frequencies	in	two	directions.				
tab <- as.table(apply(HairEyeColor, c(1,2), sum)) 
tab <- tab[,c("Brown","Hazel","Green","Blue")] 
cols <- SetAlpha(c("sienna4", "burlywood", "chartreuse3", "slategray1"), 0.6) 
 
PlotMosaic(tab, col=cols, main = "Hair ~ Eye") 
 This	will	display	the	following	fact:		

 
 
 
 
PercTable(tab, freq=FALSE, rfrq="010") 
 
##       Eye 
##        Brown Hazel Green  Blue 
## Hair                           
## Black  63.0% 13.9%  4.6% 18.5% 
## Brown  41.6% 18.9% 10.1% 29.4% 
## Red    36.6% 19.7% 19.7% 23.9% 
## Blond   5.5%  7.9% 12.6% 74.0% 
 
prop.table(margin.table(tab, 1)) 
## Hair 
##  Black   Brown     Red   Blond  
## 0.1824  0.4831  0.1199  0.2145 			The	 idea	 to	 describe	 proportions	 in	 circles	 is	 rather	 new.	 )t	 emphasises	 the	 association	structure	of	 the	data.	 The	 left	 side	of	 the	 circle	 represents	 the	 rows	 and	 the	 right	 one	 the	columns.	We	see	both	margins	in	the	plot.		

PlotMosaic
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cols <- c( 
  rgb(249,234,174,maxColorValue = 255), 
  rgb(250,146,109,maxColorValue = 255),  
  rgb(183,161,130,maxColorValue = 255), 
  rgb(83,83,83,maxColorValue = 255), 
  rev(c("sienna4", "burlywood",  
        "chartreuse3", "slategray1"))) 
 
PlotCirc(t(tab), acol=cols) 

		
10 Descriptions, Statistics and Tests Letǯs	 create	 a	 ʹ‐dimensional	 table	 and	 describe	 it	 with	 some	 bells	 and	 whistles.	 The	argument	verbose = high 	will	maximize	the	volume	of	output:		
# aggregate 3-d table to Eye and Hair colour only: 
tab <- as.table(apply(HairEyeColor, c(2,3), sum)) 	 
 
# order the levels along colours: 
tab <- tab[c("Brown","Hazel","Green","Blue"),] 
 
# describe the table 
Desc(tab, verbose="high") 
 
 
## Summary:  
## n: 592, rows: 4, columns: 2 
##  
## Pearson's Chi-squared test: 
##   X-squared = 1.5298, df = 3, p-value = 0.6754 
## Pearson's Chi-squared test (cont. adj): 
##   X-squared = 1.5298, df = 3, p-value = 0.6754 
## Likelihood Ratio: 
##   X-squared = 1.5294, df = 3, p-value = 0.6755 
## Mantel-Haenszel Chi-squared: 
##   X-squared = 0.2438, df = 1, p-value = 0.6214 
##  
##                        estimate  lwr.ci  upr.ci 
## Phi Coeff.               0.0508       -       - 
## Contingency Coeff.       0.0508       -       - 
## Cramer V                 0.0508  0.0000  0.1076 
## Goodman Kruskal Gamma   -0.0343 -0.1610  0.0924 
## Kendall Tau-b           -0.0202 -0.0949  0.0544 
## Stuart Tau-c            -0.0238 -0.1115  0.0640 
## Somers D C|R            -0.0171 -0.0804  0.0461 
## Somers D R|C            -0.0238 -0.1119  0.0642 
## Pearson Correlation     -0.0203 -0.1007  0.0604 
## Spearman Correlation    -0.0218 -0.1022  0.0589 
## Lambda C|R               0.0108  0.0000  0.0983 
## Lambda R|C               0.0081  0.0000  0.0821 
## Lambda sym               0.0092  0.0000  0.0658 
## Uncertainty Coeff. C|R   0.0019 -0.0041  0.0078 
## Uncertainty Coeff. R|C   0.0010 -0.0022  0.0042 
## Uncertainty Coeff. sym   0.0013 -0.0029  0.0055 
## Mutual Information       0.0019       -       - 
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##              Sex 
##                Male Female    Sum 
## Eye                               
## Brown freq       98    122    220 
##       perc    16.6%  20.6%  37.2% 
##       p.row   44.5%  55.5%      . 
##       p.col   35.1%  39.0%      . 
##                                   
## Hazel freq       47     46     93 
##       perc     7.9%   7.8%  15.7% 
##       p.row   50.5%  49.5%      . 
##       p.col   16.8%  14.7%      . 
##                                   
## Green freq       33     31     64 
##       perc     5.6%   5.2%  10.8% 
##       p.row   51.6%  48.4%      . 
##       p.col   11.8%   9.9%      . 
##                                   
## Blue  freq      101    114    215 
##       perc    17.1%  19.3%  36.3% 
##       p.row   47.0%  53.0%      . 
##       p.col   36.2%  36.4%      . 
##                                   
## Sum   freq      279    313    592 
##       perc    47.1%  52.9% 100.0% 
##       p.row       .      .      . 
##       p.col       .      .      . 
                                   	The	first	line	reports	the	total	n	in	the	table	and	the	dimension,	so	we	have	ͷͻʹ	Persons	in	a	table	with	Ͷ	rows	and	 two	columns.	Then	several	Chi‐Square‐tests	are	calculated.	The	null	hypothesis	 is	 that	 the	eye	colour	 is	not	associated	with	the	sex.	The	small	value	of	 the	chi‐square	statistic,	ͳ.ͷʹͻͺ,	and	the	p‐value	of	Ͳ.͸͹ͷͶ	indicate	that	the	null	hypothesis	canǯt	be	rejected	at	the	Ͳ.Ͳͷ	level	of	significance.	Thus	we	would	conclude	that	the	observation	does	not	indicate	an	association	between	eye	colour	and	sex	of	the	person.	The	 Pearson	 Chi‐Square	 statistic	 involves	 the	 differences	 between	 the	 observed	 cell	frequencies	and	the	expected	deviation‐frequencies.	Following	a	rule	of	thumb	the	expected	frequency	in	every	cell	of	the	table	should	not	be	less	than	ͷ.	)f	it	is	a	message	will	be	printed.			The	 Continuity‐Adjusted	 Chi‐Square	 test	 statistic	 consists	 of	 the	 Pearson	 Chi‐Square	modified	 with	 an	 adjustment	 for	 continuity.	 As	 the	 sample	 size	 increases,	 the	 difference	between	 the	 continuity‐adjusted	 and	 Pearson	 Chi‐Square	 decreases.	 Thus	 in	 very	 large	samples	as	we	have	here	the	two	statistics	are	almost	the	same.		This	 test	 statistic	 is	 also	an	 alternative	 to	Pearsonǯs	 if	 any	of	 the	 expected	values	 in	 a	ʹxʹ	table	 are	 less	 than	 ͷ	 ȋCody	 and	 Smith,	 ͳͻͻ͹Ȍ.	 Some	 prefer	 to	 use	 the	 continuity‐adjusted	Chi‐Square	statistic	when	the	sample	size	is	small	regardless	of	the	expected	values.			The	 expected	 frequencies	 can	 be	 obtained	 by	 using	 the	 expected 	 option	 on	 the	 Desc	command	 ȋDesc(tab, verbose="high", expected=TRUE) Ȍ.	 Additionally,	 the	 difference	between	the	observed	cell	count	and	the	expected	cell	count	will	be	reported	when	using	the	
residuals=TRUE 	and	stdres=TRUE 	option	for	the	standardized	residuals	ȋamount	that	each	cell	contributes	to	the	value	of	the	test	statisticȌ.		
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options(fmt.num=structure(list(digits=3), class="fmt")) 
PercTable(tab, freq=TRUE, rfrq="000",  
+         expected=TRUE, residuals=TRUE) 
 
##              Sex 
##                  Male  Female 
## Eye                           
## Brown freq         98     122 
##       exp     103.682 116.318 
##       res      -0.558   0.527 
##                               
## Blue  freq        101     114 
##       exp     101.326 113.674 
##       res      -0.032   0.031 
##                               
## Hazel freq         47      46 
##       exp      43.829  49.171 
##       res       0.479  -0.452 
##                               
## Green freq         33      31 
##       exp      30.162  33.838 
##       res       0.517  -0.488 	This	 output	 shows	 the	 observed	 frequencies	 ȋfreq Ȍ,	 the	 expected	 values	 ȋexp Ȍ	 and	 the	Pearson	residuals	ȋres Ȍ,	whose	squared	values	are	each	cellǯs	contribution	to	the	Chi‐Square	statistic.	None	of	the	expected	values	are	less	than	ͷ,	so	we	feel	comfortable	with	the	result	of	the	Chi‐Square	test	above.			The	Likelihood	Ratio	Chi‐Square	is	asymptotically	equivalent	to	the	Pearson	Chi‐Square	ȋand	Mantel‐(aenszel	Chi‐SquareȌ	but	not	usually	used	when	analyzing	ʹxʹ	 tables.	 )t	 is	used	 in	logistic	regression	and	loglinear	modeling	which	involves	contingency	tables.		The	Mantel‐(aenszel	Chi‐Square	is	related	to	the	Pearson	Chi‐	Square	and,	in	the	ʹxʹ	case,	as	the	sample	size	gets	 large	 these	statistics	converge.	 )n	 the	case	of	ʹxC	or	Rxʹ	 tables,	 if	 the	variable	with	more	than	ʹ	categories	is	ordinal,	the	Mantel‐(aenszel	Chi‐square	is	a	test	for	trend	while	the	Pearson	Chi‐square	remains	a	general	test	for	association.			When	verbose	option	is	set	as	high,	several	statistics	that	describe	the	nominal	and	ordinal	association	between	the	two	variables	of	the	contingency	table	will	be	computed.		The	 Phi	 coefficient	 is	 a	 measure	 of	 the	 degree	 of	 association	 between	 two	 categorical	variables	and	 is	 interpretable	as	a	correlation	coefficient.	 )t	 is	derived	 from	the	Chi‐Square	statistic,	but	is	free	of	the	influence	of	the	total	sample	size	ȋFleiss,	ͳͻͺͳȌ.	Being	independent	of	the	sample	size	is	a	desirable	quality	because	the	Chi‐Square	statistic	itself	is	sensitive	to	sample	size.	As	the	sample	size	increases,	the	Chi‐Square	value	will	increase	even	if	the	cell	proportions	remain	unchanged.		Pearsonǯs	contingency	coefficient	and	Cramerǯs	V	are	also	derived	from	the	chi‐square	and	in	the	ʹxʹ	 table	 they	 are	 identical	 to	 the	Phi	 coefficient	 ȋand	 similar	 to	 the	Phi	 coefficient	 in	interpretationȌ.	These	 three	measures	of	degree	of	association	are	well	 suited	 for	nominal	variables	in	which	the	order	of	the	levels	is	meaningless.			The	following	are	measures	of	ordinal	association	that	consider	whether	the	variable	Y	tends	to	 increase	 as	 X	 increases:	 Gamma,	 Kendallǯs	 tau‐b,	 Stuartǯs	 tau‐c,	 and	 Somersǯ	 D.	 These	measures	 are	 appropriate	 for	 ordinal	 variables,	 and	 they	 classify	 pairs	 of	 observations	 as	concordant	or	discordant.	A	pair	is	concordant	if	the	observation	with	the	larger	value	of	X	also	has	the	larger	value	of	Y.	A	pair	is	discordant	if	the	observation	with	the	larger	value	of	X	has	 the	 smaller	 value	 of	 Y.	 Refer	 to	 Agresti	 ȋͳͻͻ͸Ȍ	 and	 the	 other	 references	 cited	 in	 the	discussion	of	each	measure	of	association.	The	Pearson	correlation	 coefficient	 and	 the	 Spearman	 rank	 correlation	 coefficient	 are	also	appropriate	 for	 ordinal	 variables.	 The	 Pearson	 correlation	 describes	 the	 strength	 of	 the	
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linear	association	between	the	row	and	column	variables,	and	it	is	computed	using	the	row	and	column	scores	specified.	The	Spearman	correlation	is	computed	with	rank	scores.		The	 polychoric	 correlation	 is	 not	 reported,	 but	 can	 be	 calculated	 with	 the	 function	
CorPolychor .	 )t	 also	 requires	 ordinal	 variables	 and	 assumes	 that	 the	 variables	 have	 an	underlying	bivariate	normal	distribution.		The	 following	 measures	 of	 association	 do	 not	 require	 ordinal	 variables,	 but	 they	 are	appropriate	for	nominal	variables:	lambda	asymmetric,	lambda	symmetric,	and	uncertainty	coefficients.	Asymptotic	 confidence	 limits	 for	 all	 statistics	 are	 computed.	 The	 confidence	 coefficient	 is	determined	according	to	the	value	of	the	conf.level 	option,	which	by	default	equals	Ͳ.ͻͷ	and	produces	ͻͷ%	confidence	limits.			CochranTest	Sensitivity/Spec				
   



‐	ͳ͹	‐	
 

11 Cases 

11.1 Eye colour ‐ Binomial Proportions for One‐Way Frequency Tables The	binomial	proportions	are	computed	as	the	proportion	of	observations	for	all	the	levels	of	the	variable.	The	following	statements	compute	the	proportion	of	children	with	brown	eyes	ȋfrom	the	data	set	in	Example	ʹͺ.ͳ	on	page	ͳ͵͵ͷȌ	and	test	this	value	against	the	hypothesis	that	 the	proportion	 is	ͷͲ%.	Also,	 these	statements	 test	whether	 the	proportion	of	children	with	fair	hair	is	ʹͺ%.	
 
tab <- as.table(apply(HairEyeColor, 2, sum)[c("Brown","Hazel","Green","Blue")])  
Desc(tab) 
 
## ------------------------------------------------------------------------------  
## tab (table) 
##  
## Summary:  
## n: 592, rows: 4 
##  
## Pearson's Chi-squared test (1-dim uniform): 
##   X-squared = 133.47, df = 3, p-value < 2.2e-16 
##  
##    level  freq   perc  cumfreq  cumperc 
## 1  Brown   220  37.2%      220    37.2% 
## 2  Hazel    93  15.7%      313    52.9% 
## 3  Green    64  10.8%      377    63.7% 
## 4   Blue   215  36.3%      592   100.0% 
   
xci <- BinomCI(tab, sum(tab)) 
rownames(xci) <- rownames(tab) 
print(xci, digits=3) 
 
##        est lwr.ci upr.ci 
## Brown 0.372 0.3336  0.411 
## Hazel 0.157 0.1300  0.189 
## Green 0.108 0.0856  0.136 
## Blue  0.363 0.3254  0.403 
 Letǯs	produce	a	plot	of	that:	
 

 
 
 
PlotDot(xci[,1], main="Eye colour", pch=NA,  
        args.errbars = list( 
          from=xci[,2], to=xci[,3], mid=xci[,1],  
          pch=21, cex=1.4),  
        xlim=c(0,1)) 
 
abline(v=seq(0,1,0.1), col="grey", lty="dotted") 

		
11.2 Heart – 2x2‐Table This	example	computes	chi‐square	tests	and	Fisherǯs	exact	test	to	compare	the	probability	of	coronary	heart	disease	for	two	types	of	diet.	)t	also	estimates	the	relative	risks	and	computes	exact	confidence	limits	for	the	odds	ratio.		The	data	set	contains	hypothetical	data	for	a	case‐control	study	of	high	fat	diet	and	the	risk	of	coronary	heart	disease.	The	data	can	be	entered	as:	
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heart <- as.table(matrix(c(11, 2, 4, 6), nrow=2, 
                         dimnames = list(Exposure = c("High", "Low"),  
                                         Response = c("Yes", "No")))) 
Label(heart) <- "Table of Exposure by Response" 
 The	data	is	sorted	in	descending	order	by	the	variables	Exposure	and	Response,	so	that	the	first	cell	of	the	ʹxʹ‐table	contains	the	frequency	of	positive	exposure	and	positive	response.		
 
Desc(heart, main="Case-Control Study of High Fat/Cholesterol Diet") 
 will	produce	the	following	result:		
## Case-Control Study of High Fat/Cholesterol Diet 
##   Table of Exposure by Response 
##  
##  
## Summary:  
## n: 23, rows: 2, columns: 2 
##  
## Pearson's Chi-squared test (cont. adj): 
##   X-squared = 3.1879, df = 1, p-value = 0.07418 
## Fisher's exact test p-value = 0.03931 
## McNemar's chi-squared = 0.16667, df = 1,  
##   p-value = 0.6831 
##  
## Warning message: 
##   Exp. counts < 5: Chi-squared approx. may  
##   be incorrect!!  
##  
##                     estimate lwr.ci upr.ci 
##                                            
## odds ratio             8.250  1.154 59.003 
## rel. risk (col1)       2.933  0.850 10.120 
## rel. risk (col2)       0.356  0.140  0.901 
##  
## Phi-Coefficient        0.464 
## Contingency Coeff.     0.421 
## Cramer's V             0.464 
##  
##                 Response 
##                    Yes     No    Sum 
## Exposure                             
## High     freq       11      4     15 
##          perc    47.8%  17.4%  65.2% 
##          p.row   73.3%  26.7%      . 
##          p.col   84.6%  40.0%      . 
##                                      
## Low      freq        2      6      8 
##          perc     8.7%  26.1%  34.8% 
##          p.row   25.0%  75.0%      . 
##          p.col   15.4%  60.0%      . 
##                                      
## Sum      freq       13     10     23 
##          perc    56.5%  43.5% 100.0% 
##          p.row       .      .      . 
##          p.col       .      .      . 
##                                      
 
 
 

   
 
 
 

)f	the	expected	value	of	one	or	more	cells	is	less	than	ͷ,	the	Chi‐Square	test	may	not	be	valid.	)n	this	case,	Fisherǯs	Exact	Test	is	an	alternative	test	which	does	not	depend	on	the	expected	values.	A	criticism	of	this	test	is	that	it	fixes	the	row	and	column	margin	totals,	which	in	effect	makes	an	assumption	about	the	distribution	of	the	variables	in	the	population	being	studied.	Since	the	expected	counts	in	some	of	the	cells	are	small,	a	warning	that	the	asymptotic	chi‐square	 tests	 may	 not	 be	 appropriate	 is	 displayed.	 )n	 this	 case,	 the	 Fisherǯs	 exact	 test	 is	appropriate.	)t	analyses	whether	the	probability	of	heart	disease	in	the	high	fat	group	differs	from	 the	 one	 in	 the	 low	 fat	 group;	 since	 this	 p‐value	 is	 small	 ȋp	 <	 Ͳ.ͲͷȌ,	 the	 alternative	hypothesis	is	supported.	Note	that	only	the	one‐sided	test	will	be	reported.		

PlotDot
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The	odds	ratio	is	simply	a	ratio	of	odds.	Recall	that	the	odds	of	an	event	occurring	is	the	ratio	of	p/q	where	p	is	the	probability	of	the	event	occurring	and	q	is	the	probability	of	the	event	not	occurring.	The	odds	ratio		
ʹͷ.ͺʹͶ ͸ͳͳnn nnnnn
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provides	in	fact	an	estimate	of	the	relative	risk	when	an	event	is	rare.	This	estimate	indicates	that	 the	odds	of	heart	disease	 is	ͺ.ʹͷ	times	higher	 in	 the	high	 fat	diet	group;	however,	 the	wide	 confidence	 limits	 ȋͳ.ͳͷͶ,	 ͷͻ.ͲͲ͵Ȍ	 indicate	 that	 this	 estimate	 has	 low	 precision.	 The	odds	 ratio	 and	 the	 ͻͷ%	 confidence	 interval	 is	 included	 in	 the	 default	 description	 of	 ʹxʹ	tables	in	DescTools.		The	column	ͳ	relative	risk	is	the	ratio	of	the	column	ͳ	risks	for	row	ͳ	to	row	ʹ.	The	column	ͳ	risk	for	row	ͳ	is	the	proportion	of	the	row	ͳ	observations	classified	in	column	ͳ:	
ͻ͵͵.ʹʹͳͷ ͺͳͳnn nnnnn
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
 	A	relative	risk	greater	than	ͳ	indicates	that	the	probability	of	positive	response	is	greater	in	row	ͳ	 than	 in	 row	ʹ.	 Similarly,	 a	 relative	 risk	 less	 than	 ͳ	 indicates	 that	 the	 probability	 of	positive	response	is	less	in	row	ͳ	than	in	row	ʹ.	The	strength	of	association	increases	with	the	deviation	from	ͳ.	Relative	Risk	 is	 the	 ratio	of	 the	 incidence	 of	 an	 outcome	given	one	 treatment	or	 exposure	level	 to	 the	 risk	 of	 the	 outcome	 in	 the	 other	 level	 of	 treatment	 or	 exposure.	 Recall	 an	incidence	rate	is	the	proportion	of	new	cases	ȋoutcomesȌ	occurring	over	a	period	of	any	one	time.	 Therefore	 the	 risk	 of	 an	 outcome	makes	 sense	 in	 the	 context	 of	 prospective	 cohort	studies	where	the	outcome	has	not	occurred	in	any	case	at	the	start	of	the	study.	)n	such	a	context,	 referring	 to,	 figure	 ʹ,	 the	 risk	 of	 outcome	 ͳ	 is	 Rͳ=a/rͳ	 for	 exposure	 level	 ͳ	 and	Rʹ=c/rʹ	 for	 exposure	 level	 ʹ.	 The	 relative	 risk	 of	 outcome	 ͳ	 is	 Rͳ/Rʹ	 for	 subjects	 with	exposure	ͳ	compared	to	those	with	exposure	ʹ.			While	the	Relative	Risk	is	a	measure	which	is	appropriate	for	prospective	cohort	studies,	the	Odds	Ratio	can	be	used	for	crosssectional	case‐control	studies	as	well	as	prospective	studies.	The	estimates	in	the	output	are	even	labeled	under	ǮType	of	Studyǯ.	)n	both	cases,	a	value	of	ͳ	indicates	no	difference	between	groups.	Finally,	the	reader	should	verify	that	interchanging	the	row	and	column	variables	or	modifying	the	table	order	will	result	in	different	values	of	odds	ratio	and	relative	risks.	The	interpretations	should	however	remain	consistent.					

11.3 Skin ‐ Agreement Study Medical	 researchers	are	 interested	 in	evaluating	 the	efficacy	of	a	new	 treatment	 for	a	 skin	condition.	Dermatologists	from	participating	clinics	were	trained	to	conduct	the	study	and	to	evaluate	 the	 condition.	 After	 the	 training,	 two	 dermatologists	 examined	 patients	with	 the	skin	condition	from	a	pilot	study	and	rated	the	same	patients.	The	possible	evaluations	are	terrible,	poor,	marginal,	and	clear.		)n	order	to	evaluate	the	agreement	of	the	diagnoses	ȋa	possible	contribution	to	measurement	error	in	the	studyȌ,	the	kappa	coefficient	is	computed.			
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ParseSASDatalines(" 
  data d.SkinCondition; 
  input Derm1 $ Derm2 $ Count; 
  datalines; 
  terrible terrible 10  terrible poor 4   terrible marginal 1   terrible clear 0 
  poor terrible 5       poor poor 10      poor marginal 12      poor clear 2 
  marginal terrible 2   marginal poor 4   marginal marginal 12  marginal clear 5 
  clear terrible 0      clear poor 2      clear marginal 6      clear clear 13 
;") 
skin <- xtabs(Count ~ ., d.SkinCondition) 
 The	function	Agree 	computes	raw	simple	percentage	agreement	among	raters.		
 
Agree(Untable(skin)) 
 
## [1] 0.5113636 
## attr(,"subjects") 
## [1] 88 
## attr(,"raters") 
## [1] 2 
 We	learn	that	ͷͳ.ͳ%	of	the	ratings	were	the	same	between	the	two	researchers.	A	less	coarse	approach	to	measure	agreement	is	Cohenǯs	kappa.	
 
CohenKappa(skin, conf.level=0.95) 
 
##     kappa    lwr.ci    upr.ci  
## 0.3448753 0.2048513 0.4848994  	
CohenKappa(skin, conf.level=0.95, weights="Fleiss-Cohen") 
##     kappa    lwr.ci    upr.ci  
## 0.6607229 0.4207465 0.9006993 
 The	kappa	 coefficient	has	 the	 value	Ͳ.͵ͶͶͻ,	which	 indicates	 slight	 agreement	 between	 the	dermatologists.	The	conclusion	to	reject	the	null	hypothesis	of	no	agreement	is	supported	by	the	 confidence	 interval	 of	 ȋͲ.ʹͲ͵Ͳ,	 Ͳ.Ͷͺ͸ͺȌ,	which	 suggests	 that	 the	 true	 kappa	 is	 greater	than	 zero.	 The	 weighted	 kappa	 coefficient	 can	 be	 calculated	 by	 defining	 the	 weights 	argument.	)ts	value	is	even	larger	ȋͲ.͸͸Ͳ͹Ȍ	than	the	unweighted	kappa.	The	Bowkerǯs	test	for	symmetry	ȋreported	by	mcnemar.test Ȍ	is	not	defined	here	ȋbecause	of	the	zeros	in	the	tableȌ.					
11.4 Migraine ‐ Statistics for a Stratified 2x2‐Table The	data	 set	Migraine	 contains	 hypothetical	 data	 for	 a	 clinical	 trial	 of	migraine	 treatment.	Subjects	of	both	genders	receive	either	a	new	drug	therapy	or	a	placebo.	Their	response	to	treatment	is	coded	as	ǯBetterǯ	or	ǯSameǯ.	The	data	are	recorded	as	cell	counts,	and	the	number	of	subjects	for	each	treatment	and	response	combination	is	recorded	in	the	variable	Count.	The	 following	 statements	 create	 a	 three‐way	 table	 stratified	 by	 Gender,	where	 Treatment	forms	the	rows	and	Response	forms	the	columns.		
 
 
ParseSASDatalines(" 
  data d.Migraine; 
  input Gender $ Treatment $ Response $ Count @@; 
  datalines; 
  female Active Better 16 female Active Same 11 
  female Placebo Better 5 female Placebo Same 20 
  male Active Better 12 male Active Same 16 
  male Placebo Better 7 male Placebo Same 19 
; 
") 
migraine <- xtabs(Count ~ Treatment + Response + Gender, d.Migraine) 
 	 	

CohenKappa
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)tǯs	always	a	good	idea	to	have	a	plot	of	the	situation:	
 
d.frm <- as.data.frame(prop.table(migraine, c(2,3))) 
d.frm$Treatment <- reorder.factor(d.frm$Treatment, new.order = 
c("Placebo","Active")) 
d.frm$Response <- reorder.factor(d.frm$Response, new.order = c("Same","Better")) 
 
library(lattice) 
barchart(Freq ~ Response | Treatment + Gender, data=d.frm,  
         col="steelblue", 
         panel = function(x, ...) { 
           panel.grid(h=-1, v=0) 
           panel.barchart(x, ...) 
         }, 
         par.settings = list(strip.background=list(col="lightgrey"),  
                             layout.heights=list(strip=1.45)), 
         par.strip.text = list(col="black"), 
         layout=c(2,2), cex.axis=2, ylim=c(0,1), xlab="Response", ylab="Percent", 
         scales=list(tck=c(0.8,0.8), col="black", x=list(cex=1), y=list(cex=1)), 
         main="Migraine") 
 This	code	yields:	

		The	percentages	are	calculated	so,	that	every	panel	has	a	total	of	ͳͲͲ%:	
 
ptab <- prop.table(migraine, c(2,3)) 
ptab[] <- Format(ptab, digits=1, fmt="%") 
ptab 
 
## , , Treatment = Active 
 
##         Gender 
## Response female male  
##   Better 59.3%  42.9% 
##   Same   40.7%  57.1% 
## 
##, , Treatment = Placebo 
## 
##         Gender 
## Response female male  
##   Better 20.0%  26.9% 
##   Same   80.0%  73.1% 
 Apparently	 the	 treatment	 seems	 to	 have	 a	 obvious	 effect.	 But	 the	 plot	 seems	 as	 well	 to	indicate	a	gender	effect,	as	the	treatment	is	more	pronounced	for	women	than	for	men.		The	 function	mantelhaen.test 	 produces	 the	 Cochran‐Mantel‐(aenszel	 statistics.	 For	 this	stratified	ʹxʹ	table,	an	estimate	of	the	common	odds	ratio	including	its	confidence	interval	is	also	 displayed.	 ȋNote	 that	 the	 function	 expects	 the	 third	 dimension	 to	 be	 the	 strata,	 here	gender.Ȍ	
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mantelhaen.test(migraine,  alternative = "two.sided", correct = FALSE) 
 
##  Mantel-Haenszel chi-squared test without continuity correction 
## 
## data:  migraine 
## Mantel-Haenszel X-squared = 8.3052, df = 1, p-value = 0.003953 
## alternative hypothesis: true common odds ratio is not equal to 1 
## 95 percent confidence interval: 
##  1.445613 7.593375 
## sample estimates: 
## common odds ratio  
##          3.313168 
 The	 significant	 p‐value	 ȋͲ.ͲͲͶȌ	 indicates	 that	 the	 association	 between	 treatment	 and	response	remains	strong	after	adjusting	for	gender.				*******************************		C(ECKME	**************	For	this	stratified	ʹxʹ	table,	estimates	of	the	common	relative	risk	are	also	displayed.	The	CM(	option	also	produces	a	table	of	relative	risks,	as	shown	in	Output	ʹͺ.͸.ʹ.	Because	this	 is	a	prospective	 study,	 the	 relative	 risk	estimate	assesses	 the	effectiveness	of	 the	new	drug;	the	ǲCohort	ȋColͳ	RiskȌǳ	values	are	the	appropriate	estimates	for	the	first	column,	or	the	risk	of	improvement.	The	probability	of	migraine	improvement	with	the	new	drug	is	just	over	two	times	the	probability	of	improvement	with	the	placebo.		The	 Breslow‐Day	 test	 for	 homogeneity	 of	 the	 odds	 ratios	 can	 be	 calculated	 with	 the	eponymous	function. )t	tests	the	null	hypothesis	that	the	odds	ratios	for	the	q	strata	are	all	equal.			
 
BreslowDayTest(migraine) 
 
## Breslow-Day Test on Homogeneity of the Odds Ratios 
##  
## data:  migraine 
## X-squared = 1.4965, df = 1, p-value = 0.2212 
 The	large	p‐value	ȋͲ.ʹʹͳʹȌ	indicates	no	significant	gender	difference	in	the	odds	ratios.		(ad	 the	 test	 for	 homogeneity	 of	 the	 odds	 ratios	 been	 statistically	 significant,	 a	 closer	examination	of	each	ʹxʹ	table	at	each	strata	of	the	stratification	variable	would	be	required	before	making	any	further	interpretations	or	conclusions.	Caution:	Unlike	the	Cochran‐Mantel‐(aenszel	statistics,	the	Breslow‐Day	test	requires	a	large	sample	size	within	each	stratum,	and	this	limits	its	usefulness.	)n	addition,	the	validity	of	the	CM(	tests	does	not	depend	on	any	assumption	of	homogeneity	of	the	odds	ratios;	therefore,	the	Breslow‐Day	test	should	never	be	used	as	such	an	indicator	of	validity.	ȋRefer	to	Breslow	and	Day	ȋͳͻͻͶȌ.Ȍ			(omogeneity	could	also	be	assessed	using	Woolf's	test.	
 
WoolfTest(migraine) 
 
## Woolf-test on Homogeneity of Odds Ratios (no 3-Way assoc.) 
## 
## data:  migraine 
## X-squared = 1.4808, df = 1, p-value = 0.2236 
 (ere	the	Woolf	gives	almost	equivalent	results	to	the	BreslowDay	test	for	consistency	for	the	odds	ratio.		The	odds	ratio	for	the	treatment	is	
 
tab <- t(apply(migraine, c(1,2), sum)) 
OddsRatio(tab, conf.level = 0.95) 
 
## odds ratio     lwr.ci     upr.ci  
##   3.370370   1.461559   7.772108 
 

mantelhaen.test 

BreslowDayTest 
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Now,	 let's	 create	 logistic	 regression	 models	 on	 the	 raw	 data,	 first	 using	 just	 the	 two	covariates	Treatment	and	Gender:	
 
r.glm <- glm(Response ~ Treatment + Gender, data=d.mig, family="binomial") 
summary(r.glm) 
 
## Call: 
## glm(formula = Response ~ Treatment + Gender, family = "binomial",  
##     data = d.mig) 
## 
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -1.2455  -1.0502  -0.6943   1.1108   1.7556   
## 
## Coefficients: 
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      -1.0602     0.3864  -2.744  0.00607 ** 
## TreatmentActive   1.2188     0.4271   2.853  0.00433 ** 
## Gendermale       -0.2398     0.4186  -0.573  0.56674    
## --- 
## Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
## 
## (Dispersion parameter for binomial family taken to be 1) 
## 
##     Null deviance: 140.50  on 105  degrees of freedom 
## Residual deviance: 131.55  on 103  degrees of freedom 
## AIC: 137.55 
## 
## Number of Fisher Scoring iterations: 4 
 The	estimates	of	the	odds	ratio	are:	
 
exp(coef(r.glm)) 
 
##     (Intercept) TreatmentActive      Gendermale  
##       0.3463854       3.3830977       0.7867777  
 We	learn	that	the	treatment	is	significantly	effective.	Persons	with	treatment	are	͵.͵	times	as	likely	 to	 report	 a	 positive	 response.	 The	 gender	 is	 not	 significant.	 By	 the	 way,	 also	 an	interaction	term	would	not	become	significant	ȋnot	shown	hereȌ.							
12 References http://cran.r‐project.org/web/packages/vcdExtra/vignettes/vcd‐tutorial.pdf	http://www.stattutorials.com/SAS/TUTOR)AL‐PROC‐FREQ‐ͳ.htm	http://support.sas.com/documentation/cdl/en/statugfreq/͸͵ͳʹͶ/PDF/default/statugfreq.pdf	http://www.stat.ufl.edu/~presnell/Courses/staͶͷͲͶ‐ʹͲͳͳsp/Notes/icda‐notes‐͵xʹ.pdf	Agresti,	A.	ȋʹͲͲʹȌ	Categorical	Data	Analysis.	John	Wiley	&	Sons.	Dalgaard,	P.	ȋʹͲͲͺȌ	)ntroductory	Statistics	with	R	ȋʹ.	Aufl.Ȍ,	London,	UK:	Springer.			


