
A simple workflow for IsoriX
Alexandre Courtiol, François Rousset & Stephanie Kramer-Schadt

2016-09-09

Welcome to IsoriX, in this vignette we present the steps required for you to build an isoscape and infer the
geographic origin of your favorite animals or plants. This document is a simple introduction, we will thus
not explore all the functionalities of the package. Such exploration will be the object of additional vignettes
that will be available with future versions of the package. For the time being, users can discover advanced
functionalities by reading the documentation of the package.

Note that this vignette takes a lot of time to run. It has thus not been compiled by CRAN but by us. We
have included the sources of this vignette as a text file which you can find in your computer. This file is in
the folder IsoriX/doc within the folder where you usually install your packages (the latter being usually the
one that shows up when you type .libPaths()[1] in R).

In addition, due to constrains on how big this document must be, we had to reduce a lot the resolution of the
figures. If you run it on your computer you will see that in fact figures produced by IsoriX are great!

Step 0 - Loading IsoriX

Before using the package, you need to start R and define your working directory using the function setwd().
You also need to have installed IsoriX on your system. We assume that you already know R a little bit
and that you thus know how to perform such basic operations. If it is not the case, you should read An
Introduction to R or any other introduction to R before continuing. Once your R session is ready, you can
load the package:

library(IsoriX)

##

## ############################################

## # #

## # IsoriX (version 0.3-4) is loaded! #

## # #

## # Type ?IsoriX for a short description #

## # #

## # Type browseVignettes(package='IsoriX') #

## # for details about how this package #

## # works and how to use it #

## # #

## # Type news(package='IsoriX') for news #

## # #

## ############################################

Step 1 - Select the isoscape data

Start by selecting the GNIP data needed for us to build an isoscape. In this example, we will consider all the
data available in GNIP_World within an extent of latitude and longitude that covers roughly Europe.

## load all the GNIP data

data(GNIP_World)

1

https://cran.r-project.org/doc/manuals/r-release/R-intro.html
https://cran.r-project.org/doc/manuals/r-release/R-intro.html


## select the relevant data

GNIP_Europe <- QueryGNIP(

data=GNIP_World,

long.min = -30,

long.max = 60,

lat.min = 30,

lat.max = 70)

## Warning in FUN(X[[i]], ...): some elevation values are not unique but

## should be, so the first element was taken among: 65 190

A warning appears because repeated measurements at one location are associated with two different elevations.
This is probably a mistake present in the original data, so the function QueryGNIP() will only select the first
elevation found for this location in the dataset.

The function QueryGNIP could also be used to select data from particular years or months. The function
aggregates data so that there are as many rows in GNIP_Europe as the number of weather stations consid-
ered. If you explore the dataset we created, you will notice that it has 306 rows and 7 columns. Typing
head(GNIP_Europe) will show you the first 6 rows of the dataset. We should get the following output:

stationID isoscape.value var.isoscape.value n.isoscape.value lat long elev

18963 -4.189474 472.4396 19 30.08000 31.28000 34
19005 -25.282353 207.0240 17 30.27000 35.58000 1300
19022 0.480000 721.8720 5 30.33755 36.14619 870
19245 -9.829412 302.6347 17 31.08000 33.83000 31
19262 -12.222436 160.0716 78 31.18333 29.95000 7
19341 -14.833846 238.7509 26 31.20000 35.75000 970

Step 2 - Fit the geostatistical model

The second thing you need to do is to fit the geostatisical model using the function Isofit(). This function
has many parameters that can be ajusted to fit different models, but we will here use its default settings.

GNIP_Model <- Isofit(iso.data=GNIP_Europe,

mean.model.fix=list(elev=TRUE, lat.abs=TRUE),

mean.model.rand=list("uncorr"=TRUE),

disp.model.rand=list("uncorr"=TRUE))

We should check the output of the model fits by typing its name (not shown) and you can also use the
function plot() from our package to check visually some properties of the model fits.

plot(GNIP_Model)

2



The left column of this panel shows the relationship between the observed and predicted response (top) and
the variation in spatial autocorrelation with the distance between location (bottom) captured by the model
for the model fit called mean.fit, which corresponds to the fit of the mean isotopic values. The right column
shows the same information for the model fit called disp.fit, which corresponds to the fit of the residual
dispersion variance in the isotopic values. On the first row you observe points distributed practically along
the 1:1 diagonal. A different slope would suggest a high residual variance of the data. We do not expect the
points to fall exactly on the line because the model fit does not attempt to predict perfectly the observation
used during the fit. Instead, the model fit produces a smooth surface that aims at reaching a maximum
predictive power for locations not considered during the fit. The second row gives you an idea of the strength
of the spatial autocorrelation captured by the models. Here the results suggest that the autocorrelation is
very strong. Not considering this autocorrelation would thus lead here to poor approximation of the isoscape
and resulting assignments.

Step 3 - Prepare the elevation raster

To build the isoscape using the geostatistical model fitted above, we need to provide the function Isoscape()

with an elevation raster. We will thus start by preparing such raster. We first need to acquire the high
resolution raster from Internet. We store the Global Multi-resolution Terrain Elevation Data 2010 on our
server and you can easily downloaded from R using the function GetElev:

GetElev()

We then import the high resolution elevation raster and transform it into an R raster object using the package
raster:

## we load the package raster

library(raster)

3



## we import the high resolution raster

elevationraster <- raster("elevation_raster_gmted2010_30mn.tif")

## we always check that the import worked

elevationraster

## class : RasterLayer

## dimensions : 20880, 43200, 902016000 (nrow, ncol, ncell)

## resolution : 0.008333333, 0.008333333 (x, y)

## extent : -180.0001, 179.9999, -90.00014, 83.99986 (xmin, xmax, ymin, ymax)

## coord. ref. : +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0

## data source : /home/alex/Dropbox/Boulot/Mes_projets_de_recherche/Collaborations/Stephanie_Kramer/ForAlexCourtiol/our_package/knitr/vignette_workflow/elevation_raster_gmted2010_30mn.tif

## names : elevation_raster_gmted2010_30mn

## values : -430, 8625 (min, max)

Then, we crop and resize it using our function RElevate(). The crop is automatically set by default to the
extent corresponding to the dataset we used above (GNIP_Europe), which the function access through the
fitted GNIP_Model. To resize the raster we chose here an aggregation factor of 10. The lower the aggregation
factor, the higher the resolution of the elevation raster will be, but the longest the computation time and the
largest the map produced will also be. We recommend to use the lowest aggregation factor that you hardware
and patience can handle.

elev <- RElevate(elevation.raster=elevationraster, isofit=GNIP_Model, aggregation.factor=10)

## class : RasterLayer

## dimensions : 449, 1014, 455286 (nrow, ncol, ncell)

## resolution : 0.08333333, 0.08333333 (x, y)

## extent : -27.34181, 57.15819, 31.54986, 68.96653 (xmin, xmax, ymin, ymax)

## coord. ref. : +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0

## data source : /tmp/Rtmpymm9FA/raster/r_tmp_2016-09-09_184731_23320_58549.grd

## names : elevation_raster_gmted2010_30mn

## values : -411.7, 4369.74 (min, max)

Step 4 - Build the isoscape

We will now build the isocape using the function Isoscape().

isoscape <- Isoscape(elevation.raster=elev, isofit=GNIP_Model)

## we load the objects that are used to decorate the maps

data(worldcountries)

data(oceanmask)

data(isoscapepalette)

## we plot the prediction for the mean isotopic values

plot(

x=isoscape,

which="mean",

borders=list(borders=worldcountries),

mask=list(mask=oceanmask),

palette=isoscapepalette

)

4



The function Isoscape() creates 8 different rasters that correspond to different aspects of the isoscape (see
?Isoscape() for details). For example, we will now plot the variation in isotopic values predicted at each
location.

plot(

x=isoscape,

which="mean.respVar",

borders=list(borders=worldcountries),

mask=list(mask=oceanmask),

palette=isoscapepalette

)

5



We can also plot the prediction variance, which will be useful to discuss the quality of our assignment:

plot(

x=isoscape,

which="mean.predVar",

borders=list(borders=worldcountries),

mask=list(mask=oceanmask),

palette=isoscapepalette

)

6



Step 5 - Fit the calibration function

We now use the function Calibfit() to fit the relationship between the isotope values in the environment
and the isotope values in our calibration organisms. In this example, we will use the calibration dataset
calibrationdata that is provided with IsoriX. This dataset concerns sedentary bats inhabiting Europe
(see ?calibrationdata for details).

## load the calibration dataset

data(calibrationdata)

## fit the calibration model

calib <- Calibfit(

calib.data=calibrationdata,

isofit=GNIP_Model

)

These warnings should disappear in the future. They reflect limitations of the current version of the package
spaMM, which we use to fit our models.

To get the result of the calibration fit, you can simply type the name of the object we just created, or plot it:

calib

##

## Fixed effect estimates of the calibration fit

## tissue.value = intercept + slope * predicted isoscape.value + SpatialRandom + Error

##

7



## intercept (+/- SE) = -28.95 +/- 5.20

## slope (+/- SE) = 0.86 +/- 0.10

##

## [for more information, use summary()]

plot(calib)

Step 6 - Perform the assignment

We will now perform the assignment procedure that aims at identifying areas with the same isotopic signature
than the area where individuals originate. To put this into practice, we will use a dataset containing isotopic
measurements on other bats, which is also provided in IsoriX. We will select from this dataset the bats of
the species “Myotis_bechsteinii”:

## load the assignment dataset

data(assignmentdata)

## keep only one bat species

M_bechsteinii <- subset(assignmentdata, species=="Myotis_bechsteinii")

## first 6 rows of the dataset

head(M_bechsteinii)

## animalID species tissue.value

## 1 Mbe_1 Myotis_bechsteinii -68.8

## 2 Mbe_2 Myotis_bechsteinii -64.3

## 3 Mbe_3 Myotis_bechsteinii -72.9

## 4 Mbe_4 Myotis_bechsteinii -76.1

## 5 Mbe_5 Myotis_bechsteinii -69.9

8



## 6 Mbe_6 Myotis_bechsteinii -60.9

## number of bats to assign

nrow(M_bechsteinii)

## [1] 10

We now perform the assignment:

assignment <- Isorix(

assign.data=M_bechsteinii,

isoscape=isoscape,

calibfit=calib,

mask=oceanmask

)

Note that we used the argument mask=oceanmask so to exclude with certainty that the origin of the bats
comes from the water.

Once the assignment done, we can draw several assignment maps. Let us start by plotting the assignment
map for a specific bat by telling the function plot that who we want the plot for the bat with the animalID

“Mbe_6” for example:

## we load new colors for the maps

data(isorixpalette)

## we plot

plot(x=assignment,

who="Mbe_6",

borders=list(borders=worldcountries),

mask=list(mask=oceanmask),

palette=isorixpalette)

9



We can also use number for individuals and plot several at once:

## plot the first 9 bats

plot(x=assignment,

who=1:9,

borders=list(borders=worldcountries),

mask=list(mask=oceanmask),

sources=list(draw=FALSE),

calib= list(draw=FALSE),

palette=isorixpalette)

Note that we removed the plotting of sources and calibration points in the previous plot by setting using
draw=FALSE. Assuming that all bats originate from the same place we can also plot the global assignment for
the group by setting who="group":

plot(x=assignment,

who="group",

borders=list(borders=worldcountries),

mask=list(mask=oceanmask),

palette=isorixpalette)

10



We can easily add information on these plots. As an example, we will add the point that is the most
compatible with the unknown origin of these bats. We start by extracting its location using functions from
the package raster:

coord <- coordinates(assignment$group$pv)

max.location <- coord[which.max(values(assignment$group$pv)), ]

maximum <- data.frame(long=max.location[1], lat=max.location[2])

maximum

## long lat

## x 57.11653 42.75819

Let us also compute for comparison the point that corresponds to the real origin of bats. We know it because
they were caught in a cave in the North of Bulgaria:

## the real origin of these bats (as known by us)

origin <- data.frame(long=25.982122, lat=43.611536)

We add these plots to the last plot we created using the package lattice:

library(lattice)

trellis.last.object() +

xyplot(origin$lat~origin$long, pch=13, col="purple", cex=5, lwd=2,

panel=panel.points) +

xyplot(maximum$lat~maximum$long, pch=13, col="orange", cex=5, lwd=2,

panel=panel.points)

11



The function trellis.last.object() is very handy: it retrieves the last plot created using lattice and our
plot functions for isoscapes and assignments use lattice since they use rasterVis which is a package itself
based on lattice.

As you can see the location of origin (purple) and the location for the best assignment (orange) differ a bit.
The flexibility of IsoriX helps to explore potential sources of problems and limitation. We can for example
compare our isoscape prediction in these two locations:

print(paste("mean isoscape value at origin (+/-SE) =",

round(extract(isoscape$Isoscape$mean, origin), 2), "+/-",

round(sqrt(extract(isoscape$Isoscape$mean.predVar, origin)), 2)))

## [1] "mean isoscape value at origin (+/-SE) = -53.83 +/- 6.54"

print(paste("mean isoscape value at maximum (+/-SE) =",

round(extract(isoscape$Isoscape$mean, maximum),2), "+/-",

round(sqrt(extract(isoscape$Isoscape$mean.predVar, maximum)), 2)))

## [1] "mean isoscape value at maximum (+/-SE) = -46.3 +/- 10.92"

Note that the estimate for the mean isotopic value where the maximum is has a large standard error as this
area is not well covered by sources. You can also observe this effect by simply looking at the map for the
prediction isoscape variance which we have plotted above. In this context, it is thus expected that such area
will be difficult to rule out as a possible source of origin. This example is a good reminder that one must
always think about the quality of the isoscape before making definitive biological conclusion.

Another way to look at our assignment is to check if for all bats the predicted assignment region does include
the real location of origin by simply typing:

12



## extract the p-values for all individuals at the location of origin

pvs <- c(extract(assignment$indiv$pv, origin))

## count how many individuals are in

table(pvs > 0.05)

##

## TRUE

## 10

All bats are in! That is great but it will not necessarily happen all the time, especially if as here the calibration
is performed on a different species than the individuals you want to allocate. As an exercise you can now try
to plot the bats we assigned into the calibration fit to see if they do behave in the same way as other species.
In one of the next version of this vignette we will show you how in case you have difficulties.

More?

To export these nice plots on your hard drive, please check another vignette:

vignette("Saveplot", package="IsoriX")

The number and the quality of the vignette should grow in the future, so keep updating your packages in R
and check what has been changing between version by typing:

news(package='IsoriX')

13


	Step 0 - Loading IsoriX
	Step 1 - Select the isoscape data
	Step 2 - Fit the geostatistical model
	Step 3 - Prepare the elevation raster
	Step 4 - Build the isoscape
	Step 5 - Fit the calibration function
	Step 6 - Perform the assignment
	More?

