
Usage LVQTools
Bachelor project: implementing LVQ in R

Sander Kelders

June 14, 2010

1

Introduction

This document is part of a bachelor project which implements several LVQ
algorithms in the statistical language R. It describes in short the usage of
the package. The validate function is the entry-point and thus various
parameters can be specified here. This document lists these parameters with
a short explanation of its function.

Parameters

Input

1. datapath = NA: The location of the file containing data used for training
or nfoldcrossvalidation. If this value is NA inp will be used, otherwise
the specified file will be used. Default value: NA.

2. normalizescheme = ’none’ : Determines how the data is normalized.
ztransform substracts the mean and divides by variance. iqr substracts
the median and divides by the InterQuantile Range. sumone makes
each datapoint sum up to one by dividing all values by the datapiont’s
sum. Available schemes: ztransform, iqr, sumone, none. Default value:
none

3. normalclasswise = ’none’ : Determines the class on which the normal-
isation is based for classwise normalisation. Default value: none.

4. inp = NA: The data used for training. If datapath is NA inp will be
used, otherwise datapath will be used. Default value: NA.

5. replaceNA = FALSE : Determines whether or not the NA values in the
input will be replaced. If TRUE they will be replaced by the overall
median, unless classwise replacement is used. Available values: TRUE,
FALSE. Default value: FALSE.

6. replaceclasswise = FALSE : Determines whether or not the replacement
of NA values will be classwise. If TRUE NA values will be replaced by
the median of the class to which the datapoint belongs to, otherwise
the overall median is used.

7. testdatapath = NA The location of the file containing data used for
testing. If this value is NA testinp will be used, otherwise the specified
file will be used. Default value: NA.

2

8. testinp = NA: The data used for training. If datapath is NA inp will
be used, otherwise datapath will be used. Default value: NA.

LVQ

1. alfa = 2 : A variable used only in conjunction with the renyi LVQscheme.
Determines the variant of renyi-divergence to be used.

2. distscheme = ’euclidean’ : The distance measure used for determin-
ing the difference between prototype and datapoint. Together with
LVQscheme, relevancemode, relevancescheme and optimisationscheme
this determines the complete distancemeasure. When using scheme
custom a custom differencemeasure can be used by setting the cus-
tomdist parameter. The distscheme variable is only used in conjunction
with the LVQ1 LVQscheme and not in conjunction with cauchyschwarz
or renyi.
Available schemes: manhattan, euclidean, custom.
Default scheme: euclidean.

3. epochs = 10 : The number of epochs used in training. Default value:
10.

4. initscheme = ’zero’ : Determines the way the prototypes are initial-
ized. mean initializes all prototypes at the mean of all the datapoints.
randomsample initializes all prototypes by selecting a different random
sample for each prototype and using its values for initialisation. ran-
domwindow initializes all prototypes by constructing a window which
includes all datapoints and initialising each prototype randomly within
this window. zero initializes all prototypes by setting all values to 0.
Available schemes: mean, randomsample, randomwindow, zero.
Default scheme: zero.

5. learningrate = 0.01 : Determines the rate at which the prototypes are
adjusted. This can be a single value to be used throughout the whole
training process or a vector of length epochs, which will use each value
once in order. Default value: 0.01.

6. LVQscheme = ’LVQ1’ : Determines which version of LVQ is used. To-
gether with distscheme, relevancemode, relevancescheme and optimisa-
tionscheme this determines the complete distancemeasure. Available
values: LVQ1, cauchyschwarz, renyi. Default value: LVQ1.

3

7. customdist = 3 : When using distancemeasure custom, this parameter

determines the distance-measure used. customdist is p in p

√
|datapoint− prototype|p

8. optimisationscheme = ’normal’ : Determines which type of costfunc-
tion is used and thus how the prototypes are updated. The normal
optimisationscheme uses the winner takes all principle and only up-
dates the closest prototype. The general optimisationscheme is used
for generalized LVQ. It uses stochastic gradient descent to determine
the prototype updates. The following function is used for this purpose:

ΣiΦ(µ) with µ =
dΛ

J−dΛ
K

dΛ
J +dΛ

K
. And with dΛ

J as the distance to the nearest

prototype of the appropriate class and dΛ
K as the distance to the nearest

prototype of another class.
Available uses: normal, general.
Default value: normal.

9. prototypes = vector(): Determines the number of prototypes for each
class. This vector must have entries accesible by strings representing
the classlabels. Each entry lists the number of prototypes for the class
whose label was used for accessing it. A usable default value is not
present. This parameter has to be specified manually.

10. relevances = NA: When mode relevance or matrix is used this parame-
ter contains the relevance-vector or matrix respectively. The relevances
can be specified manually using this parameter or when no relevances
are provided they will be randomly initialized. Default value: NA.

11. relevancemode = ’normal’ : Determines if relevances should be used or
not. normal mode does not use relevances at all. relevance mode uses
a relevancevector to assign relevances to each dimension. matrix mode
uses a square relevancematrix to assign relevances to dimensions and
correlations between them. When using mode matrix only euclidean
distancescheme is available.
Relevances are not available when using cauchyschwarz - or renyi -LVQscheme.
Available values: normal, relevance, matrix.
Default value: normal.

12. relevancescheme = ’global’ : Determines how many different sets of
relevances should be used. When using global -relevances only 1 set
of relevances is used for all prototypes. When using local -relevances,
each prototype has its own set of relevances. When using classwise-
relevances all prototypes of the same class share a set of relevances.

4

Available values: global, local, classwise
Default value: global.

13. relrate = 0.001 : When using relevances determines the rate at which
the relevance-vector or matrix adapts. This can be a single value to
be used throughout the whole training process or a vector of length
epochs, which will use each value once in order. Default value: 0.001

Output

1. costcurve = FALSE : When TRUE the cost is calculated after each
epoch and the value stored. When the program ends this cost (possibly
among other things) is returned. Available values: TRUE, FALSE.
Default value: FALSE.

2. progress = FALSE : When TRUE records the value of all prototypes
before the first and after each epoch and returns it (possibly among
other things) after terminating. Possible values: TRUE, FALSE. De-
fault value: FALSE.

3. prototypeoutput = TRUE : When TRUE records the endconfiguration
of the prototypes of a training and returns it (possibly among other
things) after terminating. Possible values: TRUE, FALSE. Default
value: TRUE.

4. relevanceoutput = FALSE : When TRUE records the endconfiguration
of the relevance-vector or matrix of a training and returns it (possi-
bly among other things) after terminating. Possible values: TRUE,
FALSE. Default value: FALSE.

5. relevanceprogress = FALSE : When TRUE records the value of the
relevance-vector or matrix before the first and after each epoch and
returns it (possibly among other things) after terminating. Possible
values: TRUE, FALSE. Default value: FALSE.

6. testerror = FALSE : When testing with a different set than the train-
ingset stores the number of missclassifications after training and returns
(possibly among other things) it after terminating. Possible values:
TRUE, FALSE. Default value: FALSE.

7. testerrorprogress = FALSE : When using testdata to test the outcome
of a training and testerrorprogress is TRUE calculates the testerror
after very epoch and stores it to return (possibly) among other output.

5

8. trainerror = FALSE : After training tests with the trainingset and
stores the number of missclassifications and returns (possibly among
other things) it after terminating. Possible values: TRUE, FALSE.
Default value: FALSE.

9. trainerrorprogress = FALSE : When TRUE the trainerror is calculated
after every epoch and stored to be returned (possibly) among other
output.

Progress

1. graphics = FALSE : When TRUE and the data is 2-dimensional the
progress of the prototypes will be plotted after every epoch. Available
values: TRUE, FALSE. Default value: FALSE.

2. plotcurve = FALSE : When TRUE and costcurve is also set to TRUE
the costcurve will be plotted after every training. Available values:
TRUE, FALSE. Default value: FALSE.

3. show = FALSE : When TRUE prints the prototype configuration and
if applicable the relevance-vector or matrix and the costcurve to the
console. Available values: TRUE, FALSE. Default value: FALSE.

Validation

1. nfold = 8 : Determines the number of sets the data is divided in when
using nfoldcross-validation. Available values: any whole positive num-
ber in the range of [2...numberofdatapoints]. Default value: 8.

2. validatescheme = ’train’ : Determines how training and testing is to be
executed. train only trains the prototypes, while traintest also tests the
prototypes after training with a different set of testdata. The nfold -
scheme will apply nfoldcross-validation with the nfold -parameter deter-
mining in how many sets the data is to be divided. The sets are divided
randomly without consideration to class. Available values: train, train-
test, nfold. Default value: train

6

