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ABSTRACT 

 

Motivation: Mixed linear models (MLM) provide important tech-

niques for performing genome-wide associations studies (GWAS). 

However, current models have pitfalls associated with their strong 

assumptions. Here, we propose a new implementation designed to 

overcome some of these pitfalls using an empirical Bayes algorithm. 

Results: NAM is an R package that allows user to take into account 

prior information regarding population stratification to relax the link-

age phase assumption of current methods. It allows markers to be 

treated as a random effect to increase the resolution, and uses a 

sliding-window strategy to increase power and avoid double fitting 

markers into the model. 

Availability: NAM is an R package available in the CRAN reposito-

ry. It can be installed in R by typing install.packages('NAM'). 

Contact: xaviera@purdue.edu 

Supplementary Information: Supplementary information about the 

method and algorithms is available at Bioinformatics online. 

1 INTRODUCTION  

Since the advent of high-throughput genotyping technology, ex-

tensive efforts have focused on creating efficient mixed linear 

models (MLM) to address relatedness and computational issues in 

genome-wide association studies (GWAS) (Zhou and Stephens 

2012, Kang et al. 2010). However, major pitfalls that still must be 

improved (Yang et al. 2014), including issues with resolution and 

detection power. Furthermore, MLM methods do not take into 

account the linkage phase associated with the multiple populations 

that comprise the association panel. 

Association studies rely on persistent linkage disequilibrium 

(LD) between markers and quantitative trait loci (QTL). Such as-

sociations decay over time through recombination events, trigger-

ing LD that allows differentiation between populations (de Roos et 

al. 2008). Therefore, association panels containing multiple popu-

lations are more likely to display diverging linkage phases, what 

makes QTL undetectable (Wientjes et al. 2013). 

Here we introduce “NAM,” a statistical package for association 

studies that aims to overcome some limitations of the mixed model 

  

*To whom correspondence should be addressed.  

framework and supports users to work with multiple populations 

when a stratification factor is known. 

2 STRUCTURE AND LINKAGE PHASE 

Structure, crypto-relatedness (Yu et al. 2006) and unequal link-
age phase across founders represent a major challenge for quantita-
tive trait nucleotide (QTN) mapping (Lin et al. 2003). Association 
methods deal with multiple levels of relatedness through genomic 
kinship, eigenvectors and model-based approaches (Pritchard et al. 
2000, Kang et al. 2010, Zhang et al. 2010) but are not able to han-
dle linkage phase. Next-generation mapping populations such as 
nested association mapping (NAM) populations, it can address this 
issue by recoding the genotypic matrix to characterize haplotypes. 
For example, in NAM populations alleles either come from the 

standard parent or from the founder. Thus, a given marker m can 
be represented as the number of alleles that come from each 
source: m=[as, a1, a2, ... ,af], where as represents the number of 
alleles inherited from the standard parent and a1 to af represent 
alleles inherited from founder parents. The haplotype representa-
tion of genotypes works as follows. A given locus in an individual 
that belongs to family 2: if homozygous to the standard parent, it is 
coded as m=[2,0,0,...,f]; if heterozygous, m=[1,0,1,...,f]; and 
m=[0,0,2,...,f] if homozygous to the founder. Similar approaches 
can work for a random population if structural factors are known. 
This makes possible to relax assumptions regarding the linkage 
phase between the molecular marker and the QTN across popula-
tions, allowing different populations to pursue distinct coefficients 
for the marker under evaluation. 
If the family term (stratification) is specified, the NAM package 

initiates the association study by recoding alleles and building the 
genomic relationship matrix (GRM). After solving the MLM 
through the EMMA algorithm (Kang et al. 2008), NAM utilizes 
the P3D strategy (Zhang et al. 2010) to avoid updating the poly-
genic term for every marker. Using the empirical Bayes approach, 
each molecular marker is treated as a random effect and the model 
is refitted using Eigen decomposition (Zhou and Stephens 2012) 
and evaluated with the likelihood ratio test (LRT). 
Datasets can still be analyzed by the empirical Bayes algorithm 

when no stratification factor is provided (Wang 2015), applicable 
to multi-parent advanced generation inter-cross (MAGIC), random 
or bi-parental populations. 

3 MAJOR BACKGROUND EFFECT 

Most association algorithms attempt to control the diffuse back-
ground effect and are unable to control genes of major effect (Se-

Associate Editor: Prof. Alfonso Valencia

© The Author (2015). Published by Oxford University Press. All rights reserved. For Permissions, please email: 
journals.permissions@oup.com

 Bioinformatics Advance Access published August 4, 2015
 at Purdue U

niversity L
ibraries A

D
M

N
 on M

arch 16, 2016
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


2 

gura et al. 2012) or use step-wise regression (Yu et al. 2008). To 
address this issue, our package implements a sliding-window algo-
rithm (Xu and Atchley 1995). The approach consists of controlling 
the background by fitting a model with all markers outside a win-
dow, similar to whole-genome regression methods (Legarra et al. 
2015). The use of a sliding window prevents the double-fitting of 
the markers in the model, once the marker under evaluation is in-
cluded in the GRM (Yang et al. 2014). More details about the algo-
rithm are available in the supplementary file. 
 

4 METHODS COMPARISON 

To demonstrate the increase in power and resolution of the 
NAM package, we compared to three standard algorithms of mixed 
linear models: the P3D/EMMAX algorithm with step-wise regres-
sion implemented in GAPIT (Lipka et al. 2012), the GRAMMAR-
Gamma algorithm implemented in GenABEL (Svishcheva et al. 
2012), and the GEMMA algorithm proposed and implemented by 
Zhou and Stephens (2012). 
We used a simulated nested association panel with 840 individu-

als from six families, with 10 chromosomes of 100 cM and one 
marker by cM. A QTL was placed in the center of each chromo-
some (Figure 1). The NAM package was able to capture most QTL 
with few false positives and little background noise, while other 
packages provided lower resolution QTL. 
 

5 ADDITIONAL TOOLS 

The NAM package provides complimentary statistical tool, in-
cluding the fixation indices (Weir and Cockerham 1984), estimator 
of gene content (Forneris et al. 2015), functions to deal with minor 
allele frequency and repeated markers, and the package performs 
imputation of missing loci through random forest (Stekhoven and 
Buhlmann 2012). Best linear unbiased predictors (BLUP) are often 
used to replace raw phenotypes (Robinson 1991) in association 
studies. Our package offers two algorithms to compute BLUP and 
variance components: REML (Kang et al. 2008) and Bayesian 
Gibbs Sampling (Sorensen and Gianola 2002). The latter allows 
users to perform Bayesian inferences. 
 

6 CONCLUSIONS 

   The NAM package has implemented simple solutions to over-

come pitfalls identified in association studies in mixed model 

frameworks, increasing the mapping power and resolution. The 

package includes an additional toolset for complimentary analysis 

of marker quality control, population stratification, and to calculate 

BLUPs. 
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formed with four different implementations. Vertical lines repre-
sent the position of the QTL. 
 
 
Kang, H. M. et al. (2010). Variance component model to account for sample structure 

in genome-wide association studies. Nature genetics, 42(4), 348-354. 

Kang, H. M. et al. (2008). Efficient control of population structure in model organism 

association mapping. Genetics, 178(3), 1709-1723. 

Legarra, A. et al. (2015). A comparison of methods for whole-genome QTL mapping 

using dense markers in four livestock species. Gen.Sel.Evol., 47(1), 6. 

Lin, M. et al. (2003). A general statistical framework for mapping quantitative trait 

loci in nonmodel systems: issue for characterizing linkage phases. Genetics, 

165(2), 901-913. 

Lipka, A. E. et al. (2012). GAPIT: genome association and prediction integrated tool. 

Bioinformatics, 28(18), 2397-2399. 

Pritchard, J. K. et al. (2000). Inference of population structure using multilocus geno-

type data. Genetics, 155(2), 945-959. 

Robinson, G. K. (1991). That BLUP is a good thing: the estimation of random effects. 

Statistical science, 15-32, 6(1). 

Segura, V. et al. (2012). An efficient multi-locus mixed-model approach for genome-

wide association studies in structured populations. Nature genetics, 44(7), 825-

830. 

Sorensen, D., and Gianola, D. (2002). Likelihood, Bayesian, and MCMC methods in 

quantitative genetics. Springer Science & Business Media. 

Stekhoven, D.J and Buhlmann, P. (2012). MissForest: non-parametric missing value 

imputation for mixed-tpe data. Bioinformatics, 28(1), 112-118. 

Svishcheva, G. R. et al. (2012). Rapid variance components-based method for whole-

genome association analysis. Nature genetics, 44(10), 1166-1170. 

Wang, Q. (2015). An Empirical Bayes Method for Genome-Wide Association Studies. 

In Plant and Animal Genome XXXII. W799/Statistical Genomics. 

Weir, B. S. and Cockerham, C. C. (1984). Estimating F-statistics for the analysis of 

population structure. Evolution, 38(6), 1358-1370. 

Wientjes, Y. C. et al. (2013). The effect of linkage disequilibrium and family relation-

ships on the reliability of genomic prediction. Genetics, 193(2), 621-631. 

Xu, S. and Atchley, W. R. (1995). A random model approach to interval mapping of 

quantitative trait loci. Genetics, 141(3), 1189-1197. 

Yang, J. et al. (2014). Advantages and pitfalls in the application of mixed-model 

association methods. Nature genetics, 46(2), 100-106. 

Yu, J. et al. (2008). Genetic design and statistical power of nested association map-

ping in maize. Genetics, 178(1), 539-551. 

Yu, J. et al. (2006). A unified mixed-model method for association mapping that 

accounts for multiple levels of relatedness. Nature genetics, 38(2), 203-208. 

Zhang, Z. et al. (2010). Mixed linear model approach adapted for genome-wide asso-

ciation studies. Nature genetics, 42(4), 355-360. 

Zhou, X., and Stephens, M. (2012). Genome-wide efficient mixed-model analysis for 

association studies. Nature genetics, 44(7), 821-824. 

 at Purdue U
niversity L

ibraries A
D

M
N

 on M
arch 16, 2016

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


Empirical Bayes Genome-Wide Association Method 
 
1. Polygenic model 
 
We use a W-parent nested association mapping (NAM) population containing a standard 
parent and eight founders (𝑊 = 7) as an example to demonstrate the theory and methods. 
The method holds for any p-parents populations. Let y  be an 1nu  vector of phenotypic 
values for n individuals. Define kZ  as an 𝑛 × (𝑊 + 1)  matrix of founder allele 

inheritance for locus k. The jth row of matrix kZ  is defined as a 𝑛 × (𝑊 + 1) vector. If 
this individual is a heterozygote carrying the first and second founder alleles, then 
 

𝑍𝑗𝑘 = [ 1 1 0 0 0 0 0 0 ] 
 
If the individual is a homozygote inheriting both alleles from the fifth founder, then jkZ  

is defined as 
𝑍𝑗𝑘 = [ 0 0 0 0 2 0 0 0 ] 

 
The general rule for defining jkZ  is that there are at most two non-zero elements and the 

sum of all the eight elements equals two. Let  
 

𝛾𝑘 = [𝛾1𝑘   𝛾2𝑘   𝛾3𝑘   𝛾4𝑘   𝛾5𝑘 … 𝛾(𝑊+1)𝑘 ]𝑇
 

 
be an (𝑊 + 1) × 1 vector of allelic effects for the eight founders. The phenotypic vector 
y  is described by the following linear mixed model, 

1

m

k k
k

y X ZE J H
 

 � �¦      (1) 

where X  is a design matrix for fixed effects E , m is the number of (marker) loci 
available in the data and H  is an 1nu  vector of residual errors. Assume that 

2~ (0, )nN IH V  and 2
8~ (0, )k kN IJ I , where 2V  is the residual error variance and 2

kI  is a 

common variance shared by all the eight founder alleles at locus k. Because kJ  are 
assumed to be a vector of random variables, the model is called the linear mixed model. 
The expectation of y is E( )y XE  and the variance-covariance matrix is  

2 2

1

var( )
m

T
k k k

k
y Z Z II V

 

 �¦     (2) 

When m  is large, it is hard to estimate all m variance components in a simultaneous 
manner. Therefore, we make an assumption that all loci share the same variance 
component. This treatment implies that there are m polygenes in the model. This is a 



polygenic model and is treated as the null model for QTL detection. Under the polygenic 
model, we assume 2

8~ (0, / )k N I mJ I  for all 1,...,k m , where 2I  is the polygenic 
variance (the sum of variances for all individual loci). Under the polygenic model, the 
variance-covariance matrix is 

2 2 2 2 2 2

1

1var( ) ( )
m

T
k k

k
y Z Z I K I K I H

m
I V I V O V V

 

 �  �  �  ¦  (3) 

where 2 2/O I V  is the variance ratio, H K IO �  is the covariance structure and  

1

1 m
T

k k
k

K Z Z
m  

 ¦      (4) 

is a marker-generated kinship matrix.  
 
2. Restricted maximum likelihood estimation 
 
To estimate the variance components, we use the restricted maximum likelihood (REML) 
method to maximize the following likelihood function, 

2 1 1
2

1 1 1( ) ln( ) ln | | ( ) ( ) ln | |
2 2 2 2

T Tn rL H y X H y X X H XT V E E
V

� ��
 � � � � � �  (5) 

where ^ `2, ,T E O V  is the parameter vector and r  is the rank of matrix X. Given O , the 

restricted maximum likelihood estimates of E  and 2V  are   
1 1 1

2 1

ˆ ( )
1 ˆ ˆˆ ( ) ( )

T T

T

X H X X H y

y X H y X
n r

E

V E E

� � �

�

 

 � �
�

    (6) 

The above estimated parameters are expressed as functions of O . Substituting E  and 2V  

in Equation (6) by Ê  and 2V̂  in Equation (5) yields a profiled likelihood function that is 
only a function of O , as shown below, 

11 1( ) ln | | ln | | ln( )
2 2 2

T Tn rL H X H X y PyO � �
 � � �    (7) 

where 
1 1 1 1 1( )T TP H H X X H X X H� � � � � �     (8) 

A numeric solution of O  can be found iteratively using the Newton iteration algorithm,  
12 ( ) ( )

( 1) ( )
2

( ) ( )t t
t t L LO OO O

O O

�

� ª º ª ºw w
 � « » « »w w¬ ¼ ¬ ¼

   (9) 

Once the iteration process has converged, the solution is the REML estimate of O , 
denoted by Ô . The log likelihood value of equation (7) evaluated at ˆO O  is called 

0
ˆ( )L L O  and it will be used in the likelihood ratio test (LRT) for individual QTL (to be 

discussed in a later section). 



 
3. Eigenvalue decomposition 
 
The likelihood function requires inverse and determinant of matrix H, an n nu  matrix, 
and the computation can be demanding for large sample size. We used the eigenvalue 
decomposition to deal with the K matrix. Further investigation of Equation (7) shows that 
the profiled restricted log likelihood function only requires the log determinant of matrix 
H and various quadratic forms involving 1H � . Let us perform eigenvalue decomposition 
for K so that TK UDU , where ^ `1diag ,..., nD G G  is a diagonal matrix for the 

eigenvalues and U  is the eigenvectors, an n nu  matrix. The eigenvectors have the 
property of 1TU U �  so that TUU I . Now, let us rewrite matrix H by 

( )T TH K I UDU I U D I UO O O �  �  �    (10) 
The determinant of H is  

| | | ( ) | | || | | |T TH U D I U D I UU D IO O O �  �  �   (11) 
where D IO �  is a diagonal matrix. Therefore, the log determinant of matrix H is 

1
ln | | ln( 1)

n

j
j

H G O
 

 �¦      (12) 

The restricted log likelihood function also involves various quadratic terms in the form of 
1Ta H b� , for example, 1TX H X� , 1TX H y�  and 1Ty H y� . Using eigenvalue decomposition, 

we can rewrite the quadratic form by 
1 1 * 1 * * * 1

1
( ) ( ) ( 1)

n
T T T T T

j j j
j

a H b a U D I U b a D I b a bO O G O� � � �

 

 �  �  �¦  (13) 

where * Ta U a  and * Tb U b . Note that *
ja  is the jth element (row) of vector (matrix) *a  

and *
jb  is the jth element (row) of vector (matrix) *b . Using eigenvalue decomposition, 

matrix inversion and determinant calculation have been simplified into simple 
summations, and thus, the computational speed can be substantially improved.  
 
4. Genome scanning for quantitative trait loci 
 
Once O  is estimated, we are able to scan the entire genome by controlling the polygenic 
covariance structure using the O  estimated from the null model. The genomic scanning 
model for the kth locus is 

k ky X ZE J [ H � � �      (14) 
where [  is the polygene. The general error term [ H�  has E( ) 0[ H�   and 

2ˆvar( ) ( )K I[ H O V�  � , where the O  value is fixed at its estimated values under the 

polygenic model. This time, we assume 2
8~ (0, )k kN IJ I  and perform a significance test for 



2
0 : 0kH I  . Under the null hypothesis, the kth locus is not linked to QTL. Because kJ  is 

assumed to be a random effect, the expectation of y in the above model remains 
E( )y XE , but the variance-covariance matrix is  
 

2 2 2 2ˆvar( ) ( )T T
k k k k k ky Z Z K I Z Z K II I V O O V � �  � �   (15) 

 
where 2 2/k kO I V  is the variance ratio. Let * Ty U y , * TX U X  and * T

k kZ U Z  be 
transformed variables so that  

 
* * * ( )T

k ky X Z UE J [ H � � �      (16) 
 
The variance-covariance matrix of *y  is 

* * * 2 2

* * 2 2

* * 2 2

* * 2

ˆvar( ) ( )
ˆ( )

ˆ( )

( )

T T
k k k

T T T
k k k

T
k k k

T
k k k

y Z Z U K I U

Z Z U U D I U U

Z Z D I
Z Z R

I O V

I O V

I O V

O V

 � �

 � �

 � �

 �

   (17) 

 
where ˆR D IO �  is a known diagonal matrix for the general covariance structure. Let 

* *T
k k k kH Z Z RO �  and define the restricted log likelihood function for parameter vector 

^ `2, ,kT E O V  by 

 
2 * * 1 * * * 1 *

2

1 1 1( ) ln( ) ln | | ( ) ( ) ln | |
2 2 2 2

T T
k k k

n rL H y X H y X X H XT V E E
V

� ��
 � � � � � � (18) 

 
Given kO , the maximum likelihood estimates of E  and 2V  are  

 
* 1 * 1 * 1 *

2 * * 1 * *

ˆ ( )
1 ˆ ˆˆ ( ) ( )

T T
k k

T
k

X H X X H y

y X H y X
n r

E

V E E

� � �

�

 

 � �
�

   (19) 

 
The above estimated parameters are expressed as functions of kO . Substituting E  and 2V  

in Equation (18) by Ê  and 2V̂  in Equation (19) yields a profiled likelihood function that 
is only a function of kO , as shown below, 

* 1 * * *1 1( ) ln | | ln | | ln( )
2 2 2

T T
k k k k

n rL H X H X y P yO � �
 � � �   (20) 

where 



1 1 * * 1 * 1 * 1( )T T
k k k k kP H H X X H X X H� � � � � �    (21) 

 
The Newton algorithm for the numeric solution of kO  is  

 
12 ( ) ( )

( 1) ( )
2

( ) ( )t t
t t k k

k k
k k

L LO OO O
O O

�

� ª º ª ºw w
 � « » « »w w¬ ¼ ¬ ¼

   (22) 

 
Once the iteration process converges, the solution is the REML estimate of kO , denoted 

by k̂O . The log likelihood value of Equation (20) evaluated at ˆ
k kO O  is called 1

ˆ( )kL L O . 
The null hypothesis is 0 : 0kH O  . The likelihood ratio test (LRT) for the kth locus is 
defined by 

0 12( )k L L*  � �      (23) 
 
The entire genome is scanned one locus at a time. Locus k is declared as significant if 

1 0.05k �* ! *  where 1 0.05�*  is the 95% percentile of the distribution of k*  under the null 
model. The 95% percentile threshold value is drawn from a permutation analysis (see the 
Result section of the manuscript).   
 
5. Woodbury matrix identities 
 
Efficient matrix inversion and determinant calculation is required to evaluate the log 
likelihood function shown in Equation (20). We use the Woodbury matrix identities to 
improve the computational speed. The Woodbury matrix identities are  
 

1 * * 1

1 1 * * 1 * 1 1 * 1
8

1 1 * * 1 * 1 * 1
8

( )

( )

( )

T
k k k k

T T
k k k k k

T T
k k k k k k

H Z Z R
R R Z Z R Z I Z R
R R Z Z R Z I Z R

O

O

O O

� �

� � � � � �

� � � � �

 �

 � �

 � �

   (24) 

and 
* *

* 1 * 1
8 8

* 1 *
8

| | | |

| || || |

| || |

T
k k k k

T
k k k k

T
k k k

H Z Z R
R I Z R Z I
R Z R Z I

O

O O

O

� �

�

 �

 �

 �

    (25) 

 
Because ˆR D IO �  is a diagonal matrix, the Woodbury identities convert the above 
calculations into inversion and determinant of matrices with dimension 8 8u . The 
restricted likelihood function also involves various quadratic terms in the form of 1T

ka H b� , 
which can be expressed as 

 



1 1 1 * * 1 * 1 * 1
8( )T T T T T

k k k k k k ka H b a R b a R Z Z R Z I Z R bO O� � � � � � � �    (26) 
 
Note that the above quadratic has been expressed as a function of various 1Ta R b�  terms. 
The simplified quadratic term is calculated using 

1 1

1

ˆ( 1)
n

T T
j j j

j
a R b a b G O� �

 

 �¦     (27) 

where ja  and jb  are the jth rows of matrices a  and b , respectively, for 1,...,j n .  

 
6. Best linear unbiased prediction of QTL effects 
 
To derive the best linear unbiased prediction (BLUP) of kJ , we need the following 
information, 

* *

E
0k

y X E
J
ª º ª º

 « » « »
¬ ¼¬ ¼

     (28) 

and 
* * * * *

2 2
* *

8 8

( )
var

T
k k k k k k k k

T T
k k k k k k k

y Z Z R Z H Z
Z I Z I
O O O

V V
J O O O O
ª º ª º ª º�

  « » « » « »
¬ ¼ ¬ ¼ ¬ ¼

  (29) 

 
The BLUP of kJ  can be derived as the conditional expectation of kJ  given *y , assuming 
that E  is known, which has the following expression,  

 
* * 1 * *

* 1 * * 1 * * 1 * 1 * 1 *

E( | ) ( )

( )

T
k k k k

T T T T
k k k k k k k k

y Z H y X
Z H y Z H X X H X X H y

J O E

O O

�

� � � � �

 �

 �
 (30) 

 
The conditional variance is 

 
* 2 * 1 * 2

8var( | ) T
k k k k k k ky I Z H ZJ O V O O V� �     (31) 

 
Let *Eˆ ( | )k k yJ J  and *

ˆ var( | )
k kV yJ J , which provide an alternative test for the null 

hypothesis, 0 : 0kH J  . The test statistics is called the Wald test expressed by 
 

1
ˆˆ ˆWald
k

T
k kVJJ J�     (32) 

 
7. Moving window scanning of the genome 
 



The polygenic background control is similar to the composite interval mapping using co-
factors to control the background effects. However, it does not eliminate the interference 
of the current locus from neighboring markers in the presence of linkage disequilibrium. 
Therefore, we extend the random model approach to addressing the problem of 
interference. We adopted the random model approach of Xu and Atchley (1995) by 
defining a window of fixed width that covers the locus of interest. Let kZ  be the allelic 
inheritance variables and kJ  be the QTL effects for locus k. Our target locus is k but we 
use 1kZ �  and 1kZ �  as the flanking markers to eliminate interference from effects of the left 
and right sides of the genome. The window size is fixed in d cM long with locus k right in 
the middle of the window. Note that 1kZ �  and 1kZ �  are not the genotype indicators for 
markers 1k �  and 1k � ; rather, they are the genotype indicators for the left and right 
markers 0.5d cM deviating from marker k, respectively. These two markers define the 
moving window of d cM in width. The random model of this moving window scanning 
procedure is 

 

1 1 1 1k k k k k ky X Z Z ZE J J J [ H� � � � � � � � �    (33) 
 
where only kJ  is the QTL effect under investigation but 1kJ �  and 1kJ �  appear also in the 
model to control potential interference. The QTL effects of the flanking markers of the 
window are also assumed to be random so that 2

1 8 1~ (0, )k kN IJ I� �  and 2
1 8 1~ (0, )k kN IJ I� � . 

The variance-covariance matrix of the model is 
 

2 2 2 2
1 1 1 1 1 1

2
1 1 1 1 1 1

ˆvar( ) ( )
ˆ( )

T T T
k k k k k k k k k

T T T
k k k k k k k k k

y Z Z Z Z Z Z K I

Z Z Z Z Z Z K I

I I I O V

O O O O V
� � � � � �

� � � � � �

 � � � �

 � � � �
  (34) 

where 2 2
1 1 /k kO I V� �  is the variance ratio. Let us define 1 1|| ||k k k kW Z Z Z� �  as an 24nu  

matrix (column concatenation of the three Z matrices) and define  
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as a 24 24u  diagonal matrix. The variance-covariance matrix of y is rewritten as 

 
2ˆvar( ) ( )T

k k ky W W K I\ O V � �    (35) 
 
Define * Ty U y  and * T

k kW U W , the variance-covariance matrix of the transformed y 
becomes 



* * * 2 2var( ) ( )T
k k k ky W W R H\ V V �      (36) 

where  
* *T

k k k kH W W R\ �      (37) 
 
The profiled restricted log likelihood function for 1 1( , , )k k k kf\ O O O� �  is 

* 1 * * *1 1( ) ln | | ln | | ln( )
2 2 2

T T
k k k k

n rL H X H X y P y\ � �
 � � �   (38) 

 
 
Evaluation of this likelihood function can be time consuming. However, we can use the 
Woodbury matrix identities to find the inverse and determinant of matrix kH , 
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and 
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    (40) 

 
Dimension of the matrices required in the inversion and determinant calculation has 
increased from 8 8u  (single marker analysis) to 24 24u  in the moving window scanning 
method. Matrix R is diagonal and matrix * 1 *

24
T

k k kW R W I\� �  has low dimension. Therefore, 
the determinants of these two matrices are calculated with low cost. The quadratic term 
involved in the likelihood function is 

1 1 1 * * 1 * 1 * 1
24( )T T T T T

k k k k k k ka H b a R b a R W W R W I W R b\ \� � � � � � � �    (41) 
 
The Newton algorithm used before is now replaced by the Newton-Raphson algorithm 
because three parameters are estimated simultaneously. The likelihood value evaluated at 

ˆk k\ \  is denoted by 1 ˆ( )kL L\ . 
 
Hypothesis test for 2

0 : 0kH I   under the moving window scanning procedure is different 
from that introduced before because the null model is not the polygenic model but a 
model excluding 2

kI  but keeping 2
1kI � , 2

1kI �  and the polygenic variance. This means that 



for every locus scanned, one must also calculate a locus specific 0L  in order to find the 
likelihood ratio test statistics. The likelihood ratio test statistic is again denoted by 

0 12( )k L L*  � � .  
 
8. Moving window scanning with adjusted polygenic effect 
 
The moving window scanning procedure will increase the resolution of QTL mapping, 
but may also reduce statistical power if the window is too narrow. In addition, the 
polygenic effect also contains QTL effects in the moving window. Essentially, QTL 
effects in a window are estimated twice, one by the polygenic effect and one by the 
moving window. The two estimates are competing with each other, leading to a lower 
power for QTL detection. We proposed the following remediation by releasing the effects 
in the moving window absorbed by the polygenic effect. The revised model is 

 

1 1 1 1k k k k k k ky X Z Z ZE J J J [ [ H� � � � � � � � � �    (42) 
 
where [  is still the polygenic effect and k[  is the polygenic effect linked to all markers 
covered by the current moving window, i.e., window k. This effect is estimated under the 
polygenic model (the null model). To minimize the revision of the model and maximize 
the computational speed, we rearranged the above model into 
 

1 1 1 1k k k k k k ky X Z Z ZE J J J [ H� � � � � � � � �    (43) 
 
where k ky y [ �  is a newly adjusted vector of phenotypic values. For each window, we 
used a window specific vector of phenotypic values and left all existing algorithm in the 
regular moving window scanning procedure intact. This is obvious because the right hand 
side of equation (43) is the same as that of equation (42). As a result, E( )ky XE  and  
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1 1 1 1 1 1
ˆvar( ) ( )T T T

k k k k k k k k k ky Z Z Z Z Z Z K IO O O O V� � � � � � � � � �   (44) 
 
The only additional work is to find k[  for each window.  
 
We now go back to the original polygenic model in equation (1). Under the polygenic 
model, all marker effects share the same variance, i.e., 2

8~ (0, /k N I mJ I ), where 
2 2I OV  is estimated from the data under the polygenic model. The BLUP estimate of 

kJ  is derived from the multivariate theorem. The joint distribution of y  and kJ  are 
multivariate normal with expectation and variance given by 
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and 
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respectively. From the expectation and variance, we can find the conditional expectation 
of kJ  given y ,  

2 2 2 1E( | ) ( ) ( )k ky Z mK Im y XJ I I V E� � �    (47) 
 
which is the BLUP of kJ  if the parameters are known. The parameters are substituted by 
the estimated values under the polygenic model and thus the BLUP is in fact empirical 
Bayes estimates,  

 
2 2 2 1ˆ ˆ ˆˆ ˆE( | ) ( ) ( )k k ky Z mK Im y XJ J I I V E�  � �   (48) 

 
We have a total of m markers and thus we will have m kJ  to estimate under the polygenic 
model (prior to the moving window scanning). When we scan the kth moving window, 
the polygenic effect covered by this window (d cM in width) is k[ , which is 

 

' '
' 1

ˆ
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k k k
k

Z[ J
 

 ¦      (49) 

 
where km  is the number of markers covered by window k and 'kZ  is the 'k  marker 
genotype indicator variable. This polygenic adjusted moving window will avoid 
competing between the polygenic effect and the effect in the window. The method is 
computationally efficient because the polygenic effects are only estimated under the null 
model prior to the moving window scanning.  
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