
Integration of new Methods
PopGenome

Bastian Pfeifer

December 10, 2013

Accessing the class GENOME

The whole framework of PopGenome is based on a single class named GENOME.
This object contains a huge amount of informations about the observed data
and also stores the calculated statistic values. To ensure a whole genome per-
spective we use the ff-package (http://cran.r-project.org/web/packages/
ff/index.html) to minimize memory space. Anyway, PopGenome provides an
effortless access of the values stored in the class GENOME, what facilitates the in-
tegration of new methods and the reimplementation of existing methods become
redundant. In the next sections we will discuss the integration of new methods
on the basis of alignments. Note, this will also work for regions of whole genome
SNP data.
Lets implement the Watterson’s homozygosity test of neutrality:

H =

k∑
i=1

x2
i

where k is the total number of haplotypes and xi the frequency of the i-th
haplotype with:

k∑
i=1

xi = 1

(1) Reading the data

In this case we read three alignments stored in the folder "Alignments".

GENOME.class <- readData("Alignments")

(2) Calculation

The FST module calculates the haplotype counts needed for the new statistic.

GENOME.class <- F_ST.stats(GENOME.class)

# A faster version would be:

GENOME.class <- F_ST.stats(GENOME.class,mode="haplotype",

only.haplotype.counts=TRUE)

1

http://cran.r-project.org/web/packages/ff/index.html
http://cran.r-project.org/web/packages/ff/index.html


(3) Getting the results

The haplotype counts of each alignment or region are stored in the sub-class
region.stats.

haplotype.counts <- GENOME.class@region.stats@haplotype.counts

haplotype.counts

[[1]]

CON RI-0 MR-0 TUL-0 MH-0 ITA-0 CVI-0 COL-2 LA-0 ME-0 GR-5 CHA-0 WS-0

pop.1 4 1 1 2 1 1 1 1 3 1 1 1 1

RSCH-0 Alyrata

pop.1 1 1

[[2]] ...

[[3]] ...

(4) Writing your own function

EW_Test <- function(GENOME.class){

GENOME.class <- F_ST.stats(GENOME.class,only.haplotype.counts=TRUE)

haplotype.counts <- GENOME.class@region.stats@haplotype.counts

frequencies <- lapply(haplotype.counts,function(x){return((x/sum(x))^2)})

EW_values <- sapply(frequencies,sum)

return(EW_values}

}

EW_Test(GENOME.class)

[1] 0.09297052 0.18367347 0.07482993

Embedding new methods into the PopGenome
framework

PopGenome provides a mechanism to fully integrate your own functions into
the PopGenome framework. The next subsections will guide you through this
meachanism. Let’s integrate the Ewens Watterson Test.

(1) Skeleton of a PopGenome function

Use the function create.PopGenome.method to generate the new function.

# one value for one population

create.PopGenome.method("myFunction", population.specific=TRUE)

# one value for all populations

create.PopGenome.method("myFunction", population.specific=FALSE)

# site specific values

create.PopGenome.method("myFunction", site.specific=TRUE)

Now you find the R script myFunction.R in your workspace. The script itself
describes where to put your function.

2



Figure 1: myFunction.R (population specific)

(2) Writing your own function

Lets fully integrate the Ewens Watterson test described above in the PopGenome
framework without accessing the slot region.stats@haplotype.counts. This
can be neccessary if PopGenome for example would not calculate the haplotype
counts. Following parameter are useful:

bial

The parameter bial (Biallelic Matrix) contains the SNPs of the alignments.
The rownames are the individuals and the columns the positions of the observed
SNPs.(Manual:popGetBial)

bial[1:5,1:5]

12 13 31 44 59

CON 0 1 0 1 0

KAS-1 0 0 0 1 1

RUB-1 1 0 1 1 0

PER-1 0 0 0 0 0

RI-0 0 1 0 0 0

The Biallelic Matrix contains zeros (major allele) and ones (minor allele) re-
garding the whole population considered. Because of that the third SNP (posi-
tion: 44) for example contains 3 minor alleles and 2 major alleles. PopGenome
will manage this automatically and will redefine those values for every subset.
Nevertheless, you should keep that in mind when yo write your own functions.

populations

The R object populations contains the defined populations as rownumbers of
the Biallelic Matrix. You should really use this parameter, because sometimes
there are not all individuals present in an alignment. (region.data@populations)

3



Figure 2: myFunction.R (population specific)

populations[[2]][1:5]

[1] 1 2 3 4 5

In this case the first five individuals of the second ([[2]]) alignment are present.

Implementation

EW_test <- function(bial,populations){

# Lets create the subsets of the Biallelic Matrix

pop.bial <- lapply(populations,function(x){return(bial[x,])})

# Calculate the haplotype counts without accessing the class GENOME

# calc.haplotype.counts is your own sub-function

haplotype.counts <- lapply(pop.bial,calc.haplotype.counts)

frequencies <- lapply(haplotype.counts,function(x){return((x/sum(x))^2)})

EW_values <- sapply(frequencies,sum)

return(EW_values)

}

Loading/Using the function

library(PopGenome)

GENOME.class <- readData("Alignments")

create.PopGenome.method("Ewens.Watterson")

# editing

source("Ewens.Watterson.R")

EW_values <- Ewens.Watterson(GENOME.class)

Now, you have the whole capability of PopGenome for your function.

4



1 Parser for new input formats

PopGenome supports also R-objects as an input. Thus you can parse every text
file you want and convert it into a special R-object. This R-object is type of a
list and contains a matrix including the nucleotides and the individuals as well
as the positions of the sites of the matrix. The positions are optional, but might
be useful in case of SNP data. The nucleotides are coded as follows:

� T,U → 1

� C → 2

� G→ 3

� A→ 4

� unknown→ 5

� − → 6

Example

matrix

[,1] [,2] [,3] [,4]

seq1 1 1 1 2

seq2 1 4 2 1

seq3 1 4 4 1

seq4 1 4 4 1

positions

[1] 25 300 1000 2500

Robject <- list(matrix=matrix, positions=positions)

save(file="Aln", Robject)

# put the the objects in a folder (for example: .../Alignments/Aln.RData)

GENOME.class <- readData("Alignments", format="RData")

You also can split huge data in chunks, PopGenome will concatenate them.

5


	Parser for new input formats

