
Rsundials Version 1.6
Selwyn-Lloyd McPherson [smcphers@stanford.edu]
September 2007

Contents

1. Summary
2. IDA Example
3. CVODES Example

1. Summary

Rsundials implements the differential algebraic equation (DAE) and ordinary differential
equation (ODE) solvers in the SUNDIALS suite (version 2.3.0 –
http://www.llnl.gov/CASC/sundials/). The IDA module of SUNDIALS handles DAEs
and the CVODES module solves ODE systems. Both modules utilize a dense linear
solver and both require a user-defined (hard-coded) residual / right hand side function.
Installation of the SUNDIALS libraries is not a prerequisite for this package.

2. IDA Example

The Problem
This example, due to Robertson1, is a model of a three-species chemical kinetics system
written in DAE form. Differential equations are given for species y1 and y2 while an
algebraic equation determines y3. The equations for the system concentrations yi(t) are:

!y
1
= !0.4y

1
+10

4
y
2
y
3

!y
2
= 0.4y

1
!10

4
y
2
y
3
! 30 "10

7
y
2

2

0 = y
1
+ y

2
+ y

3
!1

The initial values are taken as y1 = 1, y2 = 0, and y3 = 0. This example computes the three
concentration components on the interval from t = 0 through t = 4*1010.

The Residual Function
The first step is to create a compilable file (preferably in c) that defines the residual (right
hand side) function as called by the solver on each time step. A template for such a
function can be described as:

#include "include/nvector_serial.h"
#include "include/sundials_dense.h"

int resrob(realtype tres, N_Vector yy, N_Vector yp, N_Vector rr,
 void *rdata)
{
 realtype *yval, *ypval, *rval;

 yval = NV_DATA_S(yy);
 ypval = NV_DATA_S(yp);
 rval = NV_DATA_S(rr);

 /* Set values of rval[0]...rval[n] here */

 return(0);
}

The function takes the arguments:
 tres the current value of the independent variable
 yy the current value of the dependent variable vector, y(t)
 yp the current value of y'(t)
 rr the output residual vector F(t, y, y')
 rdata a pointer to user data

The two includes are used to obtain the data types used by the SUNDIALS solver,
namely N_Vector, a simple vector, and realtype, a primitive data type. By default, this is
a double-precision floating-point numeric data type (double C-type). The header files are
found in the usrfcns directory.

In order to write or read from the vectors, NV_DATA_S must be used on a realtype
pointer. This sets the pointer to the first value of the vector. In general, nothing must be
done with tres or rdata.

IDA works by attempting to minimize the residual of the equations presented. Thus, it is
important to formulate the system properly by bringing everything over to one side. The
output residual vector rr can be written to by writing to the elements of rval. For the
above system, this can be done in the following way:

rval[0] = -0.04*yval[0] + 1.0e4*yval[1]*yval[2] - ypval[0];
rval[1] = 0.04*yval[0] - 1.0e4*yval[1]*yval[2] -
 3.0e7*yval[1]*yval[1] - ypval[1]
rval[2] = yval[0] + yval[1] + yval[2] - 1;

If the complete function resrob is placed in the file idafcns.c, it can be compiled into a
shared library useable by R by typing:

 R CMD SHLIB ...path.../idafcns.c

in the command line as long as the header files nvector_serial.h and ida_dense.h are
present in the same directory. This will compile the file and allow the functions within to
be usable in R.

Solving the Problem in R
Once R is started, the defined functions must be loaded before running the IDA solver.
To load dynamic libraries into R, use the command

 dyn.load("...path.../idafcns.so") or
 dyn.load("...path.../idafcns.dll")

depending on your system type. To execute the IDA solver in R, the following command
might be used:

yvals <- ida(c(1,0,0), c(-0.04,0.04,0),
gseq(.4,4e10,10), "idafcns", "resrob", jacfunc =
"jacrob", rtol = 1E-4, atol = c(1E-8,1E-14,1E-6),
verbose = TRUE)

The following output should be obtained:

SUNDIALS IDADENSE Linear Solver
Number of Equations: 3
Integration Limits: 0.4 to 4e+10
Solver Memory Allocated
Max Number of Steps: 500
Max step size: 0
Relative Tolerance: 0.0001
Absolute Tolerances: 1e-08 1e-14 1e-06
Jacobian Function Initialized
IDADense Linear Solver Initialized

 t y0 y1 y2 | nst k h

4.0000e+00 9.1172e-01 2.3133e-05 8.8253e-02 | 96 4 4.1520e-01
4.0000e+01 7.1686e-01 9.2258e-06 2.8313e-01 | 132 4 1.9421e+00
4.0000e+02 4.5066e-01 3.2247e-06 5.4933e-01 | 177 4 3.2576e+01
4.0000e+03 1.8321e-01 8.9427e-07 8.1679e-01 | 220 4 2.0527e+02
4.0000e+04 3.8985e-02 1.6218e-07 9.6102e-01 | 266 3 1.2965e+03
4.0000e+05 4.9391e-03 1.9853e-08 9.9506e-01 | 307 5 1.6802e+04
4.0000e+06 5.1672e-04 2.0679e-09 9.9948e-01 | 366 3 1.5150e+05
4.0000e+07 5.2026e-05 2.0811e-10 9.9995e-01 | 416 4 2.0066e+06
4.0000e+08 5.2132e-06 2.0853e-11 9.9999e-01 | 452 4 2.7282e+07
4.0000e+09 5.2178e-07 2.0871e-12 1.0000e+00 | 482 4 2.6574e+08
4.0000e+10 5.1049e-08 2.0420e-13 1.0000e+00 | 503 2 6.8880e+09

Final Run Statistics:

Number of steps = 503
Number of residual evaluations = 703
Number of Jacobian evaluations = 78
Number of nonlinear iterations = 703
Number of error test failures = 16
Number of nonlinear conv. failures = 0
Number of root fn. evaluations = 0
 [,1] [,2] [,3] [,4]
 [1,] 4e-01 1.000000e+00 0.000000e+00 0.00000000
 [2,] 4e+00 9.117237e-01 2.313333e-05 0.08825314
 [3,] 4e+01 7.168589e-01 9.225752e-06 0.28313186
 [4,] 4e+02 4.506627e-01 3.224737e-06 0.54933409
 [5,] 4e+03 1.832093e-01 8.942713e-07 0.81678983

 [6,] 4e+04 3.898477e-02 1.621830e-07 0.96101506
 [7,] 4e+05 4.939054e-03 1.985310e-08 0.99506093
 [8,] 4e+06 5.167204e-04 2.067937e-09 0.99948328
 [9,] 4e+07 5.202555e-05 2.081130e-10 0.99994797
[10,] 4e+08 5.213164e-06 2.085276e-11 0.99999479
[11,] 4e+09 5.217753e-07 2.087102e-12 0.99999948
[12,] 4e+10 5.104891e-08 2.041956e-13 0.99999995

3. CVODES Example

The Problem
This example from a presentation by Borrelli and Coleman2 is a three-compartment
model for lead in the human body. Lead is input to the system at a constant rate L. Three
state variables, x1, x2, and x3 describe the concentration of lead in the blood, tissue, and
bones respectively. There exist transfer rates between the compartments as well as to the
external environment via urine from the blood and via hair, nails, and sweat from the
tissues.

For i = 1, 2, 3, we let xi(t) be the amount of lead in compartment i at time t and we
assume that the rate of transfer from compartment i to j is proportional to xi(t) with a
proportionality constant of aji. The units for amounts of lead are micrograms and the time
t is measured in days.

The vector differential equation of this problem is in the form

 !x = Ax + b

where A is the matrix

Compartment 2
Tissue
x2(t)

Compartment 0: External Environment

a31

a31

Compartment 1
Blood
x1(t)

Compartment 3
Bones
x3(t)

a21

a12

a01 a02

L
Lead input:
Food, air, water

urine
hair, nails,
sweat

! a
01
+ a

21
+ a

31() a
12

a
13

a
21

! a
02
+ a

12() 0

a
31

0 !a
13

"

#

$
$
$

%

&

'
'
'

and b = (L,0,0)T .

In a paper published by Rabinowitz and colleagues3, measurements of the concentration
of lead in these compartments in a male subject living in Los Angeles allowed for the
calculation of the rates of transfer. Relatively speaking, lead is somewhat slow to enter
the bones and very slow to leave them.

Lead Transfer Coefficients (Rabinowitz, et al.)

Units: days-1
a

21
= 0.011 a

12
= 0.012 from blood to tissue and back

a
31
= 0.0039 a

13
= 0.000035 from blood to bone and back

a
01
= 0.021 a

02
= 0.016 excretion from blood and tissue

The study also showed that the average rate of ingestion of lead (L) in Los Angeles over
the period studied was 49.3 micrograms per day.

The Right Hand Side Function
The first step is to create a compilable file (preferably in c) that defines the right hand
side function as called by the solver on each time step. A template for such a function can
be described as:

#include "include/nvector_serial.h"
#include "include/sundials_dense.h"

int rhs(realtype t, N_Vector y, N_Vector ydot, void *f_data)
{
 realtype y1, y2, y3;
 y1 = Ith(y,1); y2 = Ith(y,2); y3 = Ith(y,3);

 /* Change values of ydot here using Ith(ydot,i) */

 return(0);
}

The function takes the arguments:
 t the current value of the independent variable
 y the current value of the dependent variable vector, y(t)
 ydot the current value of y'(t)
 fdata a pointer to user data

The two includes are used to obtain the data types used by the SUNDIALS solver,
namely N_Vector, a simple vector, and realtype, a primitive data type. By default, this is
a double-precision floating-point numeric data type (double C-type). The header files are
found in the usrfcns directory.

The realtypes y1, y2 and y3 are first set to the corresponding value in the y vector using
the macro Ith with indices from 1 to n (not from 0 to n-1). These can then be modified
to reflect the proper value. For the above problem, the values of ydot can be updated
using the following code:

double L = 49.3;
double a21 = 0.011; double a12 = 0.012;
double a31 = 0.0039; double a13 = 0.000035;
double a01 = 0.021; double a02 = 0.016;

Ith(ydot, 1) = -(a01 + a21 + a31)*y1 + a12*y2 + a13*y3 + L;
Ith(ydot, 2) = a21*y1 - (a02 + a12)*y2;
Ith(ydot, 3) = a31*y1 - a13*y3;

If the complete function rhs is placed in the file cvodesfcns.c, it can be compiled into a
shared library useable by R by typing:

 R CMD SHLIB ...path.../cvodesfcns.c

in the command line as long as the header files nvector_serial.h and cvodes_dense.h are
present in the same directory. This will compile the file and allow the functions within to
be usable in R.

The user may supply a method for computing the Jacobian; this can be placed in the same
file as the RHS method.

Solving the Problem in R
Using the model defined above, let's take a look at an individual who moves to Los
Angles with no lead in her body. We can use Rsundials to determine the levels in her
system after a set number of days, say 400.

Once R is started, the defined functions must be loaded before running the CVODES
solver. To load dynamic libraries into R, use the command

 dyn.load("...path.../cvodesfcns.so") or
 dyn.load("...path.../cvodesfcns.dll")

depending on your system type. To execute the CVODES solver in R, the following
command might be used:

yvals <-
cvodes(c(0.0,0.0,0.0),seq(0,400,20),"cvodesfcns",

"rhs", rtol = 1E-4,atol = c(1E-8,1E-14,1E-
6),verbose = TRUE)

The following output should be obtained:

SUNDIALS CVODES Linear Solver
Number of Equations: 3
Integration Limits: 0 to 400
Initial Values: y0 = 0 y1 = 0 y2 = 0
Solver Memory Allocated
Relative Tolerance: 0.0001
Absolute Tolerances: 1e-08 1e-14 1e-06
CVDENSE Solver Initiated
Max number of steps: 500
Max step size: 0
Requesting data for all time points.

At t = 2.0000e+01 7.088272e+02 7.198569e+01 3.079803e+01
At t = 4.0000e+01 1.073435e+03 1.972720e+02 1.017541e+02
At t = 6.0000e+01 1.272270e+03 3.134134e+02 1.938759e+02
At t = 8.0000e+01 1.386870e+03 4.047548e+02 2.978071e+02
At t = 1.0000e+02 1.456042e+03 4.716999e+02 4.086610e+02
At t = 1.2000e+02 1.499400e+03 5.189813e+02 5.237255e+02
At t = 1.4000e+02 1.527143e+03 5.518129e+02 6.414478e+02
At t = 1.6000e+02 1.545141e+03 5.743737e+02 7.608681e+02
At t = 1.8000e+02 1.557178e+03 5.896541e+02 8.813493e+02
At t = 2.0000e+02 1.565419e+03 5.999263e+02 1.002498e+03
At t = 2.2000e+02 1.570973e+03 6.069031e+02 1.124084e+03
At t = 2.4000e+02 1.574665e+03 6.116752e+02 1.245947e+03
At t = 2.6000e+02 1.577182e+03 6.149088e+02 1.367965e+03
At t = 2.8000e+02 1.578955e+03 6.170854e+02 1.490058e+03
At t = 3.0000e+02 1.580190e+03 6.185755e+02 1.612180e+03
At t = 3.2000e+02 1.581042e+03 6.196108e+02 1.734300e+03
At t = 3.4000e+02 1.581648e+03 6.203337e+02 1.856392e+03
At t = 3.6000e+02 1.582106e+03 6.208375e+02 1.978440e+03
At t = 3.8000e+02 1.582467e+03 6.211930e+02 2.100434e+03
At t = 4.0000e+02 1.582768e+03 6.214457e+02 2.222365e+03

Final Run Statistics:

Number of steps = 73
Number of RHS evaluations = 89
Number of linear solver setups = 31
Number of nonlinear iterations = 85
Number of error test failures = 1
Number of nonlinear conv. failures = 0
Number of root fn. evaluations = 0
 [,1] [,2] [,3] [,4]
 [1,] 0 0.0000 0.00000 0.00000
 [2,] 20 708.8272 71.98569 30.79803
 [3,] 40 1073.4351 197.27204 101.75408
 [4,] 60 1272.2696 313.41340 193.87588
 [5,] 80 1386.8700 404.75483 297.80714
 [6,] 100 1456.0422 471.69985 408.66104
 [7,] 120 1499.4004 518.98131 523.72549
 [8,] 140 1527.1425 551.81292 641.44779
 [9,] 160 1545.1407 574.37374 760.86810
[10,] 180 1557.1780 589.65408 881.34927
[11,] 200 1565.4186 599.92632 1002.49768
[12,] 220 1570.9726 606.90308 1124.08405

[13,] 240 1574.6646 611.67520 1245.94737
[14,] 260 1577.1821 614.90883 1367.96547
[15,] 280 1578.9551 617.08536 1490.05834
[16,] 300 1580.1895 618.57552 1612.18045
[17,] 320 1581.0423 619.61078 1734.29997
[18,] 340 1581.6483 620.33370 1856.39243
[19,] 360 1582.1063 620.83745 1978.44042
[20,] 380 1582.4672 621.19300 2100.43377
[21,] 400 1582.7678 621.44568 2222.36541

1 H. H. Robertson. The solution of a set of reaction rate equations. In J. Walsh, editor, Numerical

analysis: an introduction, pages 178–182. Academ. Press, 1966.
2 Differential Equations: A Modeling Approach, by R. Borrelli and C. Coleman, Prentice-Hall,

1987.
3 Rabinowitz MB, Wetherill GW, Kopple JD. Lead metabolism in the normal human: stable

isotope studies. Science. 1973 Nov 16;182(113):725–727.

