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1. Summary 
 
Rsundials implements the differential algebraic equation (DAE) and ordinary differential 
equation (ODE) solvers in the SUNDIALS suite (version 2.3.0 –
http://www.llnl.gov/CASC/sundials/). The IDA module of SUNDIALS handles DAEs 
and the CVODES module solves ODE systems. Both modules utilize a dense linear 
solver and both require a user-defined (hard-coded) residual / right hand side function. 
Installation of the SUNDIALS libraries is not a prerequisite for this package. 
 
 
2. IDA Example 
 
The Problem 
This example, due to Robertson1, is a model of a three-species chemical kinetics system 
written in DAE form. Differential equations are given for species y1 and y2 while an 
algebraic equation determines y3. The equations for the system concentrations yi(t) are:  
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The initial values are taken as y1 = 1, y2 = 0, and y3 = 0. This example computes the three 
concentration components on the interval from t = 0 through t = 4*1010. 
 
 
The Residual Function 
The first step is to create a compilable file (preferably in c) that defines the residual (right 
hand side) function as called by the solver on each time step. A template for such a 
function can be described as: 
   

#include "include/nvector_serial.h" 
#include "include/sundials_dense.h" 
 



int resrob(realtype tres, N_Vector yy, N_Vector yp, N_Vector rr,  
   void *rdata) 
{ 
  realtype *yval, *ypval, *rval; 
 
  yval = NV_DATA_S(yy);  
  ypval = NV_DATA_S(yp);  
  rval = NV_DATA_S(rr); 
   
  /* Set values of rval[0]...rval[n] here */ 
 
  return(0); 
} 

 
The function takes the arguments: 
 tres  the current value of the independent variable 
 yy  the current value of the dependent variable vector, y(t) 
 yp  the current value of y'(t) 
 rr  the output residual vector F(t, y, y') 
 rdata  a pointer to user data 
 
The two includes are used to obtain the data types used by the SUNDIALS solver, 
namely N_Vector, a simple vector, and realtype, a primitive data type. By default, this is 
a double-precision floating-point numeric data type (double C-type). The header files are 
found in the usrfcns directory. 
 
In order to write or read from the vectors, NV_DATA_S must be used on a realtype 
pointer. This sets the pointer to the first value of the vector. In general, nothing must be 
done with tres or rdata. 
 
IDA works by attempting to minimize the residual of the equations presented. Thus, it is 
important to formulate the system properly by bringing everything over to one side. The 
output residual vector rr can be written to by writing to the elements of rval. For the 
above system, this can be done in the following way: 
 

rval[0] = -0.04*yval[0] + 1.0e4*yval[1]*yval[2] - ypval[0]; 
rval[1] = 0.04*yval[0] - 1.0e4*yval[1]*yval[2]  -  
   3.0e7*yval[1]*yval[1] - ypval[1] 
rval[2] = yval[0] + yval[1] + yval[2] - 1; 
 

If the complete function resrob is placed in the file idafcns.c, it can be compiled into a 
shared library useable by R by typing: 
 
 R CMD SHLIB ...path.../idafcns.c 
 
in the command line as long as the header files nvector_serial.h and ida_dense.h are 
present in the same directory. This will compile the file and allow the functions within to 
be usable in R.  
 
 



Solving the Problem in R 
Once R is started, the defined functions must be loaded before running the IDA solver. 
To load dynamic libraries into R, use the command  
 
 dyn.load("...path.../idafcns.so") or 
 dyn.load("...path.../idafcns.dll")  
 
depending on your system type. To execute the IDA solver in R, the following command 
might be used: 
 

yvals <- ida(c(1,0,0), c(-0.04,0.04,0), 
gseq(.4,4e10,10), "idafcns", "resrob", jacfunc = 
"jacrob", rtol = 1E-4, atol = c(1E-8,1E-14,1E-6), 
verbose = TRUE) 

 
The following output should be obtained: 
 
 
SUNDIALS IDADENSE Linear Solver 
Number of Equations: 3  
Integration Limits: 0.4 to 4e+10  
Solver Memory Allocated 
Max Number of Steps: 500 
Max step size: 0 
Relative Tolerance: 0.0001  
Absolute Tolerances: 1e-08 1e-14 1e-06  
Jacobian Function Initialized 
IDADense Linear Solver Initialized 
----------------------------------------------------------------------- 
  t             y0           y1           y2      | nst  k      h 
----------------------------------------------------------------------- 
4.0000e+00   9.1172e-01   2.3133e-05   8.8253e-02  |  96  4   4.1520e-01 
4.0000e+01   7.1686e-01   9.2258e-06   2.8313e-01  | 132  4   1.9421e+00 
4.0000e+02   4.5066e-01   3.2247e-06   5.4933e-01  | 177  4   3.2576e+01 
4.0000e+03   1.8321e-01   8.9427e-07   8.1679e-01  | 220  4   2.0527e+02 
4.0000e+04   3.8985e-02   1.6218e-07   9.6102e-01  | 266  3   1.2965e+03 
4.0000e+05   4.9391e-03   1.9853e-08   9.9506e-01  | 307  5   1.6802e+04 
4.0000e+06   5.1672e-04   2.0679e-09   9.9948e-01  | 366  3   1.5150e+05 
4.0000e+07   5.2026e-05   2.0811e-10   9.9995e-01  | 416  4   2.0066e+06 
4.0000e+08   5.2132e-06   2.0853e-11   9.9999e-01  | 452  4   2.7282e+07 
4.0000e+09   5.2178e-07   2.0871e-12   1.0000e+00  | 482  4   2.6574e+08 
4.0000e+10   5.1049e-08   2.0420e-13   1.0000e+00  | 503  2   6.8880e+09 
 
Final Run Statistics:  
 
Number of steps                    = 503 
Number of residual evaluations     = 703 
Number of Jacobian evaluations     = 78 
Number of nonlinear iterations     = 703 
Number of error test failures      = 16 
Number of nonlinear conv. failures = 0 
Number of root fn. evaluations     = 0 
       [,1]         [,2]         [,3]       [,4] 
 [1,] 4e-01 1.000000e+00 0.000000e+00 0.00000000 
 [2,] 4e+00 9.117237e-01 2.313333e-05 0.08825314 
 [3,] 4e+01 7.168589e-01 9.225752e-06 0.28313186 
 [4,] 4e+02 4.506627e-01 3.224737e-06 0.54933409 
 [5,] 4e+03 1.832093e-01 8.942713e-07 0.81678983 



 [6,] 4e+04 3.898477e-02 1.621830e-07 0.96101506 
 [7,] 4e+05 4.939054e-03 1.985310e-08 0.99506093 
 [8,] 4e+06 5.167204e-04 2.067937e-09 0.99948328 
 [9,] 4e+07 5.202555e-05 2.081130e-10 0.99994797 
[10,] 4e+08 5.213164e-06 2.085276e-11 0.99999479 
[11,] 4e+09 5.217753e-07 2.087102e-12 0.99999948 
[12,] 4e+10 5.104891e-08 2.041956e-13 0.99999995 

 
 
 
3. CVODES Example 
 
The Problem 
This example from a presentation by Borrelli and Coleman2 is a three-compartment 
model for lead in the human body. Lead is input to the system at a constant rate L. Three 
state variables, x1, x2, and x3 describe the concentration of lead in the blood, tissue, and 
bones respectively. There exist transfer rates between the compartments as well as to the 
external environment via urine from the blood and via hair, nails, and sweat from the 
tissues.  
 

 
 
 
For i = 1, 2, 3, we let xi(t) be the amount of lead in compartment i at time t and we 
assume that the rate of transfer from compartment i to j is proportional to xi(t) with a 
proportionality constant of aji. The units for amounts of lead are micrograms and the time 
t is measured in days. 
 
The vector differential equation of this problem is in the form 
 

 !x = Ax + b  
 

where A is the matrix 
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and b = (L,0,0)T . 
 
In a paper published by Rabinowitz and colleagues3, measurements of the concentration 
of lead in these compartments in a male subject living in Los Angeles allowed for the 
calculation of the rates of transfer. Relatively speaking, lead is somewhat slow to enter 
the bones and very slow to leave them. 
 

Lead Transfer Coefficients (Rabinowitz, et al.) 
 

Units: days-1 
a

21
= 0.011 a

12
= 0.012 from blood to tissue and back

a
31
= 0.0039 a

13
= 0.000035 from blood to bone and back

a
01
= 0.021 a

02
= 0.016 excretion from blood and tissue

 

 
The study also showed that the average rate of ingestion of lead (L) in Los Angeles over 
the period studied was 49.3 micrograms per day.  
 
 
The Right Hand Side Function 
The first step is to create a compilable file (preferably in c) that defines the right hand 
side function as called by the solver on each time step. A template for such a function can 
be described as: 
   

#include "include/nvector_serial.h" 
#include "include/sundials_dense.h" 
 
int rhs(realtype t, N_Vector y, N_Vector ydot, void *f_data) 
{ 
  realtype y1, y2, y3; 
  y1 = Ith(y,1); y2 = Ith(y,2); y3 = Ith(y,3); 
 
  /* Change values of ydot here using Ith(ydot,i) */ 
 
  return(0); 
} 

 
The function takes the arguments: 
 t  the current value of the independent variable 
 y  the current value of the dependent variable vector, y(t) 
 ydot  the current value of y'(t) 
 fdata  a pointer to user data 
 



The two includes are used to obtain the data types used by the SUNDIALS solver, 
namely N_Vector, a simple vector, and realtype, a primitive data type. By default, this is 
a double-precision floating-point numeric data type (double C-type). The header files are 
found in the usrfcns directory. 
 
The realtypes y1, y2 and y3 are first set to the corresponding value in the y vector using 
the macro Ith with indices from 1 to n (not from 0 to n-1). These can then be modified 
to reflect the proper value. For the above problem, the values of ydot can be updated 
using the following code: 
 

double L = 49.3; 
double a21 = 0.011; double a12 = 0.012; 
double a31 = 0.0039; double a13 = 0.000035; 
double a01 = 0.021; double a02 = 0.016; 
   
Ith(ydot, 1) = -(a01 + a21 + a31)*y1 + a12*y2 + a13*y3 + L; 
Ith(ydot, 2) = a21*y1 - (a02 + a12)*y2; 
Ith(ydot, 3) = a31*y1 - a13*y3; 

 
If the complete function rhs is placed in the file cvodesfcns.c, it can be compiled into a 
shared library useable by R by typing: 
 
 R CMD SHLIB ...path.../cvodesfcns.c 
 
in the command line as long as the header files nvector_serial.h and cvodes_dense.h are 
present in the same directory. This will compile the file and allow the functions within to 
be usable in R.  
 
The user may supply a method for computing the Jacobian; this can be placed in the same 
file as the RHS method. 
 
 
Solving the Problem in R 
Using the model defined above, let's take a look at an individual who moves to Los 
Angles with no lead in her body. We can use Rsundials to determine the levels in her 
system after a set number of days, say 400. 
 
Once R is started, the defined functions must be loaded before running the CVODES 
solver. To load dynamic libraries into R, use the command  
 
 dyn.load("...path.../cvodesfcns.so") or 
 dyn.load("...path.../cvodesfcns.dll")  
 
depending on your system type. To execute the CVODES solver in R, the following 
command might be used: 
 

yvals <- 
cvodes(c(0.0,0.0,0.0),seq(0,400,20),"cvodesfcns",



"rhs", rtol = 1E-4,atol = c(1E-8,1E-14,1E-
6),verbose = TRUE) 

 
 
The following output should be obtained: 
 
 
SUNDIALS CVODES Linear Solver 
Number of Equations: 3  
Integration Limits: 0 to 400  
Initial Values:  y0 = 0   y1 = 0   y2 = 0    
Solver Memory Allocated 
Relative Tolerance: 0.0001  
Absolute Tolerances: 1e-08   1e-14   1e-06    
CVDENSE Solver Initiated 
Max number of steps: 500 
Max step size: 0 
Requesting data for all time points. 
 
At t = 2.0000e+01        7.088272e+02    7.198569e+01    3.079803e+01   
At t = 4.0000e+01        1.073435e+03    1.972720e+02    1.017541e+02   
At t = 6.0000e+01        1.272270e+03    3.134134e+02    1.938759e+02   
At t = 8.0000e+01        1.386870e+03    4.047548e+02    2.978071e+02   
At t = 1.0000e+02        1.456042e+03    4.716999e+02    4.086610e+02   
At t = 1.2000e+02        1.499400e+03    5.189813e+02    5.237255e+02   
At t = 1.4000e+02        1.527143e+03    5.518129e+02    6.414478e+02   
At t = 1.6000e+02        1.545141e+03    5.743737e+02    7.608681e+02   
At t = 1.8000e+02        1.557178e+03    5.896541e+02    8.813493e+02   
At t = 2.0000e+02        1.565419e+03    5.999263e+02    1.002498e+03   
At t = 2.2000e+02        1.570973e+03    6.069031e+02    1.124084e+03   
At t = 2.4000e+02        1.574665e+03    6.116752e+02    1.245947e+03   
At t = 2.6000e+02        1.577182e+03    6.149088e+02    1.367965e+03   
At t = 2.8000e+02        1.578955e+03    6.170854e+02    1.490058e+03   
At t = 3.0000e+02        1.580190e+03    6.185755e+02    1.612180e+03   
At t = 3.2000e+02        1.581042e+03    6.196108e+02    1.734300e+03   
At t = 3.4000e+02        1.581648e+03    6.203337e+02    1.856392e+03   
At t = 3.6000e+02        1.582106e+03    6.208375e+02    1.978440e+03   
At t = 3.8000e+02        1.582467e+03    6.211930e+02    2.100434e+03   
At t = 4.0000e+02        1.582768e+03    6.214457e+02    2.222365e+03   
 
Final Run Statistics:  
 
Number of steps                    = 73 
Number of RHS evaluations          = 89 
Number of linear solver setups     = 31 
Number of nonlinear iterations     = 85 
Number of error test failures      = 1 
Number of nonlinear conv. failures = 0 
Number of root fn. evaluations     = 0 
      [,1]      [,2]      [,3]       [,4] 
 [1,]    0    0.0000   0.00000    0.00000 
 [2,]   20  708.8272  71.98569   30.79803 
 [3,]   40 1073.4351 197.27204  101.75408 
 [4,]   60 1272.2696 313.41340  193.87588 
 [5,]   80 1386.8700 404.75483  297.80714 
 [6,]  100 1456.0422 471.69985  408.66104 
 [7,]  120 1499.4004 518.98131  523.72549 
 [8,]  140 1527.1425 551.81292  641.44779 
 [9,]  160 1545.1407 574.37374  760.86810 
[10,]  180 1557.1780 589.65408  881.34927 
[11,]  200 1565.4186 599.92632 1002.49768 
[12,]  220 1570.9726 606.90308 1124.08405 



[13,]  240 1574.6646 611.67520 1245.94737 
[14,]  260 1577.1821 614.90883 1367.96547 
[15,]  280 1578.9551 617.08536 1490.05834 
[16,]  300 1580.1895 618.57552 1612.18045 
[17,]  320 1581.0423 619.61078 1734.29997 
[18,]  340 1581.6483 620.33370 1856.39243 
[19,]  360 1582.1063 620.83745 1978.44042 
[20,]  380 1582.4672 621.19300 2100.43377 
[21,]  400 1582.7678 621.44568 2222.36541 
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