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Abstract

This vignette describes the abn package of R which provides functionality for identi-
fying statistical dependencies in complex data using additive Bayesian network models.
This methodology is ideally suited for both univariate - one response variable, and mul-
tiple explanatory variables - and multivariate analyses, where in both cases all statistical
dependencies between all variables in the data are sought. These models comprise of
directed acyclic graphs (DAGs) where each node in the graph comprises a generalized
linear model, where model search algorithms are used to identify those DAG structures
most supported by the data. Currently implemented are models for data comprising of
categorical and/or continuous variables.
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1. Introduction

Bayesian network (BN) modeling (Buntine 1991; Heckerman, Geiger, and Chickering 1995;
Lauritzen 1996; Jensen 2001) is a form of graphical modeling which attempts to separate
out indirect from direct association in complex multivariate data, a process typically referred
to as structure discovery (Friedman and Koller 2003). Unlike other widely used multivariate
approaches where dimensionality is reduced through exploiting linear combinations of random
variables, such as in principal component analysis, graphical modeling does not involve any
such dimension reduction. Bayesian networks have been developed for analysing multinomial,
multivariate Gaussian or conditionally Gaussian networks (a mix categorical and Gaussian
variables). A number of libraries for fitting such BNs are available from CRAN. These types
of BN have been constructed to ensure conjugacy, that is, enable posterior distributions for
the model parameters and marginal likelihood to be calculated analytically. The purpose of
abn is to provide a library of functions for more flexible BNs which do not rely on conjugacy,
which opens up an extremely rich modeling framework but at some considerable additional
computational cost.

Currently abn includes functionality for fitting non-conjugate BN models which are multi-
dimensional analogues of combinations of Binomial (logistic) and Gaussian regression. It is
planned to extend this to include Poisson distributions for count data and then more complex
distributions for overdispersed data such a beta-binomial, negative binomial and generalised
linear models with random effects.

The objective in BN modeling structure discovery is to perform a model search on the data
to identify an optimal model. Recall that BN models have a vast search space - super-
exponential in the number of nodes - and it is generally impossible to determine a globally
optimal model. How best to summarize a set of locally optimal networks with different
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structural features is an open question, and there are a number of widely used and intuitively
reasonable possibilities. For example, one option is to conduct a series of heuristic searches
and then simply select the best model found (Heckerman et al. 1995); alternatively, a single
summary network can be constructed using results across many different searches (Hodges,
Dai, Xiang, Woolf, Xi, and He 2010; Poon, Lewis, Pond, and Frost 2007). There are obvious
pros and cons to either approach and both are common in the literature and provide a good
first exploration of the data. For a general non-technical review of BN modeling applied in
biology see Needham, Bradford, Bulpitt, and Westhead 2007. A case study in applying BN
models to epidemiological data using the conjugate BN functionality in abn can be found in
Lewis, Brulisauer, and Gunn 2011.

In this vignette we consider a series of examples illustrating how to fit different types of
models and run different searches and summary analyses to a (synthetic) data set comprising
of 250 observations from a joint distribution comprising of 17 categorical and 16 continuous
variables which is included as part of the abn library. This data set is a single realization from
a network of the same structure as that presented in Lewis et al. 2011, which is based on real
data and sufficiently complex to provide a realistic example of data mining using Bayesian
Network modeling.

2. Case Study Data

Figure 1 shows the structure of the distribution which generated the data set var33 included
with abn. This diagram was created using the tographviz() function of abn (see later
examples) which translates the matrix which defines a network - a directed acyclic graph
- into a text file of suitable format for processing in Graphviz, where this processing was
done outside of R. Graphviz is freely available and operates on most platforms and can be
downloaded from www.graphviz.org, there is also an R package which interfaces to Graphviz
available from the Bioconductor project (requires an installation of Graphviz).

3. Fitting a single BN model to data

In the next sections we illustrate how to fit a BN model to different kinds of data. The
main purpose of BN structure discovery is to estimate the joint dependency structure of the
random variables in the available data, and this is achieved by heuristically searching for
optimal models and comparing their goodness of fit using Bayes factors. It is assumed that
all structures are equally supported in the absence of any data - an uniformative prior on
structures - and so comparing Bayes factors collapses to comparing the marginal likelihoods
which is done on a log scale. The log marginal likelihood for a BN is typically referred to as
the network score.

3.1. Fitting a BN model to categorical data

A conjugate Bayesian network applied to categorical data is the classical application of
Bayesian network analysis. Here the data are considered as a contingency table of frequency
counts and the model describes conditional dependencies between different cells. Note these
are not additive models.
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Figure 1: Directed acyclic graph representation of the joint probability distribution which
generated data set var33 which is included with abn. The square nodes are categorical
(binary) and the oval nodes continuous variables.

The function fitbn(data.df, dag.m, prior.obs.per.node=NULL, useK2=FALSE, ...)

fits a multinomial conjugate BN model to the data in data.df where the model structure is
defined in matrix dag.m. There are two choices of priors/goodness of fit metrics; the BDe
metric and the K2 metric (see Heckerman et al. 1995). In brief, in the BDeu metric it is
assumed that a number, prior.obs.per.node, of prior observations have been observed at
each node and these are uniformly distributed across all the hyperparameters at each node.
For example in Figure 1, node 4 is conditionally dependent upon node 3, these are binary nodes
and the parameters to be estimated are P (v4 = T |v3 = T ) and P (v4 = T |v3 = F ) where each
of these has a Beta distributed prior of Beta(α1, α2). Suppose prior.obs.per.node=16, then
with the BDeu metric we have a prior of Beta(4, 4) for each of these two parameters - note
that 4 + 4 + 4 + 4 = 16. Similarly, if there were two parents for node 4 then there would be
four parameters to estimate (assuming both parents were binary) and in this case the prior for
each parameter would be Beta(2, 2) where again the sum of the hyperparameters equals 16.
In contrast, in the K2 metric each and every parameter has a flat prior of Beta(1, 1) for binary
nodes and Dirichlet Dir(1, . . . , 1) for multinomial nodes. An advantage of the BDeu metric
is that it is likelihood equivalent and so DAGs which are probabilistically equivalent will have
identical BDeu network scores. The K2 metric, however, uses identical uninformative priors
for each and every parameter which may also be desirable, but in which case the network
scores for probabilistic identical networks may differ (although in practice such differences
may be small) as the K2 metric is not likelihood equivalent. In fitbn, if the useK2 argument
is TRUE then prior.obs.per.node is ignored.
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The following code fits a network to the subset of the variables from var33 which are categor-
ical. In this data these are all binary but fitbn works analogously for multinomial variables.
Note that all categorical variables should be set as factors.

> library(abn);# load library

> bin.nodes<-c(1,3,4,6,9,10,11,12,15,18,19,20,21,26,27,28,32);

> var33.cat<-var33[,bin.nodes];#categorical nodes only

> mydag<-matrix(c(

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v1

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v3

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v4

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v6

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v9

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v10

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v11

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v12

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v15

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v18

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v19

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v20

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v21

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v26

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v27

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v28

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 #v32

+ ),byrow=TRUE,ncol=17);

> colnames(mydag)<-rownames(mydag)<-names(var33.cat);#set names

> ## now fit the model defined in mydag - full independence model

> fitbn (data.df=var33.cat, dag.m=mydag,useK2=TRUE);

[1] -2807.897

> # this is the network score goodness of fit = log marginal likelihood

The structure of the network definition matrix is where each row is a “child” and each column
is its “parents”, where a 1 denotes a parent (or arc) is present. Now lets fit a model with
some conditional dependencies, for example where v11 is conditionally dependent upon v12

and v10, and v4 is conditionally dependent upon v3.

> # now fit model with some conditional dependencies let v11

> ## depend jointly on v12 and v10

> mydag["v11","v12"]<-1;

> mydag["v11","v10"]<-1;

> ## let v4 depend on v3

> mydag["v4","v3"]<-1;

> fitbn (data.df=var33.cat, dag.m=mydag,useK2=TRUE);
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[1] -2794.079

> # network score for a model with conditional independence

The network score is considerably improved and therefore suggests support for these new
structural features. To produce a visual description of the model then we can export to
graphviz as follows

> tographviz(dag=mydag,data.df=var33.cat,outfile="mydag.dot");#create file

> # mydag.dot can then be processed with graphviz

> # unix shell "dot -Tpdf mydag.dot -o mydag.pdf" or use gedit if on Windows

v1 v3

v4

v6 v9 v10

v11

v12 v15 v18 v19 v20 v21 v26 v27 v28 v32

Figure 2: Directed acyclic graph mydag created using tographviz() and Graphviz

In tographviz() the data.df argument is used to determine whether the variable is a factor
or not, where factors are displayed as squares and non-factors as ovals. To use the full range of
visual Graphviz options simply use the file created by tographviz() as a starting point and
manually edit this in a text editor before running through dot or one of the other Graphviz
layout processors.

3.2. Fitting an additive BN model to categorical data

An additive BN model for categorical data can be constructed by considering each individual
variable as a logistic regression of the other variables in the data, and hence the network model
comprises of many combinations of local logistic regressions. The parameters in this model are
the additive terms in a usual logistic regression and independent Gaussian priors are assumed
for each covariate. Note that the variables here must all be binary, and so all multinomial
variables need to be split into separate binary factors (and added to the original data.frame)
in order to form the network model. This is analogous to forming the design matrix in a
conventional additive model analysis. Similarly, interaction terms can be added by including
appropriate additional columns in the data.frame. In these models the log marginal likelihood
(network score) is estimated using Laplace approximations at each node. Hyperparameters
for the means and variances in the Gaussian priors are fixed at zero and 1000 respectively,
and other values can be given explicitly in the call to fitabn but this is not recommended
without good reason.

To fit an additive model use fitabn(data.df,dag.m, ...). In the following code we fit first
the independence model with no arcs and then the same dependence model as above. Turning
on verbose=TRUE simply gives the individual log marginal likelihoods for each node (n.b. the
numbering is that used internally and simply denotes the variables in the data.frame from
left to right).
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> ## move back to independence model

> mydag["v11","v12"]<-0;mydag["v11","v10"]<-0;mydag["v4","v3"]<-0;

> fitabn (data.df=var33.cat,dag.m=mydag,verbose=TRUE);

Binary node=0 score=-178.004211

Binary node=1 score=-178.414495

Binary node=2 score=-168.248843

Binary node=3 score=-102.675919

Binary node=4 score=-167.644794

Binary node=5 score=-178.679732

Binary node=6 score=-174.534904

Binary node=7 score=-178.293870

Binary node=8 score=-143.134495

Binary node=9 score=-173.338554

Binary node=10 score=-174.152823

Binary node=11 score=-177.448401

Binary node=12 score=-177.448401

Binary node=13 score=-167.644794

Binary node=14 score=-178.735970

Binary node=15 score=-174.900353

Binary node=16 score=-163.647060

#################################################################

### log marginal likelihood for Model: -2856.9476195086

#################################################################

[1] -2856.948

> # now fit the model with some conditional dependencies

> mydag["v11","v12"]<-1;mydag["v11","v10"]<-1;mydag["v4","v3"]<-1;

> fitabn (data.df=var33.cat, dag.m=mydag,verbose=TRUE);

Binary node=0 score=-178.004211

Binary node=1 score=-178.414495

Binary node=2 score=-166.945426

Binary node=3 score=-102.675919

Binary node=4 score=-167.644794

Binary node=5 score=-178.679732

Binary node=6 score=-168.972182

Binary node=7 score=-178.293870

Binary node=8 score=-143.134495

Binary node=9 score=-173.338554

Binary node=10 score=-174.152823

Binary node=11 score=-177.448401

Binary node=12 score=-177.448401

Binary node=13 score=-167.644794

Binary node=14 score=-178.735970

Binary node=15 score=-174.900353
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Binary node=16 score=-163.647060

#################################################################

### log marginal likelihood for Model: -2850.0814800302

#################################################################

[1] -2850.081

> # network score for a model with conditional independence

3.3. Fitting an additive BN model to continuous data

We now consider analogous models to those in Section 3.2 but where the network comprises
of Gaussian linear regressions rather than logistic regressions. The structure of these models
again assumes independent Gaussian priors for each of the coefficients in the additive com-
ponents for the mean response at each node (with hyper means = 0 and hyper variances =
1000). The Gaussian response distribution is parameterized in terms of precision (1/σ2), and
independent Gamma priors are used with shape=0.001 and scale=1/0.001 (where these are as
defined in the rgamma help page). By default, each variable in the data.frame is standardised
to a mean of zero and standard deviation of one, this has no effect on the identification of
dependencies between variables.

> var33.cts<-var33[,-bin.nodes];#drop categorical nodes

> mydag<-matrix(c(

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v2

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v5

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v7

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v8

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v13

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v14

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v16

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v17

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v22

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v23

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v24

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v25

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v29

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v30

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v31

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 #v33

+ ),byrow=TRUE,ncol=16);

> colnames(mydag)<-rownames(mydag)<-names(var33.cts);#set names

> ## now fit the model defined in mydag - full independence

> fitabn (data.df=var33.cts,dag.m=mydag,verbose=TRUE);

Gaussian node=0 score=-368.856543

Gaussian node=1 score=-368.856543
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Gaussian node=2 score=-368.856543

Gaussian node=3 score=-368.856543

Gaussian node=4 score=-368.856543

Gaussian node=5 score=-368.856543

Gaussian node=6 score=-368.856543

Gaussian node=7 score=-368.856543

Gaussian node=8 score=-368.856543

Gaussian node=9 score=-368.856543

Gaussian node=10 score=-368.856543

Gaussian node=11 score=-368.856543

Gaussian node=12 score=-368.856543

Gaussian node=13 score=-368.856543

Gaussian node=14 score=-368.856543

Gaussian node=15 score=-368.856543

#################################################################

### log marginal likelihood for Model: -5901.7046880253

#################################################################

[1] -5901.705

> ## uses default priors of N(mu=0,var=1000), 1/var=Gamma(0.001,1/0.001)

> # this is the network score goodness of fit = log marginal likelihood

Now fit a model with conditional independencies, for example

> # now fit model with some conditional dependencies let v33

> ## depend on v31, and v24 depend on 23, and v14 depend on v13

> mydag["v33","v31"]<-1;

> mydag["v24","v23"]<-1;

> mydag["v14","v13"]<-1;

> fitabn (data.df=var33.cts, dag.m=mydag,verbose=TRUE);

Gaussian node=0 score=-368.856543

Gaussian node=1 score=-368.856543

Gaussian node=2 score=-368.856543

Gaussian node=3 score=-368.856543

Gaussian node=4 score=-368.856543

Gaussian node=5 score=-292.856329

Gaussian node=6 score=-368.856543

Gaussian node=7 score=-368.856543

Gaussian node=8 score=-368.856543

Gaussian node=9 score=-368.856543

Gaussian node=10 score=-288.517729

Gaussian node=11 score=-368.856543

Gaussian node=12 score=-368.856543

Gaussian node=13 score=-368.856543

Gaussian node=14 score=-368.856543



Fraser I. Lewis 9

Gaussian node=15 score=-282.320155

#################################################################

### log marginal likelihood for Model: -5658.8292728846

#################################################################

[1] -5658.829

> # network score for a model with conditional independence

> tographviz(dag=mydag,data.df=var33.cts,outfile="mydagcts.dot");#create file

> # mydag.dot can then be processed with graphviz

> # unix shell "dot -Tpdf mydagcts.dot -o mydagcts.pdf" or use gedit if on Windows

v2 v5 v7 v8 v13

v14

v16 v17 v22 v23

v24

v25 v29 v30 v31

v33

Figure 3: Directed acyclic graph mydag for continuous variables only created using
tographviz() and Graphviz

3.4. Fitting an additive BN model to mixed data

To conclude the fitting of a single pre-specified model to data, e.g. based on expert opinion,
we consider an additive BN model which comprises both binary and Gaussian nodes and
this comprises of a combination of Binomial (logistic) and Gaussian linear models. Again
fitabn() is used and the code is almost identical to the previous examples.

> mydag<-matrix(c(

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#1

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#2

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#3

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#4

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#5

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#6

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#7

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#8

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#9

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#10

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#11

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#12

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#13

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#14

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#15

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#16

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#17
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+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#18

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#19

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#20

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#21

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#22

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#23

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#24

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#25

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#26

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#27

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#28

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#29

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#30

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#31

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#32

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 #33

+ ),byrow=TRUE,ncol=33);

> colnames(mydag)<-rownames(mydag)<-names(var33);#set names

> ## now fit the model defined in mydag - full independence

> fitabn (data.df=var33,dag.m=mydag,verbose=TRUE);

Binary node=0 score=-178.004211

Gaussian node=1 score=-368.856543

Binary node=2 score=-178.414495

Binary node=3 score=-168.248843

Gaussian node=4 score=-368.856543

Binary node=5 score=-102.675919

Gaussian node=6 score=-368.856543

Gaussian node=7 score=-368.856543

Binary node=8 score=-167.644794

Binary node=9 score=-178.679732

Binary node=10 score=-174.534904

Binary node=11 score=-178.293870

Gaussian node=12 score=-368.856543

Gaussian node=13 score=-368.856543

Binary node=14 score=-143.134495

Gaussian node=15 score=-368.856543

Gaussian node=16 score=-368.856543

Binary node=17 score=-173.338554

Binary node=18 score=-174.152823

Binary node=19 score=-177.448401

Binary node=20 score=-177.448401

Gaussian node=21 score=-368.856543

Gaussian node=22 score=-368.856543

Gaussian node=23 score=-368.856543

Gaussian node=24 score=-368.856543

Binary node=25 score=-167.644794
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Binary node=26 score=-178.735970

Binary node=27 score=-174.900353

Gaussian node=28 score=-368.856543

Gaussian node=29 score=-368.856543

Gaussian node=30 score=-368.856543

Binary node=31 score=-163.647060

Gaussian node=32 score=-368.856543

#################################################################

### log marginal likelihood for Model: -8758.6523075339

#################################################################

[1] -8758.652

We now fit a BN model which has the same structure as the joint distribution used to generate
the data and then create a visual graph of this model

> # define a model with many independencies

> mydag[2,1]<-1;

> mydag[4,3]<-1;

> mydag[6,4]<-1; mydag[6,7]<-1;

> mydag[5,6]<-1;

> mydag[7,8]<-1;

> mydag[8,9]<-1;

> mydag[9,10]<-1;

> mydag[11,10]<-1; mydag[11,12]<-1; mydag[11,19]<-1;

> mydag[14,13]<-1;

> mydag[17,16]<-1;mydag[17,20]<-1;

> mydag[15,14]<-1; mydag[15,21]<-1;

> mydag[18,20]<-1;

> mydag[19,20]<-1;

> mydag[21,20]<-1;

> mydag[22,21]<-1;

> mydag[23,21]<-1;

> mydag[24,23]<-1;

> mydag[25,23]<-1; mydag[25,26]<-1;

> mydag[26,20]<-1;

> mydag[33,31]<-1;

> mydag[33,31]<-1;

> mydag[32,21]<-1; mydag[32,31]<-1;mydag[32,29]<-1;

> mydag[30,29]<-1;

> mydag[28,27]<-1; mydag[28,29]<-1;mydag[28,31]<-1;

> fitabn (data.df=var33, dag.m=mydag);

[1] -7977.915

> # network score for a model with conditional independence

> tographviz(dag=mydag,data.df=var33,outfile="mydag_all.dot");#create file
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> # mydag.dot can then be processed with graphviz

> # unix shell "dot -Tpdf mydag_all.dot -o mydag_all.pdf" or use gedit if on Windows
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v7

v8
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Figure 4: Directed acyclic graph mydag for mixed continuous and discrete variables

3.5. Model fitting validation

In order to validate the conjugate models, network scores for both overall networks and indi-
vidual nodes using the Bayesian Dirichlet equivalence uniform (BDeu) metric were compared
with the deal library available from CRAN. This metric can be used by useK2=FALSE and
providing an explicit value for prior.obs.per.node. A wide range of models for multinomial
data were compared and these were always identical to those values produced by deal. To
validate the additive models for mixed binary and Gaussian models, estimates of the poste-
rior distributions for the model parameters using Laplace approximations were compared with
those estimated using Markov chain Monte Carlo. These were always in very close agreement
for the range of models and data examined. This is an indirect validation of the Laplace
estimate of the network score, e.g. if the posterior densities match closely then this implies
that the denominator (the marginal likelihood - network score) must also be accurately es-
timated, as a “gold standard” estimate of the network score is generally unavailable for such
non-conjugate models.

4. Searching for Optimal Models

The key objective of the abn library is to enable estimation of statistical dependencies in data
comprising of multiple variables - that is, find a DAG which is robust and representative of
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the dependency structure of the (unknown) stochastic system which generated the observed
data. The challenge here is that with such a vast model space it is impossible to enumerate
over all possible DAGs, and there may be very many different DAGs with similar goodness
of fit. In the next sections we first consider searching for categorical (conjugate) BN models,
then additive (non-conjugate) models.

4.1. Single search for optimal BN model from categorical data

To run a single search heuristic use searchbn(). This commences from a randomly cre-
ated DAG which is constructed by randomly adding arcs to an empty network until either
init.permuts arcs are present or else all possible arcs have been tried. If a start DAG is
given which contains arcs then init.permuts is in addition to those arcs already present.
The function searchbn() then searches stepwise from the initial random network for an im-
proved structure, where three stepwise operations are possible: i) add an arc; ii) remove and
arc; or iii) reverse and arc. The stepwise search is subject to a number of conditions, firstly
only moves that do not generate a cycle are permitted, secondly, a parent limit is imposed
which fixes the maximum number of parents which each child node can have (arcs go from
parent to child), and thirdly it is possible to ban or retain arcs. If provided, banned.m is a
matrix which defines arcs that are not allowed to be considered in the search process (or in
the creation of the initial random network). Similarly, retain.m includes arcs which must
always be included in any model. It is also possible to specific an explicit starting matrix,
start.m and if using a retain matrix then start.m should contain at least all those arcs
present in retain.m. Note that only very rudimentary checking is done to make sure that
the ban, retain and start networks - if user supplied - are not contradictory.

To improve the computational performance of searchbn() by default a node cache is used.
Rather than re-calculate the score for each individual node in the network (the overall network
score is the product of all the scores for the individual nodes) the score for each unique
node found during the search is stored in a lookup table. This can make very significant
improvements in speed and the default is for a search to terminate prematurely if the node
cache is exceeded. This behaviour can be turned off by enforce.db.size=FALSE, and so once
the cache is exceeded then the search will proceed but may now incur duplicate calculation
of nodes. It is generally advisable to use a sufficiently large value for db.size to avoid this
(a warning will appear to say this limit has been reached if enforce.db.size=FALSE).

> bin.nodes<-c(1,3,4,6,9,10,11,12,15,18,19,20,21,26,27,28,32);

> var33.cat<-var33[,bin.nodes];#categorical nodes only

> mydag<-matrix(c(

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v1

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v3

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v4

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v6

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v9

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v10

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v11

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v12

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v15

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v18
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+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v19

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v20

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v21

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v26

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v27

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v28

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 #v32

+ ),byrow=TRUE,ncol=17);

> colnames(mydag)<-rownames(mydag)<-names(var33.cat);#set names

> ## create empty DAGs

> banned.cat<-matrix(rep(0,dim(var33.cat)[2]^2),ncol=dim(var33.cat)[2]);

> colnames(banned.cat)<-rownames(banned.cat)<-names(var33.cat);#set names

> retain.cat<-matrix(rep(0,dim(var33.cat)[2]^2),ncol=dim(var33.cat)[2]);

> colnames(retain.cat)<-rownames(retain.cat)<-names(var33.cat);#set names

> start.cat<-matrix(rep(0,dim(var33.cat)[2]^2),ncol=dim(var33.cat)[2]);

> colnames(start.cat)<-rownames(start.cat)<-names(var33.cat);#set names

> myres<-searchbn(data.df=var33.cat,

+ banned.m=banned.cat,

+ retain.m=retain.cat,

+ start.m=start.cat,

+ useK2=TRUE,max.parents=2,init.permuts=0,db.size=1000);

initial network: (log) network score = -2807.897043

search iteration...1 new score=-2792.611588

search iteration...2 new score=-2780.682103

search iteration...3 new score=-2770.481097

search iteration...4 new score=-2762.389571

search iteration...5 new score=-2755.035383

search iteration...6 new score=-2748.571708

search iteration...7 new score=-2742.693551

search iteration...8 new score=-2738.549529

search iteration...9 new score=-2735.237539

search iteration...10 new score=-2732.236456

search iteration...11 new score=-2729.548455

search iteration...12 new score=-2726.874298

search iteration...13 new score=-2725.316377

search iteration...14 new score=-2723.833990

search iteration...15 new score=-2722.476497

search iteration...16 new score=-2721.757042

search iteration...17 new score=-2721.447508

search iteration...18 new score=-2721.167697

search iteration...19 new score=-2720.919301

search iteration...20 new score=-2720.739712

4.2. Single search for optimal additive BN model from categorical data

Running a single search heuristic for an additive BN uses searchabn(), and is very similar to
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searchbn(), the main difference is in the parameter prior specifications (as detailed above).
Several additional arguments are available which relate to the numerical routines used in the
Laplace approximation to calculate the network score. The defaults appear to work reasonably
well in practice and if it is not possible to calculate a robust value for this approximation in
any model, for example due to a singular design matrix at one or more nodes, then the model
is simply assigned a log network score of −∞ which effectively removes it from the model
search.

> ## just use default priors

> myres.add<-searchabn(data.df=var33.cat,

+ banned.m=banned.cat,

+ retain.m=retain.cat,

+ start.m=start.cat,

+ max.parents=2,

+ init.permuts=0,db.size=1000,error.verbose=TRUE);

initial network: (log) network score = -2856.947620

search iteration...1 new score=-2844.262707

search iteration...2 new score=-2835.074372

search iteration...3 new score=-2827.621507

search iteration...4 new score=-2822.271092

search iteration...5 new score=-2817.634782

search iteration...6 new score=-2813.767954

search iteration...7 new score=-2810.668296

search iteration...8 new score=-2809.364421

search iteration...9 new score=-2808.871702

search iteration...10 new score=-2808.745553

4.3. Single search for optimal BN model for continuous data

As above but for a network of Gaussian nodes.

> var33.cts<-var33[,-bin.nodes];#drop categorical nodes

> mydag<-matrix(c(

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v2

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v5

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v7

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v8

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v13

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v14

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v16

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v17

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v22

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v23

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v24

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v25
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+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v29

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v30

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, #v31

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 #v33

+ ),byrow=TRUE,ncol=16);

> colnames(mydag)<-rownames(mydag)<-names(var33.cts);#set names

> banned.cts<-matrix(rep(0,dim(var33.cts)[2]^2),ncol=dim(var33.cts)[2]);

> colnames(banned.cts)<-rownames(banned.cts)<-names(var33.cts);#set names

> retain.cts<-matrix(rep(0,dim(var33.cts)[2]^2),ncol=dim(var33.cts)[2]);

> colnames(retain.cts)<-rownames(retain.cts)<-names(var33.cts);#set names

> start.cts<-matrix(rep(0,dim(var33.cts)[2]^2),ncol=dim(var33.cts)[2]);

> colnames(start.cts)<-rownames(start.cts)<-names(var33.cts);#set names

> #

> myres.add<-searchabn(data.df=var33.cts,

+ banned.m=banned.cts,

+ retain.m=retain.cts,

+ start.m=start.cts,

+ max.parents=2,

+ init.permuts=0,db.size=1000,error.verbose=TRUE);

initial network: (log) network score = -5901.704688

search iteration...1 new score=-5815.168300

search iteration...2 new score=-5730.298710

search iteration...3 new score=-5649.959896

search iteration...4 new score=-5572.001806

search iteration...5 new score=-5496.001592

search iteration...6 new score=-5428.150967

search iteration...7 new score=-5376.806098

search iteration...8 new score=-5375.737019

4.4. Single search for optimal additive BN model for mixed data

Model searching for mixed data is again very similar to the previous examples. Note that in
this example the parameter priors are specified explicitly (although those given are the same
as the defaults). The +1 in the hyperparameter specification is because a constant term is
included in the additive formulation for each node.

> mydag<-matrix(c(

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#1

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#2

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#3

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#4

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#5

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#6

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#7

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#8
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+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#9

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#10

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#11

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#12

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#13

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#14

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#15

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#16

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#17

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#18

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#19

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#20

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#21

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#22

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#23

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#24

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#25

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#26

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#27

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#28

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#29

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#30

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#31

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#32

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 #33

+ ),byrow=TRUE,ncol=33);

> colnames(mydag)<-rownames(mydag)<-names(var33);#set names

> ## create empty DAGs

> banned<-matrix(rep(0,dim(var33)[2]^2),ncol=dim(var33)[2]);

> colnames(banned)<-rownames(banned)<-names(var33);#set names

> retain<-matrix(rep(0,dim(var33)[2]^2),ncol=dim(var33)[2]);

> colnames(retain)<-rownames(retain)<-names(var33);#set names

> start<-matrix(rep(0,dim(var33)[2]^2),ncol=dim(var33)[2]);

> colnames(start)<-rownames(start)<-names(var33);#set names

> ## giving diffuse priors - same as default but explicitly stated

> myres.add<-searchabn(data.df=var33,

+ banned.m=banned,

+ retain.m=retain,

+ start.m=start,

+ hyper.params=list(

+ mean=rep(0,dim(var33)[2]+1),

+ sd=rep(sqrt(1000),dim(var33)[2]+1),

+ shape=rep(0.001,16),## 16 Gaussian nodes

+ scale=rep(1/0.001,16)## 16 Gaussian nodes

+ ),

+ max.parents=2,

+ init.permuts=0,db.size=10000,
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+ error.verbose=TRUE,enforce.db.size=TRUE);

initial network: (log) network score = -8758.652308

search iteration...1 new score=-8672.115920

search iteration...2 new score=-8587.246329

search iteration...3 new score=-8506.907516

search iteration...4 new score=-8428.949425

search iteration...5 new score=-8352.949211

search iteration...6 new score=-8285.098586

search iteration...7 new score=-8233.753718

search iteration...8 new score=-8201.278206

search iteration...9 new score=-8178.987218

search iteration...10 new score=-8160.421905

search iteration...11 new score=-8142.052507

search iteration...12 new score=-8121.602787

search iteration...13 new score=-8105.002287

search iteration...14 new score=-8089.286343

search iteration...15 new score=-8074.555896

search iteration...16 new score=-8061.317388

search iteration...17 new score=-8048.428680

search iteration...18 new score=-8035.743767

search iteration...19 new score=-8024.125492

search iteration...20 new score=-8015.193040

search iteration...21 new score=-8007.740175

search iteration...22 new score=-8001.130987

search iteration...23 new score=-7992.536941

search iteration...24 new score=-7986.212940

search iteration...25 new score=-7980.916966

search iteration...26 new score=-7976.280656

search iteration...27 new score=-7972.413827

search iteration...28 new score=-7969.314170

search iteration...29 new score=-7968.010295

search iteration...30 new score=-7966.833652

search iteration...31 new score=-7966.340933

5. Multiple Search Strategies

To estimate a robust BN or additive BN for a given dataset is it necessary to run many
searches and then summarize the results of these searches. The functions hillsearchbn()

and hillsearchabn() are similar searchbn() and searchabn() but run multiple searches.
There are some differences. Firstly, it is necessary to provide a list of starting networks - these
can all be the null network - but must be explicitly given, and must have the same number of
entries as the number of searches requested. Secondly, these functions also use a node cache
for speed and there is the option now to either use a single joint node cache over all searches,
or else use a local node cache which is reset to empty at the start of each new search. The



Fraser I. Lewis 19

parameter which governs this is localdb and defaults to true which resets the cache at the
start of each new search.

Conceptually it may seem more efficient to use one global node cache to allow node information
to be shared between different searches, however, in practice as the search space is so vast
for some problems this can result in extremely slow searches. As the cache becomes larger it
can take much more time to search it (and it may need to be searched a very large number
of times) than to simply perform the appropriate numerical computation. Profiling using
the google performance tool google-pprof suggests that more than 80% of the computation
time may be taken up by lookups. When starting searches from different random places
in the model space the number of individual node structures in common between any two
searches, relative to the total number of different node structures searched over can be very
small meaning a common node cache is inefficient. This may not be the case when starting
networks are relatively similar.

It is suggested to use localdb=FALSE with some caution as it may lead to computations, the
duration of which, is hard to estimate as each successive search becomes slower as the node
cache increases. To help with performance monitoring it is possible to turn on timings using
timing=TRUE which then outputs the number of seconds of CPU time each individual search
takes (using standard libc functions declared in time.h).

> mydag<-matrix(c(

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#1

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#2

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#3

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#4

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#5

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#6

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#7

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#8

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#9

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#10

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#11

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#12

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#13

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#14

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#15

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#16

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#17

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#18

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#19

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#20

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#21

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#22

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#23

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#24

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#25

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#26
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+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#27

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#28

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#29

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#30

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#31

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,#32

+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 #33

+ ),byrow=TRUE,ncol=33);

> colnames(mydag)<-rownames(mydag)<-names(var33);#set names

> ## create empty DAGs

> banned<-matrix(rep(0,dim(var33)[2]^2),ncol=dim(var33)[2]);

> colnames(banned)<-rownames(banned)<-names(var33);#set names

> retain<-matrix(rep(0,dim(var33)[2]^2),ncol=dim(var33)[2]);

> colnames(retain)<-rownames(retain)<-names(var33);#set names

> start<-matrix(rep(0,dim(var33)[2]^2),ncol=dim(var33)[2]);

> colnames(start)<-rownames(start)<-names(var33);#set names

> set.seed(10000);## only affects init.permuts

> start.list<-list();

> n.searches<-10;#example only - must be much larger in practice

> for(i in 1:n.searches){start.list[[i]]<-retain;} ## empty networks

> myres<-hillsearchabn(data.df=var33,banned.m=banned,retain.m=retain,

+ start.m=start.list,

+ hyper.params=list(

+ mean=rep(0,dim(var33)[2]+1),

+ sd=rep(sqrt(1000),dim(var33)[2]+1),

+ shape=rep(0.001,16),## 16 Gaussian nodes

+ scale=rep(1/0.001,16)## 16 Gaussian nodes

+ ),

+ max.parents=2,

+ num.searches=n.searches,

+ init.permuts=20,db.size=20000,

+ localdb=TRUE,timing=TRUE);

search number...0

best network: (log) network score = -7974.273693

CPU time: 3.320000

search number...1

best network: (log) network score = -7984.082843

CPU time: 3.990000

search number...2

best network: (log) network score = -7965.739785

CPU time: 3.850000

search number...3

best network: (log) network score = -7964.168141

CPU time: 4.050000

search number...4

best network: (log) network score = -7967.271298
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CPU time: 3.480000

search number...5

best network: (log) network score = -7965.141868

CPU time: 3.690000

search number...6

best network: (log) network score = -7966.340933

CPU time: 3.610000

search number...7

best network: (log) network score = -7967.271298

CPU time: 3.800000

search number...8

best network: (log) network score = -7964.308382

CPU time: 3.840000

search number...9

best network: (log) network score = -7966.340933

CPU time: 3.250000

5.1. Creating a Summary Network - Majority Consensus

Having run many heuristic searches, then the next challenge is to summarise these results to
allow for ready identification of the joint dependencies most supported by the data. One com-
mon, and very simple approach is to produce a single robust BN model of the data mimicing
the approach used in phylogenetics to create majority consensus trees. A majority consensus
DAG is constructed from all the arcs present in at least 50% of the locally optimal DAGs
found in the search heuristics. This creates a single summary network. Combining results
from different runs of hillsearchbn() or hillsearchabn() is straightforward, although note
that it is necessary to check for duplicate random starting networks, as while highly unlikely
this is theoretically possible. The following code provides a simple way to produce a majority
consensus network and Figure 5 shows the resulting network - note that this is an example
only and many thousands of searches may need to be conducted to achieve robust results.
One simple ad-hoc method for assessing how many searches are needed is to run a number of
searches and split the results into two (random) groups, and calculate the majority consensus
network within each group. If these are the same then it suggests that sufficient searches have
been run.

> # use results from above searches which are stored in ``myres''

> #step 1. discard any duplicate searches (these are unlikely)

> indexes<-uniquenets(myres$init.dag);

> all.res<-list();

> all.res$init.score<-myres$init.score[indexes];

> all.res$final.score<-myres$final.score[indexes];

> all.res$init.dag.<-myres$init.dag[indexes];

> all.res$final.dag<-myres$final.dag[indexes];

> # for every possible arc calculate how many times it appears in the searches

> mypruneddags<-arcfreq(all.res$final.dag);

> # now get a matrix/DAG for the majority network comprising of 1/0s
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Figure 5: Example majority consensus network (from the results of only 10 searches)

> myfunc<-function(arg1,threshold,netdata){#trivial helper for apply()

+ if(arg1>=round(threshold*length(netdata$final.dag)))

+ {return(1);} else {return(0);}}

> dag.con<-apply(mypruneddags,c(1,2),FUN=myfunc,threshold=0.51,

+ netdata=all.res);

> tographviz(dag=dag.con,data.df=var33,outfile="dagcon.dot");#create file

> # dagcon.dot can then be processed with graphviz

> # unix shell "dot -Tpdf dagcon.dot -o dagcon.pdf" or use gedit if on Windows

>

6. Creating a Summary Network - Pruning

Rather than use the majority consensus network as the most appropriate model of the data,
an alternative approach is to choose the single best model found during a large number
of searches. To determine sufficient heuristic searches have been run to provide reasonable
coverage of all the features of the model landscape, then again checking for a stable majority
consensus network as in Section 5.1, seems a sensible approach. Once the best overall DAG
has been identified then the next task is to check this model for over-fitting. Unlike with the
majority consensus network, which effective “averages” over many different competing models
and therefore should generally comprise only robust structural features, choosing the DAG
from a single model search is far more likely to contain some spurious features. When dealing
with smaller data sets, say, of several hundred observations then this is extremely likely, as
can easily be demonstrated using simulated data. A simple assessment of overfitting can be
made by comparing the number of arcs in the majority consensus network with the number of
arcs in the best fitting model. We have found that in larger data sets the majority consensus
and best fitting model can be almost identical, while in smaller data sets the best fitting
models may have many more arcs - suggesting a degree of overfitting.

An advantage of choosing a DAG from an individual search is that unlike averaging over lots of
different structures, as in the construction of a majority consensus network, the model chosen
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here has a structure which was actually found during a search across the model landscape.
In contrast, the majority consensus network is a derived model which may never have been
found chosen during even an exhaustive search, indeed it may even comprise of contradictory
features as is a usual risk in averaging over different explanations (models) of data. In addition,
a majority consensus network need also not be acyclic, although in practice this can be easily
corrected by reversing one or more arcs to produce an appropriate DAG.

A simple compromise between the risk of over-fitting in choosing the single highest scoring
DAG, and the risk of inappropriately averaging across different distinct data generating pro-
cesses, is to prune the highest scoring DAG using the majority consensus model. In short, an
element by element multiply of the highest scoring DAG and the majority consensus DAG,
which gives a new DAG which only contains the structural features in both models.

7. Creating a Summary Network - Parametric Bootstrapping

In Friedman, Goldszmidt, and Wyner (1999) a general approach for using parametric boot-
strapping to select BN models/DAG structures was presented. Such approaches can be rea-
sonably easily implemented by using readily available Markov chain Monte Carlo sampling
software such as JAGS or WinBUGS. The basic idea is to take the structure with the best
network score and then code it up in either JAGS or WinBUGS, and use these samplers to
generate bootstrap data sets from this model. That is, independent realisations from the
model which can be used to generate a data set of the same size as the observed data. Given
this bootstrap data, then the BN model search is repeated treating this as the observed data.
By generating many bootstrap data sets and conducting searches on each, then this allows
us to estimate the percentage support for each arc in the highest scoring model. Another
way to put this is that we find out how many of the arcs in the highest scoring model can
be “recovered” from a data set of the size as that actually observed. Obviously, the more
data, the more statistical power, and the more structural features which can be recovered.
For arcs with a lower level of support, e.g. <50%, then these can be pruned from the best
fitting model, the assumption being that these are potentially as a result of overfitting. The
resulting model - possibly with arcs pruned off from the original model - is then our chosen
model of the data.

Using a 50% threshold for arc support is intuitively reasonable as can be seen by considering
a model of a single node. Suppose there are two covariates, and the “response” variable (the
node) is almost deterministically dependent with each of these variables (that is overwhelming
statistical support), and that the two covariates are almost exactly collinear. In which case
only one arc will be needed in the model, and running random restart heuristic searches in this
case will result in approximately 50% of search results suggesting an arc from covariate one to
the response variable, and the other 50% for an arc from covariate two to the response variable.
Therefore, despite the fact that each of these variables is almost surely (with probability=1)
dependent with the response variable each arc cannot exceed 50% support. This is an idealized
example but provides an intuitive argument as to why 50% is a reasonable threshold above
which we can be fairly confident that the arcs may be a real, rather than spurious statistical
feature.

While parametric bootstrapping is a general technique is well established and conceptually
elegant, this may in practice not be computationally feasible. Even if taking the least de-
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manding approach of conducting only one heuristic search per bootstrap data set, the number
of data sets/searches required in order to get robust % support values for each arc in the best
fitting model may be large, and beyond what is reasonably possible even using high per-
formance computing (HPC) hardware. We would suggest that it is at least good practice
to investigate the feasibility of this approach. To that end we next outline how to perform
parametric bootstrapping using abn and JAGS and all the relevant source files are included in
the abn/bootstrapping_example library subdirectory.

7.1. Steps Necessary to Perform Parametric Bootstrapping

Given a BN model - DAG structure plus parameter priors - then the first step is to estimate
the posterior parameters. The second step is to implement the DAG structure together with
the posterior parameters into the language used by JAGS, which is very similar to that used
in WinBUGS. Generally speaking, the posterior parameters in an additive BN model need not
conform to any standard probability distribution as these are non-conjugate models. To make
the implementation as general as possible, rather than, for example, attempting to match each
posterior distribution to, say, the closest shaped Gaussian density, we present an approach
which allows all posterior parameters to be from a non-standard - bespoke - distribution. This
is implemented in JAGS by discretising each posterior density across a fine grid and using a
discrete sampler, dcat() in JAGS.

Estimating Posterior Densities

The function getmarginal() uses Laplace approximations to estimate the posterior density
of each parameter in a BN model. An appropriate domain (range) for each parameter must
be supplied by the user which is done by some trial and error to find where about on the real
line the density resides - it will be close to the origin either through the use of a logistic link
function or through the standardisation of the Guassian node. An initial guess of (-2,2) is
often a good starting point. It is crucially important that a sufficiently wide range is given
so that “all” of the upper and lower tails of the distribution are included, e.g. the range
should be where an R density plot first drops to approximately zero at each tail. Note that
getmarginal() works with one node and one parameter in that node at a time. It is not
necessary - but does no harm - to specify the full DAG, but all that is needed is the node and
its parents.

We now follow the example contained in the abn/bootstrapping_example library subdirec-
tory. We use a second data set included with abn, called pigs.1par which is again a synthetic
dataset generated from analyses of real data. The first step is define the model of interest,
mydag, and then estimate the posterior densities. The posterior parameters calculated are the
marginal effects, that is all other model parameters (at the given node) are integrated out. At
each node - which is defined using argument whichnode - the intercept term can be estimated
using whichvar=constant (see below) and for Gaussian nodes the precision parameter can
be estimated using whichvar=precision. The remaining parameters are the mean covariate
effects, for example using whichnode=D1 and whichvar=D2 in getmarginal() gives the pos-
terior marginal density for covariate D2 for the response variable D1. Note that by default all
Gaussian variables are standardised to a mean of zero and a standard deviation of one.

> #specific a DAG model - the model we wish to use to perform
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> #parametric bootstrapping

> mydag<-matrix(c(

+ # D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Year Loc.x Loc.y

+ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # D1

+ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # D2

+ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, # D3

+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, # D4

+ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, # D5

+ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, # D6

+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, # D7

+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, # D8

+ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # D9

+ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, # D10

+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # Year

+ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, # Loc.x

+ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 # Loc.y

+ ),byrow=TRUE,ncol=13);

> colnames(mydag)<-rownames(mydag)<-names(pigs.1par);#set names

>

> # Node D1|D2 e.g. logit(P(D1=TRUE)=constant+coeff*D2

> # first get the posterior density for the constant

> marg<-getmarginal(data.df=pigs.1par,

+ dag.m=mydag,

+ whichnode="D1",

+ whichvar="constant",#this is the intercept

+ post.x=seq(from=1,to=1.7,len=1000),

+ verbose=FALSE,std=TRUE);

> # get grid of discrete values x and f(x)

> D1.p<-cbind(marg[,1],marg[,2]);

> # now repeat for the slope term coeff

> marg<-getmarginal(data.df=pigs.1par,

+ dag.m=mydag,

+ whichnode="D1",

+ whichvar="D2",#this is the slope

+ post.x=seq(from=0.6,to=1.5,len=1000),

+ verbose=FALSE,std=TRUE);

> # add to existing grid x,f(x),x,f(x)

> D1.p<-cbind(D1.p,marg[,1],marg[,2]);

Figure 6 shows an example of posterior densities estimated using getmarginal(), all posterior
densities for all parameters in the additive BN can be estimated in the same way.

The file calculate_marginalDensities.R in abn/bootstrapping_example contains R code
for estimating all the marginal parameters in the DAG mydag given above. This file is doc-
umented. It calculates all the marginal distributions and then writes them out to a file
post_params.R which is in the R dump format which can be read into JAGS.
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Figure 6: Posterior densities for intercept and slope in node D1 in pigs.1par
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The remaining files are script1.R which is the script which runs the JAGS MCMC sampling.
The JAGS package is open source and can be downloaded from sourceforge along with ap-
propriate documentation. The file simulate_1par.bug contains the DAG implemented into
the JAGS language along with the posterior parameter estimates, the creation of this file is
the main task involved in the parameteric bootstrapping. Once the script1.R has completed
(this script is run simply by typing jags script1.R at the command line), then the bootstrap
data set generated is contained in the file outchain1.txt and outchain2.txt. Running two
(or more) chains allows for checking of convergence. The script is set up to generate 10000
realisations, to get a single bootstrap data set we would trim this down to 9011 observations
which is that same size as the original data pigs.1par. Once we have this bootstrap data set
then we simply run a model search on this, for example using hillsearchabn() as detailed
above.

To automate the parametric bootstrapping one option is to edit the script1.R so that suffi-
cient realisations are generated to create many independent bootstrap data sets, for example
generate 1000 × 9011 realisations. It is straightforward to edit the above hillsearchabn(),
for example by putting the call to hillsearchabn() inside a loop which iterates through
different bootstrap data sets. Note that it is far more efficient to call hillsearchabn() once
inside each iteration than use searchabn(), as the latter is designed to provide indepth out-
put at individual search level and may be over twice as slow as calling hillsearchab() using
num.searches=1.

8. Order Based Searches

It is generally not feasible to iterate over all possible DAG structures when dealing with more
than a handful of variables, hence the reliance on heuristic searches. It is also extremely
difficult to construct efficient Monte Carlo Markov chain samplers across BN structures. A
solution to this was proposed in Friedman and Koller (2003) where rather than sample across
DAGs, it was proposed to sample across node orderings. A node order is simply the set of
integers 1 through n, where n is the number of variables in the data. A DAG is consistent
with an ordering if for each node in the order its parents come before it. For example a DAG
with only an arc from 1→2 is consistent with ordering 1, 2, 3, 4 as the parent 1 comes before
2, but a DAG with an arc from 2→1 is not consistent with this ordering. In effect, each order
is a collection of DAGs, and note that each DAG may be consistent with multiple orders, i.e.
the empty DAG is consistent with every possible ordering. This introduces bias, in that a
search across orders need not give the same results as a search across DAGs, if the latter were
possible. This bias is towards more parsimonious models. The big advantage of searching

across orders is that there are n! different orders compared to at least 2(n2) different DAGs.

There are (at least) two approaches for searching across orders. The first is to construct a
Markov chain which samples from the posterior distribution of all orders, and is the approach
presented in Friedman and Koller (2003). Alternatively, in Koivisto and Sood (2004) an exact
method is proposed which rather than sample across orders, performs an exhaustive search.
This has the advantage that it can also be used to find the globally optimal DAG of the data
- the most probable structure - as well as posterior probabilities for structural features, such
as individual arcs. The drawback is that this exact approach is only feasible with smaller
number of variables e.g. up to 12 or 13 when dealing with additive models.
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The abn library has an implementation of the method due to Koivisto and Sood (2004) which
allows for the computation of posterior probabilities for individual structural features, such
as each arc, as well as the most probable structure. One potentially important point of
note is that these posterior probabilities require the summing of probabilities across different
structures and as such may be susceptible to numerical underflow errors (as it is not possible
to perform this operation on a log scale) for data sets with larger numbers of observations.
This does not apply to finding the most probable structure as this involves maximisation
which can be done on a log scale.

8.1. Exact Posterior Probabilities of Structural Features

We now demonstrate how to determine posterior probabilities for individual structural fea-
tures using a small subset of observations and 10 variables from the pigs.1par data. This uses
the allnodesabn() and getposteriorfeaturesbn() functions. There is also an equivalent
for conjugate multinomial BN models allnodesabn(). The same function, getposterior-
featuresbn(), works for both conjugate and additive models as it only involves the DAG
and not the parameterisation. Only a small number of observations are used here to avoid
numerical underflow problems. In some data sets underflow may not be a problem, as this is
very much a data specific issue. In any case your mileage may vary.

> pigs<-pigs.1par[1:50,c(2,3)];#take a subset of observations and variables

> ## step 1. find all the local scores within each node - this creates a "cache"

> ## of scores

> ## n.b. using a parent limit of 1 e.g we only consider DAGs with at most one

> ## arc per node

> mynodes.add<-allnodesabn(data.df=pigs,max.parents=1);

processing node...1

processing node...2

> ## step 2. search across all orders/DAGs for the given structural feature

> # specifically calculate the get posterior prob of arc 1->2

> p.2.1<-getposteriorfeaturesbn(local.scores=mynodes.add,feature="arc",child=2,

+ parent=1);

> print(p.2.1);

[1] 3.980759e-29

> #now for arc 2->1

> p.1.2<-getposteriorfeaturesbn(local.scores=mynodes.add,feature="arc",child=1,

+ parent=2);

> print(p.1.2);

[1] 3.983062e-29

> ## step 3. calculate the denominator - across all structural features (see text)

> denom<-getposteriorfeaturesbn(local.scores=mynodes.add,feature="all");

> print(denom);
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[1] 1.696262e-27

> ## we now get the posterior probability for arc 1->2

> print(p.2.1/denom);

[1] 0.02346783

> ## we now get the posterior probability for arc 2->1

> print(p.1.2/denom);

[1] 0.02348141

The posterior probability for each arc is calculated by marginalising over all possible other
combinations. That is, it is the sum of the marginal likelihoods across all DAGs (analysed in
blocks of orders) which contain this specific arc. The denominator here is the sum of marginal
likelihoods across all DAGs (analysed in blocks of orders). Note that the very small numerical
difference between these probabilities may be due to the fact that the additive model priors
are not likelihood equivalent.

It is also possible to calculate the posterior probability for an arbitrary structural feature
by specifying this in the call to getposteriorfeaturesbn(). To illustrate this we use the
simplest example of a two node network but this works in an analogous fashion for larger
numbers of variables.

> pigs<-pigs.1par[1:50,c(2,3)];#simple 2 node model

> ## step 1. find all the local scores within each node - this creates a "cache"

> ## of scores

> mynodes.add<-allnodesabn(data.df=pigs,max.parents=1);

processing node...1

processing node...2

> print(mynodes.add);

$node

[1] 1 1 2 2

$parents

[,1] [,2]

[1,] 0 0

[2,] 0 1

[3,] 0 0

[4,] 1 0

$nodescore

[1] -26.39145 -29.40176 -35.99116 -39.00205

$restricted.parents

[1] 0
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> # now want the posterior prob. of the independence DAG (empty network)

> G<-c(1,0,1,0);#empty [1][2] - this says include rows 1 and 3 in the node cache

> # row 1 corresponds to node 1 having no parents and row 3 for node 2

> # with no parents

> DAG1<-getposteriorfeaturesbn(local.scores=mynodes.add,feature="custom",

+ featuredefn=G);

> #now for DAG node 2 indep, node 1 depends on node 2

> G<-c(0,1,1,0);# [1|2][2]

> DAG2<-getposteriorfeaturesbn(local.scores=mynodes.add,feature="custom",

+ featuredefn=G);

> #now for DAG node 1 indep, node 2 depends on node 1

> G<-c(1,0,0,1);# [1][2|1]

> DAG3<-getposteriorfeaturesbn(local.scores=mynodes.add,feature="custom",

+ featuredefn=G);

> print(DAG1+DAG2+DAG3);#get total sum

[1] 1.696262e-27

> #this equals the denominator - which it should since this is all

> #possible DAGs

> denom<-getposteriorfeaturesbn(local.scores=mynodes.add,feature="all",

+ child=NULL,

+ parent=NULL);

> print(denom);

[1] 1.696262e-27

> # posterior probabilities for the 3 DAGs, [1][2], [1|2][2],[2|1][1] are

> print(p1<-DAG1/denom);

[1] 0.9530508

> print(p2<-DAG2/denom);

[1] 0.02348141

> print(p3<-DAG3/denom);

[1] 0.02346783

> print(p1+p2+p3);

[1] 1

Finally, as an aside it is possible to calculate the posterior probabilities for individual arcs
also by also specifying a custom structure using argument featuredefn. This shows explicitly
how the marginalisation is done.
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> pigs<-pigs.1par[1:50,c(2,3)];#simple 2 node model

> ## step 1. find all the local scores within each node - this creates a "cache"

> ## of scores

> mynodes.add<-allnodesabn(data.df=pigs,max.parents=1);

processing node...1

processing node...2

> print(mynodes.add);

$node

[1] 1 1 2 2

$parents

[,1] [,2]

[1,] 0 0

[2,] 0 1

[3,] 0 0

[4,] 1 0

$nodescore

[1] -26.39145 -29.40176 -35.99116 -39.00205

$restricted.parents

[1] 0

> #arc 1->2, dont care about node 1 e.g. arc is marginalised over all possible

> # other combinations

> G<-c(1,1,0,1);

> p.2.1.G<-getposteriorfeaturesbn(local.scores=mynodes.add,feature="custom",

+ featuredefn=G);

> #arc 2->1, dont care about node 2

> G<-c(0,1,1,1);

> p.1.2.G<-getposteriorfeaturesbn(local.scores=mynodes.add,feature="custom",

+ featuredefn=G);

> # now get denominator

> G<-c(1,1,1,1);

> denom<-getposteriorfeaturesbn(local.scores=mynodes.add,feature="custom",

+ featuredefn=G);

> print(p.2.1.G/denom);#post. prob. arc 1->2

[1] 0.02346783

> print(p.2.1/denom); # as calculated directly above

[1] 0.02346783
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> print(p.1.2.G/denom);#post. prob. arc 2->1

[1] 0.02348141

> print(p.1.2/denom); # as calculated directly above

[1] 0.02348141

To calculate arc 1→ 2 we simply set the value of featuredefn so that every possible parent
combination is included in every node in the network other than the child node, in this case
node 2. In the child node we include all parent combinations which include arc 1 → 2.
Note that iterating over orders also removes any cycles and all we need be concerned with is
individual nodes and not how these fit together into a DAG.

8.2. Most Probable Structure

Using the exact order based method due to Koivisto and Sood (2004) it is also possible to
identify the DAG with globally best network score - subject to the bias present due to using
an ordered based grouping of DAGs. Unlike calculating posterior probabilities of individ-
ual structural features, finding the most probable structure does not require the summing
marginal likelihoods, but rather maximisation. Numerical underflow is therefore not a prob-
lem here, however, finding the most probably structure may not be computationally feasible
for more than 12 or 13 nodes, at least when dealing with additive models which require
considerably more numerical computational per DAG.

To calculate the most probable structure we again use allnodesabn() to calculate a cache of
individual node scores. Next, the function findmostprobablebn does the actual exhaustive
order based search, and works for both conjugate and additive models since as with calculating
the posterior probabilities this step only involves structural searching and is not concerned
with the precise parameterisation of each BN model.

> pigs<-pigs.1par[,c(1:8,12,13)];#all 9011 observation but limit to 10 variables

> # using all 13 variables in pigs will take several hours of cpu time

> mynodes.add<-allnodesabn(data.df=pigs,max.parents=1);

processing node...1

processing node...2

processing node...3

processing node...4

processing node...5

processing node...6

processing node...7

processing node...8

processing node...9

processing node...10

> ## now for most probable network of all DAGs where each node has at

> ## most one arc
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> map.1par.10var<-findmostprobablebn(local.scores=mynodes.add,data.df=pigs);

> tographviz(dag=map.1par.10var,data.df=pigs,outfile="map1_10var.dot");#create file

> # mydag.dot can then be processed with graphviz

> # unix shell "dot -Tpdf map1_10var.dot -o map1_10var.pdf" or use gedit if on Windows

Figure 7 shows a most probable DAG using a subset of variables from pigs.1par and a parent

D1

D2

D3

D4

D6

D5

D7

Loc.y

D8Loc.x

Figure 7: Most probable DAG for data in pigs.1par with variables D1-D8, Loc.x and Loc.y,
and after imposing a limit of no more than one parent per node

limit of one per node.

> pigs<-pigs.1par;#all observations all variables

> mynodes.add<-allnodesabn(data.df=pigs,max.parents=1);

> ## now for most probable network of all DAGs where each node has at

> ## most one arc

> system.time(map.1par<-findmostprobablebn(local.scores=mynodes.add,data.df=pigs));

> tographviz(dag=map.1par,data.df=pigs,outfile="map_1par.dot");#create file

> # mydag.dot can then be processed with graphviz

> # unix shell "dot -Tpdf map_1par.dot -o map_1par.pdf" or use gedit if on Windows



34 The abn package

Figure 8 shows the most probable DAG considering all variables in pigs.1par and a parent
limit of one per node. This took 6520 seconds (≈1.8 hrs) to complete on an 3Ghz Intel Xeon
CPU, and the runtime may increase dramatically for more variables and an increased parent
limit.
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Figure 8: Most probable DAG for data in pigs.1par imposing a limit of no more than one
parent per node
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9. Summary

The abn library provides a range of Bayesian network models to assist with identifying sta-
tistical dependencies in complex data, in particular models which are multidimensional ana-
logues of generalised linear models. This process is typically referred to as structure learning,
or structure discovery, and is computational extremely challenging. Heuristics are the only
options for data comprising of larger numbers of variables. As with all model selection,
over-modelling is an everpresent danger and using either: i) summary models comprising
of structural features present in many locally optimal models or else; ii) using parametric
bootstrapping to determine the robustness of the features in a single locally optimal model
are likely essential to provide robust results. An alternative presented was exact order based
searches, in particular finding the globally most probable structure. This approach is appeal-
ing as it is exact, but despite collapsing DAGs into orderings for larger scale problems it may
not be feasible.
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