Analysis of Animal Movements in R:
the adehabitatLT Package
Clement Calenge,

Office national de la chasse et de la faune sauvage
Saint Benoist — 78610 Auffargis — France.

Feb 2011

Contents
1 History of the package adehabitatLT 2
2 What is a trajectory? 3
2.1 Two types of trajectories. 3
2.2 Descriptive parameters of the trajectory 4
2.3 Several bursts of relocations 0oL 5
2.4 Understanding the class 1traj)
2.5 Two points of views: steps (ltraj) or points (data.frame)? 8
3 Managing objects of class ltraj 11
3.1 Cutting a burst into several segments. 11
3.2 Playing with bursts oL 13
3.3 Placing the missing values in the trajectory 16
3.4 Rounding the timing of the trajectories to define a regular trajectory 17
3.5 A special type of trajectories: same duration 20
3.6 Metadata on the trajectories (Precision of the relocations, etc.) . 22
4 Analyzing the trajectories 24
4.1 Randomness of the missing values 24
4.2 Should we consider the time? 27
421 TypellortypelI? 27
4.2.2 Rediscretizing the trajectory 28
4.3 Dynamic exploration of a trajectory 31
4.4 Analyzing autocorrelation oL 32
4.4.1 Testing for autocorrelation of the linear parameters. . . . 32
4.4.2 Analyzing the autocorrelation of the parameters 34
4.4.3 Testing autocorrelation of the angles 35
4.4.4 Analyzing the autocorrelation of angular parameters . . . 37

4.5 Partitioning a trajectory into segments characterized by a ho-

mogenous behaviour Lo o000 37

4.6 Rasterizing a trajectory 0oL 46
4.7 Models of animal movements 0. 50

5 Conclusion and perspectives 52

1 History of the package adehabitatLT

The package adehabitatLT contains functions dealing with the analysis of
animal movements that were originally available in the package adehabitat
(Calenge, 2006). The data used for such analysis are generally relocation data
collected on animals monitored using VHF or GPS collars.

I developped the package adehabitat during my PhD (Calenge, 2005) to
make easier the analysis of habitat selection by animals. The package ade-
habitat was designed to extend the capabilities of the package ade4 concerning
studies of habitat selection by wildlife.

Since its first submission to CRAN in September 2004, a lot of work has
been done on the management and analysis of spatial data in R, and especially
with the release of the package sp (Pebesma and Bivand, 2005). The package
sp provides classes of data that are really useful to deal with spatial data...

In addition, with the increase of both the number (more than 250 functions
in Oct. 2008) and the diversity of the functions in the package adehabitat, it
soon became apparent that a reshaping of the package was needed, to make its
content clearer to the users. I decided to “split” the package adehabitat into
four packages:

e adehabitatHR package provides classes and methods for dealing with
home range analysis in R.

e adehabitatHS package provides classes and methods for dealing with habi-
tat selection analysis in R.

e adehabitatLT package provides classes and methods for dealing with an-
imals trajectory analysis in R.

e adehabitatMA package provides classes and methods for dealing with maps
in R.

We consider in this document the use of the package adehabitatLT to deal
with the analysis of animal movements. All the methods available in adehabi-
tat are also available in adehabitatLT. Contrary to the other brother packages,

the classes of data returned by the functions of adehabitatLT are the same as
those implemented in the original package adehabitat. Indeed, the structure
of these classes were described in a paper (Calenge et al. 2009).

Package adehabitatLT is loaded by

> library(adehabitatLT)

2 What is a trajectory?

2.1 Two types of trajectories

We designed the class 1traj to store the movements of animals monitored using
radio-tracking, GPS, etc. The rationale underlying the structure of this class
is described precisely in Calenge et al. (2009). We summarize this rationale in
this vignette.

Basically, the trajectory of an animal is the curve described by the animal
when it moves. The sampling of the trajectory implies a step of discretization,
i.e., the division of this continuous curve into a number of discrete “steps” con-
necting successive relocations of the animal (Turchin, 1998). Two main classes
of trajectories can be distinguished:

e Trajectories of type I are characterized by the fact that the time is
not precisely known or not taken into account for the relocations of the
trajectory;

e the trajectories of type II are characterized by the fact that the time is
known for each relocation. This type of trajectory may in turn be divided
into two subtypes:

— regular trajectories: these trajectories are characterized by a con-
stant time lag between successive relocations;

— irregular trajectories: these trajectories are characterized by a
variable time lag between successive relocations;

Note that the functions of adehabitatLT are mainly designed to deal with
type I or type II regular trajectories. Irregular trajectories are harder to ana-
lyze, as the descriptive parameters of these trajectories (see below) may not be
compared when computed on different time lags.

2.2 Descriptive parameters of the trajectory

Marsh and Jones (1988) noted that a good description of the trajectory is
achieved when the following criteria are fullfilled:

e the description is achieved with a minimum set of relatively easily mea-
sured parameters;

¢ the relationships between these parameters are defined precisely (e.g., with
the help of a model);

e the parameters and the relationships between them are sufficient to recon-
struct characteristic tracks without loosing any of their significant prop-
erties.

Based on a literature review (see Calenge et al. 2009), we have chosen to
characterize all the trajectories by the following parameters:

o abs.angle
B: rel.angle

e dx, dy, dt: these parameters measured at relocation ¢ describe the in-
crements of the x and y directions and time between the relocations ¢ and

i+ 1. Such parameters are often used in the framework of stochastic dif-
ferential equation modelling (e.g. Brillinger et al. 2004, Wiktorsson et al.
2004);

e dist: the distance between successive relocations is often used in animal
movement analysis (e.g. Root and Kareiva 1984, Marsh and Jones 1988);

e abs.angle: the absolute angle «; between the x direction and the step
built by relocations ¢ and ¢ + 1 is sometimes used together with the pa-
rameter dist to fit movement models (e.g. Marsh and Jones 1988);

e rel.angle: the relative angle 8; measures the change of direction between
the step built by relocations 7 — 1 and ¢ and the step built by relocations
¢ and 7 + 1 (often called “turning angle”). It is often used together with
the parameter dist to fit movement models (e.g. Root and Kareiva 1984,
Marsh and Jones 1988);

e R2n: the squared distance between the first relocation of the trajectory
and the current relocation is often used to test some movements models
(e.g. the correlated random walk, see the seminal paper of Kareiva and
Shigesada, 1983).

2.3 Several bursts of relocations

Very often, animal monitoring leads to several “bursts” of relocations for each
monitored animal. For example, a GPS collar may be programmed to return one
relocation every ten minutes during the night and no relocation during the day.
Each night corresponds to a burst of relocations for each animal. We designed
the class 1traj to take into account this burst structure.

2.4 Understanding the class 1traj

An object of class 1traj is created with the function as.ltraj (see the help
page of this function). We will take an example to illustrate the creation of an
object of class 1traj. First load the dataset puechabonsp from the package
adehabitatMA:

> data(puechabonsp)

> locs <- puechabonsp$relocs
> locs <- as.data.frame(locs)
> head(locs)

Name Age Sex Date X Y

1 Brock 2 1 930701 699889 3161559
2 Brock 2 1 930703 700046 3161541
3 Brock 2 1 930706 698840 3161033
4 Brock 2 1 930707 699809 3161496
5 Brock 2 1 930708 698627 3160941
6 Brock 2 1 930709 698719 3160989

The data frame locs contains the relocations of 4 wild boar monitored us-
ing radio-tracking at Puechabon (Near Montpellier, South of France). First the
date needs to be transformed into an object of the class POSIXct.

Remark: The class POSIXt is designed to store time data in R (see the very
clear help page of POSIXt). This class extends two sub-classes:

e the class POSIX1t: This class stores a date in a list containing several
elements related to this date (day of the month, day of the week, day of
the year, month, year, time zone, hour, minute, second).

e the class POSIXct: This class stores a date in a vector, as the number of
seconds passed since January, 1st, 1970 at TAM. This class is more con-
venient for storing dates into a data frame.

We will use the function strptime (see the help page of this function) to
convert the date in locs into a POSIX1t object, as then as.POSIXct to convert
it into the class POSIXct:

> da <- as.character(locs$Date)
> head(da)

[1] "930701" "930703" "930706" "930707" "930708" "930709"
> da <- as.POSIXct(strptime(as.character(locs$Date), "Jy/mid"))

We can then create an object of class 1traj to store the wild boar move-
ments:

> puech <- as.ltraj(xy = locs[, c("X", "Y")], date = da, id = locs$Name)
> puech

wkkkkkkkkkk List of class ltraj skxkkkskkkk

Type of the traject: Type II (time recorded)
Irregular traject. Variable time lag between two locs

Characteristics of the bursts:
id burst nb.reloc NAs date.begin date.end

1 Brock Brock 30 0 1993-07-01 1993-08-31
2 Calou Calou 19 0 1993-07-03 1993-08-31
3 Chou Chou 40 0 1992-07-29 1993-08-30
4 Jean Jean 30 0 1993-07-01 1993-08-31

infolocs provided. The following variables are available:
[1] "pkey"

The result is a list of class ltraj containing four bursts of relocations corre-
sponding to four animals. The trajectory is of type II and is irregular. There
are no missing values.

This object is actually a list containing 4 elements (the four bursts). Each
element is a data frame. Have a look, for example, at the first rows of the first
data frame:

> head(puech[[11])

X y date dx dy dist dt R2n abs.angle
1 699889 3161559 1993-07-01 157 -18 158.0285 172800 0 -0.11415127
2 700046 3161541 1993-07-03 -1206 -508 1308.6252 259200 24973 -2.74292194
3 698840 3161033 1993-07-06 969 463 1073.9320 86400 1377077 0.44574032
4 699809 3161496 1993-07-07 -1182 -555 1305.8135 86400 10369 -2.70260603
5 698627 3160941 1993-07-08 92 48 103.7690 86400 1974568 0.48088728
6 698719 3160989 1993-07-09 272 26 273.2398 345600 1693800 0.09529869
rel.angle
1 NA
2 -2.6287707
3 -3.0945230
4 3.1348390
5 -3.0996920
6 -0.3855886

The function as.ltraj has automatically computed the descriptive param-
eters described in section 2.2 from the x and y coordinates, and from the date.
Note that dx,dy,dist are expressed in the units of the coordinates x,y (here,
metres) and abs.angle,rel.angle are expressed in radians.

A graphical display of the bursts can be obtained simply by:

> plot(puech)

Brock Calou

Chou

2.5 Two points of views: steps (ltraj) or points (data.frame)?

We noted in the previous section that, in adehabitatLT, we consider the trajec-
tory as a collection of successive “steps” ordered in time. We will see later in this
vignette that most functions of adehabitatLT deal with trajectories considered
from this point of view. However, several users (in particular, many thanks to
Mathieu Basille and Bram van Moorter) noted that although this point of view
may be useful to manage and analyse trajectories, it may be too restrictive to
allow an easy management of such data.

Actually, the trajectory data may also be considered as a set of successive
points (the relocations) ordered in time. At first sight, the distinction between
these two models may seem trivial, but it is important to consider it in several
cases.

For example, any slight change in the coordinates/date of a relocation will
change the value of all derived statistics (dt, dist, etc.). In the previous versions
of adehabitat, it was possible to change directly the values of coordinates/dates
in the object, and then to compute again the steps characteristics thanks to the
function rec (it is still possible in the present version, but not recommended).

For example, consider the object puech created in the previous section. Have

a look at the first relocations of the first burst:

> head(puech[[1]])

X y date dx
1 699889 3161559 1993-07-01 157
2 700046 3161541 1993-07-03 -1206
3 698840 3161033 1993-07-06 969
4 699809 3161496 1993-07-07 -1182
5 698627 3160941 1993-07-08 92
6 698719 3160989 1993-07-09 272
rel.angle
1 NA
2 -2.6287707
3 -3.0945230
4 3.1348390
5 -3.0996920
6 -0.3855886

dy
-18
-508
463
-555
48
26

158.
1308.
1073.
1305.

103.

273.

dist dt R2n
0285 172800 0
6252 259200 24973

9320 86400 1377077
8135 86400 10369
7690 86400 1974568
2398 345600 1693800

Imagine that we realize that the X coordinate of the second relocation is
actually equal to 700146 instead of 700046:

> puech2 <- puech

v

> head(puech2[[1]])

puech2[[1]][2, 1] <- 700146

X y date dx
1 699889 3161559 1993-07-01 157
2 700146 3161541 1993-07-03 -1206
3 698840 3161033 1993-07-06 969
4 699809 3161496 1993-07-07 -1182
5 698627 3160941 1993-07-08 92
6 698719 3160989 1993-07-09 272
rel.angle
1 NA
2 -2.6287707
3 -3.0945230
4 3.1348390
5 -3.0996920
6 -0.3855886

dy
-18
-508
463
-555
48
26

158.
1308.
1073.
1305.

103.

273.

dist dt R2n
0285 172800 0
6252 259200 24973

9320 86400 1377077
8135 86400 10369
7690 86400 1974568
2398 345600 1693800

The coordinate has been changed, but the step characteristics are now incor-
rect. The function rec recompute these statistics according to these changes:

> head(rec(puech2)[[1]1])

abs.angle
.11415127
. 74292194
.44574032
.70260603
.48088728
.09529869

abs.angle
.11415127
. 74292194
.44574032
.70260603
.48088728
.09529869

X y date dx dy dist dt R2n abs.angle

1 699889 3161559 1993-07-01 267 -18 257.6296 172800 0 -0.06992472
2 700146 3161541 1993-07-03 -1306 -508 1401.3208 259200 66373 -2.77062747
3 698840 3161033 1993-07-06 969 463 1073.9320 86400 1377077 0.44574032
4 699809 3161496 1993-07-07 -1182 -555 1305.8135 86400 10369 -2.70260603
5 698627 3160941 1993-07-08 92 48 103.7690 86400 1974568 0.48088728
6 698719 3160989 1993-07-09 272 26 273.2398 345600 1693800 0.09529869
rel.angle
1 NA
2 -2.7007027
3 -3.0668175
4 3.1348390
5 -3.0996920
6 -0.3855886
Although the function rec can be useful for sporadic use, it is limited when
a larger number of modifications is required on the relocations (e.g. filtering
incorrect relocations when “cleaning” GPS monitoring data). This is where
the class 1traj does not fit. For such work, it is more convenient to see the
trajectory as a set of points located in both space and time. And for such
operations, it is sometimes more convenient to work with data frames. Two
functions are provided to quickly convert a ltraj to and from data.frames: the
functions 14 and d1.
The function 1d allows to quickly convert an object of class 1traj to the
class data.frame. Consider for example the object puech created in the previous
section. We can quickly convert this object towards the class data.frame:
> puech2 <- 1ld(puech)
> head (puech2)
X y date dx dy dist dt R2n abs.angle
1 699889 3161559 1993-07-01 157 -18 158.0285 172800 0 -0.11415127
2 700046 3161541 1993-07-03 -1206 -508 1308.6252 259200 24973 -2.74292194
3 698840 3161033 1993-07-06 969 463 1073.9320 86400 1377077 0.44574032
4 699809 3161496 1993-07-07 -1182 -555 1305.8135 86400 10369 -2.70260603
5 698627 3160941 1993-07-08 92 48 103.7690 86400 1974568 0.48088728
6 698719 3160989 1993-07-09 272 26 273.2398 345600 1693800 0.09529869
rel.angle id burst pkey
1 NA Brock Brock Brock.1993-07-01
2 -2.6287707 Brock Brock Brock.1993-07-03
3 -3.0945230 Brock Brock Brock.1993-07-06
4 3.1348390 Brock Brock Brock.1993-07-07
5 -3.0996920 Brock Brock Brock.1993-07-08
6 -0.3855886 Brock Brock Brock.1993-07-09

Note that the data frame contains all the descriptors of the steps. In addition,
two variables burst and id allow to quickly convert this object back towards
the class 1traj, with the function d1:

10

> d1(puech2)

wkkkkkkkkkk List of class ltraj ®kxkkkkokkkk

Type of the traject: Type II (time recorded)
Irregular traject. Variable time lag between two locs

Characteristics of the bursts:
id burst nb.reloc NAs date.begin date.end

1 Brock Brock 30 0 1993-07-01 1993-08-31
2 Calou Calou 19 0 1993-07-03 1993-08-31
3 Chou Chou 40 0 1992-07-29 1993-08-30
4 Jean Jean 30 0 1993-07-01 1993-08-31

infolocs provided. The following variables are available:
[1] Ilpkeyll

Using d1 and 1d can be extremey useful during the first steps of the analysis,
especially during data “cleaning”.

3 Managing objects of class 1traj

3.1 Cutting a burst into several segments

Now, let us analyse the object puech created in the previous section. We noted
that the object puech was not regular:

> is.regular (puech)
[1] FALSE

The function is.regular returns a Boolean... such a result can be obtained
from a regular trajectory where just one relocation is missing, or from a com-
pletely irregular trajectory... we need more precision!

Have a look at the value of dt according to the date, using the function
plotltr. Because dt is measured in seconds and that no more than one relo-
cation is coellected every day, we convert this time lag into days by dividing it
by 24 (hours/day) x 3600 (seconds / hour):

> plotltr(puech, "dt/3600/24")

11

—
dt3600/24
6
1
_—
-
—

dt3600/24
3
|
i

Jul Aug Sep Jul Aug Sep
Time Time
. o -
|
3] -
o
+ 4 + “7
o o n
g 3 g |
g - g v AR A
5 . S m .‘ \ [\ [\ fr-\ /\
B o u | | | \r f L
P | - -
T T T T
1993 Jul Aug Sep
Time Time

The wild boar Chou was monitored during two successive summers (1992 and
1993). We need to “cut” this burst into two “sub-burst”. We will use the function
cutltraj to proceed. We first define a function foo that returns TRUE when
the time lag between two successive relocations is greater than 100 days:

> foo <- function(dt) {
+ return(dt > (100 * 3600 * 24))
+

Then, we use the function cutltraj to cut any burst relocations with a value
of dt such that foo(dt) is true, into several bursts for which no value of dt

fullfills this criterion:

> puech2 <- cutltraj(puech, "foo(dt)", nextr = TRUE)
> puech2

wpkkkkkkkkk List of class ltraj #kxkkkkkksk

Type of the traject: Type II (time recorded)
Irregular traject. Variable time lag between two locs

Characteristics of the bursts:

12

id burst nb.reloc NAs date.begin date.end
1 Brock Brock.1 30 0 1993-07-01 1993-08-31
2 Calou Calou.1 19 0 1993-07-03 1993-08-31
3 Chou Chou.1 16 0 1992-07-29 1992-08-28
4 Chou Chou.2 24 0 1993-07-02 1993-08-30
5 Jean Jean.1 30 0 1993-07-01 1993-08-31

infolocs provided. The following variables are available:
[1] "pkey"

Now, note that the burst of Chou has been splitted into two bursts: the first
burst corresponds to the monitoring of Chou during 1992, and the second burst
corresponds to the monitoring of Chou during 1993. We can give more explicit
names to these bursts:

> burst (puech2) [3:4] <- c("Chou.1992", "Chou.1993")
> puech2

*xxkkkkkkkk [List of class Itraj *kxskkkkokkokk

Type of the traject: Type II (time recorded)
Irregular traject. Variable time lag between two locs

Characteristics of the bursts:

id burst nb.reloc NAs date.begin date.end
1 Brock Brock.1 30 0 1993-07-01 1993-08-31
2 Calou Calou.1 19 0 1993-07-03 1993-08-31
3 Chou Chou.1992 16 0 1992-07-29 1992-08-28
4 Chou Chou.1993 24 0 1993-07-02 1993-08-30
5 Jean Jean.1 30 0 1993-07-01 1993-08-31

infolocs provided. The following variables are available:

[1] "pkey"

Note that the function id() can be used similarly to replace the IDs of the

animals.

3.2 Playing with bursts

The bursts in an object 1traj can be easily managed. For example, consider te

object puech2 created previously:

> puech2

13

wkkkkkkkkxk List of class ltraj skxkkksrkkkk

Type of the traject: Type II (time recorded)
Irregular traject. Variable time lag between two locs

Characteristics of the bursts:

id burst nb.reloc NAs date.begin date.end
1 Brock Brock.1 30 0 1993-07-01 1993-08-31
2 Calou Calou.1 19 0 1993-07-03 1993-08-31
3 Chou Chou.1992 16 0 1992-07-29 1992-08-28
4 Chou Chou.1993 24 0 1993-07-02 1993-08-30
5 Jean Jean.1 30 0 1993-07-01 1993-08-31

infolocs provided. The following variables are available:
[1] "pkey"

Imagine that we want to work only on the males (Brock, Calou and Jean). We
can subset this object using a classical extraction function:

> puech2b <- puech2[c(1, 2, 5)]
> puech2b

okkkkkkkkxk List of class ltraj skxkrkkkkkk

Type of the traject: Type II (time recorded)
Irregular traject. Variable time lag between two locs

Characteristics of the bursts:
id burst nb.reloc NAs date.begin date.end

1 Brock Brock.1 30 0 1993-07-01 1993-08-31
2 Calou Calou.1 19 0 1993-07-03 1993-08-31
3 Jean Jean.l1 30 0 1993-07-01 1993-08-31

infolocs provided. The following variables are available:
[1] "pkey"

Or, if we want to study the animals monitored in 1993, we may combine this
object with the monitoring of Chou in 1993:

> puech2c <- c(puech2b, puech2[4])
> puech2c

wkkkkkkkkxk List of class ltraj skxkkksrkkkk

Type of the traject: Type II (time recorded)

14

Irregular traject. Variable time lag between two locs

Characteristics of the bursts:

id burst nb.reloc NAs date.begin date.end
1 Brock Brock.1 30 0 1993-07-01 1993-08-31
2 Calou Calou.1 19 0 1993-07-03 1993-08-31
3 Jean Jean.1 30 0 1993-07-01 1993-08-31
4 Chou Chou.1993 24 0 1993-07-02 1993-08-30

infolocs provided. The following variables are available:
[1] Ilpkeyll

It is also possible to select the bursts according to their id of their burst id (see
the help page of Extract.ltraj for additional information, and in particular
the example section).

The function which.ltraj can also be used to identify the bursts satisfying
a condition. For example, imagine that we want to identify the bursts where the
distance between successive relocations was greater than 2000 metres at least
once:

> bu <- which.ltraj(puech2, "dist>2000")
> bu

id burst results
1 Jean Jean.1 18
2 Jean Jean.l1 19

This data frame contains the ID, burst ID and relocation numbers satisfying
the specified criterion. We can then extract the bursts satisfying this criterion:

> puech2[burst (puech2) 7inj, bu$burst]

okkkkkkkkxk List of class ltraj skxkskrkksk

Type of the traject: Type II (time recorded)
Irregular traject. Variable time lag between two locs

Characteristics of the bursts:

id burst nb.reloc NAs date.begin date.end
1 Jean Jean.1 30 0 1993-07-01 1993-08-31

infolocs provided. The following variables are available:
[1] Ilpkeyll

15

3.3 Placing the missing values in the trajectory

Now, look again at the time lag between successive relocations:

> plotltr(puech2, "dt/3600/24")

dt/3600/24
12 3 4 5
I

>
'Z
/

N
A |
AN Wy ;/\-\f' N\

Tima Tima

Jul 29 Aug 08 Aug 18 Aug 28 dul Aug Sep

p dul Aug Sep

dtiagnniza
L
d3600/24
1 1 1 1 1

1.0 20 30 40

Tima Tima

dt/3600/24

!
TWANMA

The relocations have been collected daily, but there are many days during which
this relocation was not possible (storm, lack of field workers, etc.). We need to
add missing values to define a regular trajectory. To proceed, we will use the
function setNA. We have to define a reference date:

> refda <- strptime("00:00", "JH:%M")
> refda

[1] "2011-02-07"

This reference date will be used to check that each date in the object of class
ltraj is separated from this reference by an integer multiple of the theoretical
dt (here, one day), and place the missing values at the times when relocations
should theoretically have been collected. We use the function setNA:

> puech3 <- setNA(puech2, refda, 1, units = "day")
> puech3

16

wkkkkkkkkxk List of class ltraj skxkkksrkkkk

Type of the traject: Type II (time recorded)

Irregular traject. Variable time lag between two locs

Characteristics of the bursts:

id burst nb.reloc NAs date.begin date.end
1 Brock Brock.1 62 32 1993-07-01 1993-08-31
2 Calou Calou.1 60 41 1993-07-03 1993-08-31
3 Chou Chou.1992 31 15 1992-07-29 1992-08-28
4 Chou Chou.1993 60 36 1993-07-02 1993-08-30
5 Jean Jean.1 62 32 1993-07-01 1993-08-31

infolocs provided. The following variables are available:
[1] "pkey"

The trajectories are now regular, but there are now a lot of missing values!

3.4 Rounding the timing of the trajectories to define a
regular trajectory

In some cases, despite the fact that the relocations were expected to be collected
to return a regular trajectory, a minor delay is sometimes observed in this timing.
For example, consider the monitoring of four ibex in the Belledonne Mountains
(French Alps):

> data(ibexraw)
> ibexraw

wkkkkkkkkkk List of class ltraj ®kxkkkkkkkk

Type of the traject: Type II (time recorded)
Irregular traject. Variable time lag between two locs

Characteristics of the bursts:

id burst nb.reloc NAs date.begin date.end

1 A163 A153 71 0 2003-06-01 00:00:56 2003-06-14 20:01:33
2 A160 A160 59 0 2003-06-01 08:01:35 2003-06-14 16:02:20
3 A286 A286 68 0 2003-06-01 00:02:45 2003-06-14 16:01:41
4 A289 A289 58 0 2003-06-01 00:01:31 2003-06-14 20:02:32

There is a variable time lag between successive relocations. Look at the time
lag between successive relocations:

> plotltr(ibexraw, "dt/3600")

17

A153

10 12 14 16
| | |
—

dt3600

dt/3600

H

10
1

h]lll

I
|

=1l 11m] ke
11T LTI e
UL U'J.I.l‘:llL m—_JJL_M\ UL
A286 A289
A I
. I o
el b e
SO I |’| M\ e N 'nH ||"|h
’ i H | | Il ‘|| © - M '|‘|||I| ﬁl T
4 o 41 0V

The relocations should have been collected every 4 hours, but there are some
missing values. Use the function setNA to place the missing values, as in the
section 3.3. We define a reference date and place the missing values:

> refda <- strptime("2003-06-01 00:00", "#Y-ym-j%d %H:%M")
> ib2 <- setNA(ibexraw, refda, 4, units = "hour")

> ib2

wkkkkkkkkxk List of class ltraj skxkkksrkksk

Type of the traject: Type II (time recorded)
Irregular traject. Variable time lag between two locs

Characteristics of the bursts:

id burst nb.reloc NAs date.begin date.end
1 A153 A153 84 13 2003-06-01 00:00:56 2003-06-14 20:01:33
2 A160 A160 81 22 2003-06-01 08:01:35 2003-06-14 16:02:20
3 A286 A286 83 15 2003-06-01 00:02:45 2003-06-14 16:01:41
4 A289 A289 84 26 2003-06-01 00:01:31 2003-06-14 20:02:32

Even when filling the gaps with NAs, the trajectory is still not regular. Now,
look again at the time lag between successive relocations:

18

> plotltr(ib2, "dt/3600")

dt3600

dt’3600

A153

4.01
| |
—

i
M&rwwﬂ’w ﬂwmlllw ”;.”1
Rk 1 il

Jun 02

Jun 07

Time

Jun 12

dt/3600

dt/3600

A160

|
.

396 398 4.00 402 404
1 |
—

1

T
Jun 02

Jun 07

Time

A289

Jun 12

4.04
1
]

4.00
|

3.96
|

Jun 02

Jun 07

Time

Jun 12

We can see that the time lag is only slightly different from 4 hour. The function
sett0 can be used to “round” the timing of the coordinates:

> ib3 <- sett0(ib2, refda, 4, units

> ib3

wkrckkkkkkxk List of class ltraj skxkrkrkkkk

Type of the traject: Type II (time recorded)
Regular traject. Time lag between two locs: 14400 seconds

Characteristics of the bursts:

id burst nb.reloc NAs

1 A153
2 A160
3 A286
4 A289

A153
A160
A286
A289

84
81
83
84

13
22
15
26

The trajectory is now regular.

19

”hOllI'")

date.begin

date.end

2003-06-01 00:00:00 2003-06-14 20:00:00
2003-06-01 08:00:00 2003-06-14 16:00:00
2003-06-01 00:00:00 2003-06-14 16:00:00
2003-06-01 00:00:00 2003-06-14 20:00:00

Important note: The functions setNA and settO are to be used to set a
theoretically regular trajectory into a practically regular trajectory. It is NOT
intended to transform an irregular trajectory into a regular one (many
users of adehabitat asked this question).

3.5 A special type of trajectories: same duration

In some cases, an object of class 1traj contains several regular bursts of the
same duration characterized by relocations collected at the same time (same
time lags between successive relocations, same number of relocations). We can
check whether an object of class “ltraj” is of this type with the function is.sd.
For example, consider again the movement of 4 ibexes monitored using GPS,
stored in an object of class 1traj created in the previous section:

> is.sd(ib3)
[1] FALSE

This object is not of the type sd (same duration). However, theoretically, all
the trajectories should have been sampled at the same time points. It is regular,
but there are mismatches between the time of the relocations:

> ib3

*xxkkkkkkkk [,List of class Itraj *ksxskckkkokkokk

Type of the traject: Type II (time recorded)
Regular traject. Time lag between two locs: 14400 seconds

Characteristics of the bursts:

id burst nb.reloc NAs date.begin date.end
1 A153 A153 84 13 2003-06-01 00:00:00 2003-06-14 20:00:00
2 A160 A160 81 22 2003-06-01 08:00:00 2003-06-14 16:00:00
3 A286 A286 83 15 2003-06-01 00:00:00 2003-06-14 16:00:00
4 A289 A289 84 26 2003-06-01 00:00:00 2003-06-14 20:00:00

This is caused by the fact that there are missing relocations at the beginning
and/or end of the monitoring for several animals (A160 and A286). We can
use the function set.limits to define the time of beginning and ending of
the trajectories. This function adds NAs to the beginning and ending of the
monitoring when required:

> ib4 <- set.limits(ib3, begin = "2003-06-01 00:00", dur = 14,
+ units = "day", pattern = "JY-Jm-7d JH:/M")
> ib4

wpkkkkkkkkk List of class ltraj #kxkkkkkkkk

20

Type of the traject: Type II (time recorded)
Regular traject. Time lag between two locs: 14400 seconds

Characteristics of the bursts:
id burst nb.reloc NAs date.begin date.end

1 A163 A153 85 14 2003-06-01 2003-06-15
2 A160 A160 85 26 2003-06-01 2003-06-15
3 A286 A286 85 17 2003-06-01 2003-06-15
4 A289 A289 85 27 2003-06-01 2003-06-15

All the trajectory are now covering the same time period:
> is.sd(ib4)
[1] TRUE

Remark: in our example, all the bursts are covering exactly the same time
period (all begin at the same time and date and all stop at the same time and
date). However, the function set.limits is much more flexible. Imagine for
example that we are studying the movement of an animal during the night, from
00:00 to 06:00. If we have one burst per night, then it is possible to define an
object of class 1traj, type sd, containing several nights of monitoring, even if
the nights of monitoring do not correspond to the same date. If we consider that
all the bursts cover the same period, then it is still possible to use the function
set.limits to define an object of type sd (this is explained deeply on the help
page of set.limits).

It is then possible to store some parameters of sd objects into a data frame
(with one relocation per row and one burst per column), using the function
sd2df. For example, considering the distance between successive relocations:

> di <- sd2df(ib4, "dist")

> head(di)

A153 A160 A286 A289
1 41.04875 NA 214.2008 15.65248
2 NA NA 428.8508 293.60007
3 NA 517.4882 606.9802 837.70401
4 NA 1533.7881 637.1538 1108.75065
5 NA 608.6912 216.0000 72.61543
6 244.66303 2264.8366 216.8156 383.65870

This data frame can then be used to study the interactions or similarities be-
tween the bursts.

21

3.6 Metadata on the trajectories (Precision of the reloca-
tions, etc.)

Sometimes, additional information is available for each relocation, and we may
wish to store this information in the object of class 1traj, to allow the analysis
of the relationships between these additional variables and the parameters of
the trajectory.

This meta information can be stored in the attribute infolocs of each burst.
This should be defined when creating the object 1traj, but can also be defined
later (see section 4.6 for an example). For example, load the dataset capre-
ochiz:

> data(capreochiz)
> head(capreochiz)

X y date Dop Status Temp Act Conv
1 967.3994 1137.488 2004-02-13 17:02:18 5.7 3DDif 10 O 0
2 961.9346 1141.413 2004-02-14 00:31:23 3.6 3DDif 3 0 0
3 961.9340 1141.401 2004-02-14 12:02:17 6.9 3DDif 8 0 0
4 961.9426 1141.409 2004-02-15 00:00:47 5.0 3DDif 3 0 0
5 961.9472 1141.405 2004-02-15 00:30:13 4.1 3DDif 2 0 0
6 961.9430 1141.409 2004-02-15 12:01:11 8.1 3DDif 5 0 0

This dataset contains the relocations of one roe deer monitored using a GPS
collar in the Chize forest (Deux-Sevres, France). This dataset contains the x
and y coordinates (in kilometres), the date, and several variables characterizing
the precision of the relocations. Note that the date is already of class POSIXct.
We now define the object of class 1traj, storing the variables Dop, Status,
Temp, Act, Conv in the attribute infolocs of the object:

> capreo <- as.ltraj(xy = capreochiz[, c("x", "y")], date = capreochiz$date,
+ id = "Roe.Deer", infolocs = capreochiz[, 4:8])
> capreo

wkkkkkkkkkk List of class ltraj ®kxkkkkkkkk

Type of the traject: Type II (time recorded)
Irregular traject. Variable time lag between two locs

Characteristics of the bursts:

id burst nb.reloc NAs date.begin date.end
1 Roe.Deer Roe.Deer 2355 0 2004-02-13 17:02:18 2004-08-31 06:00:47

infolocs provided. The following variables are available:
[1] IlDole IlStatus n lITempll lIAct n Ilconvll

22

The object capreo can be managed as usual. The function infolocs()
can be used to retrieve the attributes infolocs of the bursts building up a
trajectory:

> inf <- infolocs(capreo)
> head(inf[[1]])

Dop Status Temp Act Conv

1 5.7 3DDif 10 O 0
2 3.6 3DDif 3 0 0
3 6.9 3DDif 8 0 0
4 5.0 3DDif 3 0 0
5 4.1 3DDif 2 0 0
6 8.1 3DDif 5 0 0

The function removeinfo can be used to set the attribute infolocs of all
bursts to NULL.

Note that it is required that:

e all the burst are characterized by the same variables in the attribute in-
folocs. For example, it is not possible to store only the variable Dop for
one burst and only the variable Status for another burst into the same
object;

e cach row of the data frame stored as attributes infolocs correspond to
one relocation (that is, the number of rows of the attribute should be the
same as the number of relocations in the corresponding burst).

Most functions of the package adehabitatLT do manage this attribute. For
example, the functions cutltraj and plotltr can be used by calling variables
stored in this attribute (as well as many other functions). For example:

> plotltr(capreo, "log(Dop)")

23

o —
<+
T o
[=]
=)
g
N-J||ﬂ
7 ki ,| i i IH
T ,_‘|' S
o Sraa] s b . ||iI.|!'
i IR L TR AT R S'I o el
. |-:l |.‘| !'|:|Illhrl 11_I| |I| : " I‘,l Illlll 'l |
IRl s ;
e - T T T T T
Mar Apr May Jun Jul Aug Sep
Time

4 Analyzing the trajectories

In this section, we will describe several tools available in adehabitatLT to anal-
yse a trajectory.

4.1 Randomness of the missing values

A first important point is the examination of the distribution of the missing
values in the trajectory. Missing values are frequent in the trajectories of an-
imals collected using telemetry (e.g., GPS collar may not receive the signal of
the satellite at the time of relocation, due for example to the habitat structure
obscuring the signal, etc.). As noted by Graves and Waller (2006), the analysis
of the patterns of missing values should be part of trajectory analysis.

The package adehabitatLT provides several tools for this analysis. For ex-
ample, consider the object ib4 created in section 3.5, and containing 4 bursts
describing the movements of 4 ibexes in the Belledonne moutain. We can first
test whether the missing values occur at random in the monitoring using the
function runsNAltraj:

> runsNAltraj(ib4)

24

A153 A160

100

(=]
g g °
] s 2
g s g
i r g
S &
o (=1
[T T T T] [T T T T T 1
-4 -3 2 1] 1 3 2 1 0 1 2 3
sim sim
A286 A289
(=]
(=1
3 @
g &
T 3B =3
@ @
£ E s
2 8
o (=1
I T T T T T 1 I T T T T T 1
-3 2 1 0 1 2 3 -3 2 1 0 1 2 3
sim sim

In this case, no difference appears between the number of runs actually ob-
served in our trajectories and the distribution of the number of runs under the
hypothesis of a random distribution of the NAs. The hypothesis of a random
distribution of the NAs seems reasonable here.

But now, consider the distribution of the missing values in the case of the
monitoring of one brown bear using a GPS collar:

> data(bear)
> bear

wkkkkkkkkxk List of class ltraj skxkkksrkksk

Type of the traject: Type II (time recorded)
Regular traject. Time lag between two locs: 1800 seconds

Characteristics of the bursts:

id burst nb.reloc NAs date.begin date.end
1 W0208 w0208 1157 157 2004-04-19 16:30:00 2004-05-13 18:30:00

This trajectory is regular. The bear was monitored during one month, with

25

one relocation every 30 minutes. We now test for a random distribution of the
missing values for this trajectory:

> runsNAltraj(bear)

Wo0208

80 100
| |

60
|

Frequency

sim

In this case, the missing values are not distributed at random. Have a look at
the distribution of the missing values:

> plotNAltraj(bear)

26

w0208

1.0

0.8

Missing values

0.4

0.2

0.0
1

T T T T
Apr 22 Apr 27 May 02 May 07 May 12

Time

Because of the high number of relocations in this trajectory, this graph is
not very clear. So a better way to study the distribution of the missing values
is to work directly on the vector indicating whether the relocations are missing
or not. That is:

> missval <- as.numeric(is.na(bear[[1]]$x))
> head(missval)

[1] 000000

This vector can then be analyzed using classical time series methods (e.g. Diggle
1990). We do not pursue on this aspect, as this is not the aim of this vignette
to describe time series methods.

4.2 Should we consider the time?

4.2.1 Type II or type I?

Until now, we have only considered trajectories of type II (time recorded). How-
ever, a common approach to the analysis of animal movements is to consider the
movement as a discretized curve, and to study the geometrical properties of this
curve (e.g., Turchin 1998; Benhamou 2004). That is, even if the data collection

27

implied the recording of the time, it is often more convenient to consider the
monitored movement as a trajectory of type I. There are two ways to define a
type I trajectory with the functions of adehabitatLT. The first is to set the
argument typeII=FALSE when calling the function as.ltraj. The second is to
use the function typeII2typel. For example, considering the trajectory of the
bear loaded in the previous section, we can transform it into a type I object by:

> bearI <- typeII2typel(bear)
> bearl

skkkkkkkkkk List of class ltraj sk
Type of the traject: Type I (time not recorded)

Characteristics of the bursts:
id burst Nb.reloc NAs
1 W0208 W0208 1157 157

infolocs provided. The following variables are available:
[1] "pkey"

Nothing has changed, except that the time is replaced by an integer vector
ordering the relocations in the trajectory.

4.2.2 Rediscretizing the trajectory

Several authors have advised to rediscretize type I trajectories so that they are
built by steps with a constant length (e.g. Turchin 1998). This is a convenient
approach to the analysis, as all the geometrical properties of the trajectory can
be summarized by studying the variation of the relative angles.

The function redisltraj can be used for this rediscretization. For example,
look at the trajectory of the brown bear stored in bearI (created in the previous

section):

> plot(bearI)

28

6816000 6818000 6820000
| |

6814000
|

T T T T T T
514000 516000 518000 520000 522000 524000

6812000

1

Now, rediscretize this trajectory with constant step length of 500 metres:

> bearIr <- redisltraj(bearI, 500)
> bearlr

sokkkkokkkkkk List of class ltraj skskskskokkskskskok
Type of the traject: Type I (time not recorded)
Characteristics of the bursts:

id burst Nb.reloc NAs
1 W0208 W0208.R500 131 0

infolocs provided. The following variables are available:
[1] "pkey"

The number of relocations has increased. Have a look at the rediscretized tra-
jectory:

> plot(bearIr)

29

6816000 6818000 6820000
1 | |

6814000
|

T T T T T T
514000 516000 518000 520000 522000 524000

6812000

Then, the geometrical properties can be studied by examining the distribution
of the relative angles. For example, the function sliwinltr can be used to
smooth the cosine of relative angle using a sliding window method:

> sliwinltr(bearIr, function(x) mean(cos(x$rel.angle)), type = "locs",
+ step = 30)

30

f
~ |||
(=T ﬁ || +
s
| |
R
B g n 7 || | |
2 | . '|| ||
3 Mo RS \
£ [« +' ! | | [
8 II ‘|' Ilt |I |I 6' '
& i) II ,' |f - |||| II l.T
. . Lot |
4 -L&"I : |
V. 5
& ‘ lm |
ill |
-
0 20 40 60 80 100
date

The beginning of the trajectory is characterized by mean cosine close to 0.5
(tortuous trajectory). Then the movements of the animal is more linear (i.e.,
less tortuous). A finer analysis should now be done on these data. So that we
need to get the relative angles from this rediscretized trajectory:

> cosrelangle <- cos(bearIr[[1]]$rel.angle)
> head(cosrelangle)

[1] NA 0.17250586 -0.95704496 -0.02868423 0.90540260 1.00000000

This vector can now be analyzed using classical time series analysis methods.
We do not pursue this analysis further, as this is beyond the scope of this

vignette.

4.3 Dynamic exploration of a trajectory

The package adehabitatLT provides a function very useful for the dynamic
exploration of animal movement: the function trajdyn. This function allows to
dynamically zoom/unzoom, measure distance between several bursts or several
relocations, explore the trajectory in space and time, etc. For example, the ibex

data set is explored by typing:

> trajdyn(ib4)

31

iC Exploration of Animal Movements Q@@
2003-06-14 20:01:33

)" Choose a burst of celocations. [=)][X)
2153 -
2160
5286
2289

———————— to ckbtain this help, type 'h' ————-- oK 7
-- Hext/PFrevious relocation

nip

a - show all relocations

g -— Ga to...

0-9 -- show a given part of the path
b -- change Burst

i —- add/remove other bursts on the graph
z/a —— Zoom in/Out

Left-Click —- measure the distance between two points
Right-Click —- identify a relecation

/1 -- add or remove points/Lines

1 -= Quit

show bursts: R160 RAZBG AZBY

distance: 2768.848121298707

el

Note that this function can draw a background defined by an object of class
SpatialPixelsDataFrame or SpatialPolygonsDataFrame.

4.4 Analyzing autocorrelation

Dray et al. (2010) noted that the analysis of the sequential autocorrelation of
the descriptive parameters presented in section 2.2 is essential to the under-
standing of the mechanisms driving these movements. The approach proposed
by these authors is implemented in adehabitatLT. In this section, we describe
the functions that can be used to carry out this kind of analysis.

A positive autocorrelation of a parameter means that values taken near to
each other tend to be either more similar (positive autocorrelation) or less similar
(negative autocorrelation) than would be expected from a random arrangement.

4.4.1 Testing for autocorrelation of the linear parameters

The independence test of Wald and Wolfowitz (1944) is implemented in the
generic function wawotest. Basically, this function can be used to test the
sequential autocorrelation in a vector. However, the method wawotest.ltraj

32

allows to test autocorrelation for the three linear parameters dx, dy and dist
for each burst in an object of class 1traj. For example, consider again the
monitoring of movements of the bear:

> wawotest (bear)

249 NA removed
249 NA removed
249 NA removed
[[11]

dx dy dist
a 1.180527e+02 2.089499e+02 405.90227
ea -1.000000e+00 -1.000000e+00 -1.00000
va 8.927603e+02 8.612297e+02 878.76704
za 3.984481e+00 7.154119e+00 13.72629
P 3.381395e-05 4.211076e-13 0.00000

Note that this function removes the missing values before the test. The row p
indicates the P-value of the test. We can see that the three linear parameters are
strongly positively autocorrelated. There are periods during which the animal
is traveling at large speed and periods when the animals are walking at lower
speed. Note that this was already apparent on the graph showing the changes
with time of the distance between successive relocations:

> plotltr(bear, "dist")

33

w0208

2500
|

1500 2000

dist

1000

500
|

Apr 22 Apr 27 May 02 May 07 May 12

Time

This was even clearer on the graph showing the moving average of the distance
(with a window of 5 days):

> sliwinltr(bear, function(x) mean(na.omit(x$dist)), 5 * 48, type = "locs")

(not executed in this report).

4.4.2 Analyzing the autocorrelation of the parameters

The autocorrelation function (ACF) p(a) measures the correlation between a
parameter measured at time ¢ and the same parameter measured at time ¢ — a
in the same time series (Diggle, 1990). This allows to analyze the autocorre-
lation, and to identify the scales at which this autocorrelation occurs. Dray
et al. (2010) noted that the autocorrelation function measured at lag 1 (p(1))
is mathematically equivalent to the independence test of Wald and Wolfowitz
(1944).

Dray et al. (2010) extended the mathematical bases underlying the ACF to
handle the missing data occurring frequently in the trajectories. Their approach
is implemented in the function acfdist.ltraj (the management of NAs is
described in detail on the help page of this function). For example, consider
again the monitoring of a brown bear:

34

> acfdist.ltraj(bear, lag = 5, which = "dist")

90000
|

80000

o /
<

autocorrelation
70000
|

60000
|

50000
|

1 2 3 4 5

Lag

We have calculated here the ACF for the distance for a time lag up to 5
relocations. The interested reader can try to calculate the ACF for trajectories
up to 100 relocations to see the cyclic patterns occurring in this trajectory.

4.4.3 Testing autocorrelation of the angles

The test of the autocorrelation of the angular parameters (relative or absolute
angles, see section 2.2) is based on the chord distance between successive angles
(see Dray et al. 2010 for additional details):

35

Criteria f for the measure of independence between successive
angles at time i-1 and i

= 2q¢11(1 — ¢os(04—t

For example, the function testang.ltraj is a randomization test using the
mean squared chord distance as a criteria. For example, considering again the
trajectory of the bear, we can test the autocorrelation of the relative angles
between successive moves:

> testang.ltraj(bear, "relative")

[[1]1]
Monte-Carlo test
Call: as.randtest(sim = res$sim[-1], obs = res$sim[1], alter = alter)

Observation: 1471.667
Based on 999 replicates
Simulated p-value: 0.066

Alternative hypothesis: two-sided

Std.0Obs Expectation Variance
-1.835023 1544.334415 1568.186496

36

4.4.4 Analyzing the autocorrelation of angular parameters

Dray et al. (2010) extended the ACF to angular parameters by considering the
chord distance as a criteria to build the ACF. This approach is implemented in
the function acfang.ltraj. Considering again the bear dataset:

> acfang.ltraj(bear, lag = 5)

autocorrelation
2.00 205
| |

1.95

1.90
|

We can see that the relative angle observed at time ¢ is significantly correlated
with the angle observed at time ¢ — 1.

4.5 Partitioning a trajectory into segments characterized
by a homogenous behaviour

We implemented a new approach to the partitioning of movement data, relying
on a Bayesian partitioning of a sequence. This approach was originally devel-
oped in molecular biology, to partition DNA sequences (Gueguen 2001). We
describe this approach in this section.

Biologically, a positive autocorrelation in any of the descriptive parameters

may mean that the animal behaviour is changing with time (there are periods
during which the animal is feeding, other during which the animal is resting,

37

etc.). The idea is then to partition the trajectory of the animal into homogenous
segments.

We will use the movements of a porpoise monitored using an Argos collar to

illustrate this method. First we load the data:

> data(porpoise)
> gus <- porpoise[1]
> gus

okxckkkkkkxk List of class ltraj skxkkkrkkkk

Type of the traject: Type II (time recorded)
Regular traject. Time lag between two locs: 86400 seconds

Characteristics of the bursts:
id burst nb.reloc NAs date.begin date.end
1 GUS GUS 64 0 2004-01-20 11:00:00 2004-03-23 11:00:00

The trajectory is regular and is built by relocations collected every 24 hours
during two months. Plot the data:

> plot(gus)

o ‘\?

=3 |

=

=] =

2

3 0
)
i

o

=

=

=

=}

@

hl O

T
- =

2

=

=

g

o

[=

2

=g

g

g

o

=

=

8

=] | T T T 1

=

-1200000 -1000000 -800000 -600000 -400000

1

38

Visually, the trajectory seems to be built by three segments. At the
very beginning of the trajectory, the animal is performing very short moves.
Then, the animal is travelling faster toward the southwest, and finally, the ani-
mal is again performing very small moves.

We can draw the ACF for the distance between successive relocations to
illustrate the autocorrelation pattern from another point of view:

> acfdist.ltraj(gus, "dist", lag = 20)

u
.
P
2
$ /
ai o
e
0-0
Jo2] 0/
= 9 v
i=] @ o
g 2 o7
<]
g =
T o / L
=]
$ []
= /
T u
s
| |
g |/
o
3 .
S|
u
T T T T
5 10 15 20

There is a strong autocorrelation pattern present in the data, up to lag 8.
We can plot the distances between successive relocations according to the date

> plotltr(gus, "dist")

39

GUS

100000 120000
1

dist
60000 80000
I
=
gl
R —
__1__ —

40000
|
L 2

20000
|
'm‘_____
—
——
—

0
|

Time

Now, let us suppose that the distances between successive relocations have
been generated by a normal distribution, with different means corresponding to
different behaviours. Let us built 10 models corresponding to 10 values of the
mean distance ranging from 0 to 130 km/day:

> (tested.means <- round(seq(0, 130000, length = 10), 0))
[1] 0 14444 28889 43333 57778 72222 86667 101111 115556 130000

Based on the visual exploration of the distribution of distance, we set the
standard deviation of the distribution to 5 km. We can now define 10 models
characterized by 10 different values of means and with a standard deviation of
5 km:

> (limod <- as.list(paste("dnorm(dist, mean =", tested.means, ", sd = 5000)")))

[r111

[1] "dnorm(dist, mean

0 , sd = 5000)"

[[2]1]

[1] "dnorm(dist, mean = 14444 , sd = 5000)"

40

[[311]

[1] "dnorm(dist, mean = 28889 , sd = 5000)"

[[4]1]

[1] "dnorm(dist, mean = 43333 , sd = 5000)"

[[5]]

[1] "dnorm(dist, mean = 57778 , sd = 5000)"

[[6]1]

[1] "dnorm(dist, mean = 72222 , sd = 5000)"

[[7]1]

[1] "dnorm(dist, mean = 86667 , sd = 5000)"

N

[1] "dnorm(dist, mean = 101111 , sd = 5000)"
[roll

[1] "dnorm(dist, mean = 115556 , sd = 5000)"
[[10]]

[1] "dnorm(dist, mean = 130000 , sd = 5000)"

The approach of Gueguen (2001) allows, based on these a priori models, to
find both the number and the limits of the segments building up the trajectory.
Any model can be supposed for any parameter of the steps (the distance, rela-
tive angles, etc.), provided that the model is Markovian.

Given the set of a priori models, for a given step of the trajectory, it is
possible to compute the probability density that the step has been generated
by each model of the set. The function modpartltraj computes the matrix
containing the probability densities associated to each step (rows), under each
model of the set (columns):

> mod <- modpartltraj(gus, limod)
> mod

>k >k >k >k 3k 3k 3k 3k 5k 3k 3k 5k %k %k >k >k 5k 5k 3k %k %k %k >k %k %k K >k 5k 5k %k %k %k %k >k *k *k Kk k

* Probabilities computed for a traject
* with the following models:

[1] "mod.1" '"mod.2" "mod.3" '"mod.4" "mod.5" "mod.6" "mod.7" "mod.8"
[9] "mod.9" "mod.10"

Then, we can estimate the optimal number of segments in the trajectory,
given the set of a priori models, using the function bestpartmod, taking as
argument the matrix mod:

41

> bestpartmod (mod)
Maximum likelihood for K = 4

600
|

c(yyc2)
400
|

200
|

L L L L I I
i3 5 7 9 11 13 156 17 19 21 23 25 27 29

fac

This graph presents the value of the log-likelihood (y) that the trajectory
is actually made of K segments (x). Note that this log-likelihood is actually
corrected using the method of Gueguen (2001) (which implies the Monte Carlo
simulation of the independence of the steps in the trajectory — explaining the
boxplots —, see the help page of bestpartmod for further details on this proce-
dure). In this case, the method indicates that 4 segments are a reasonable choice
for the partitioning. This is a surprise for us, as we rather expected 3
segments (actually, the number of segments returned by the function depend
on the models supposed a priori).

Finally, the function partmod.ltraj can be used to compute the partition.
The mathematical rationale underlying these two functions is the following:
given an optimal k-partition of the trajectory, if the i*" step of the trajectory
belongs to the segment k£ predicted by the model d, then either the relocation
i — 1 belongs to the same segment, in which case the segment containing ¢ — 1
is predicted by d, or the relocation ¢ — 1 belongs to another segment, and the
other (k — 1) segments together constitute an optimal (k — 1) partition of the
trajectory [1—(¢ — 1)]. These two probabilities are computed recursively by the
functions from the matrix mod, observing that the probability of a 1-partition

42

(partition built by one segment) of the trajectory from 1 to ¢ described by the
model m is simply the product of the probability densities of the steps from 1
to i under the model m.

Remark: this approach relies on the hypothesis of the independence of the
steps within each segment.

Now, use the function partmod.ltraj to partition the trajectory of the
porpoise into 4 segments:

> (pm <- partmod.ltraj(gus, 4, mod))

Number of partitions: 4
Partition structure:
relocation Num Model

1 1 =—m mm—mmme
2 | 2 mod.2
3 R
4 | 5 mod.5
5 28 ——= ———-——-
6 | 8 mod.8
7 33 === —mm—mm-
8 | 2 mod.2
9 64 ——= ———-——-

The segments are contained in the component $ltraj of the list

We can see that the models at the beginning of the trajectory and at the
end of the trajectory are the same. Have a look at this partition:

> plot(pm)

43

(=] *
= |
[= v LY
2 s
<
|
|
o /’.
[=])—l’
=
g 4
g /
—— g ’,/.
"; —~——
=
= ~
=
=
=1
3
o
=1
=1
= 4
8
b3

T T T T T
-1200000 -1000000 -800000 -600000 -400000

4000000
1

X

This is very interesting: we already noted that the movements at the very
beginning and the end of the trajectory were much slower that the rest of the
trajectory, and this is confirmed by this partition. However, this partition il-
lustrates a change of speed at the middle of the “migration”. The end of the
migration is much faster than the beginning. This is clearer on the graph show-
ing the changes in distance between successive relocations with the date. Let
us plot this graph together with the partition:

> plotltr(gus, "dist")
> tmp <- lapply(1:length(pm$ltraj), function(i) {

+ coul <- c("red", "green", "blue")[as.numeric(factor(pm$stats$mod)) [i]]
+ lines (pm$ltraj[[i]]$date, rep(tested.means[pm$stats$mod[il],

+ nrow(pm$ltraj[[i]])), col = coul, lwd = 2)

+ 3}

44

GUS

dist
60000 80000 100000 120000
| |

40000
|

20000
|
v:q\
o-:::_*_—:_:___.
—
-_‘:S_F
~
=N
T o

0
|

Feb Mar

Time

The end of the migration is nearly two times faster than the beginning of
the migration.

To conclude, have a look at the residuals of this partitionning;:

> res <- unlist(lapply(1:length(pm$ltraj), function(i) {

+ pm$ltraj[[i]]$dist - rep(tested.means[pm$stats$mod[i]], nrow(pm$ltraj[[il]))
+ 1))

> plot(res, ty = "1")

45

30000
|

20000
|

10000
|

0

res
=
I N

10000
|
e

-20000
1

Index

And a Wald and Wolfowitz test suggests that the residuals of this partition
are independent, confirming the validity of the approach:

> wawotest (res)

4 NA removed
a ea va za P
-5.4712718 -1.0000000 59.2571538 -0.5808456 0.7193277

4.6 Rasterizing a trajectory

In some cases, it may be useful to rasterize a trajectory. In particular, when the
aim of the study is to examine the habitat traversed by the animal, this approach
may be useful. For example, consider the dataset puechcirc, containing 3
trajectories of 2 wild boars. It may be useful to identify the habitat traversed
by the animal during each step. A habitat map is available in the dataset
puechabonsp:

> data(puechcirc)
> data (puechabonsp)
> mimage (puechabonsp$map)

46

Elevation Aspect

We can rasterize the trajectories of the wild boars:

> ii <- rasterize.ltraj(puechcirc, puechabonsp$map)

The result is a list containing 3 objects of class "SpatialPointsDataFrame”

(one per animal). Let us examine the first one:

> trl <- ii[[1]]
> head(tri)

coordinates step
(700300, 3158400)
(700200, 3158400)
(700200, 3158300)
(700200, 3158300)
(700200, 3158400)
(700300, 3158400)

DO WN
ASOA A W W W

This data frame contains the coordinates of the pixels traversed by each step.
For example, the rasterized trajectory for the first animal is:

> plot(tril)
> points(tri[tr1[[1]] == 3,], col = "red")

47

+
+
+ 4+ + o+

+
+ +
+ 4+ ++
++ 4 4
+ 4
+ 4+ + 4
+++ +
+ +
++ 4+ ++ + +
++ 4+ + +
+ + 4+
+ 4+
+++ +
+++ +
+ +
+ +
+

The red points indicate the pixels traversed by the third step. These results
can be used to identify the habitat characteristics of each step. For example, we
may calculate the mean elevation for each step. To proceed, we use the function
overlay of the package sp.

> ov <- overlay(puechabonsp$map, tril)

> mel <- puechabonsp$map[ov,]

> mo <- tapply(mel[[1]], tr1[[1]], mean)
> plot(mo, ty = "1")

48

250
|

200

mo

150
|

Q
I

Index

Here, we can see that the first animal stays on the plateau at the beginning
at the monitoring, then goes down to the crops, and goes back to the plateau.
It is easy to repeat the operation for all the animals. We will make use of the
infolocs attribute. We first build a list containing data frames, each data
frame containing on variable describing the mean elevation traversed by the
animal between relocation ¢ — 1 and relocation i:

> val <- lapply(1:length(ii), function(i) {
+ tr <- ii[[i]]

+ ov <- overlay(puechabonsp$map, tr)

+ mel <- puechabonsp$map[ov,]

+ mo <- tapply(mel[[1]], tr[[1]], mean)
+ elev <- rep(NA, nrow(puechcirc[[i]]))
+ elev[as.numeric (names(mo)) + 1] <- mo
+ return(data.frame(elevation = elev))

+3)
Then, we define the infolocs attribute:
> infolocs (puechcirc) <- val

and finally, we can plot the mean elevation as a function of date:

49

> plotltr(puechcirc, "elevation")

alavation
200
|
ka

18:00 23:00 04:00

elevation

20:00 22:00 00:00 02:00 04:00 0&:00

[

250
|
7
3

alavation

150
I

20:00 22:00 00:00 02:00 04:00 06:00

4.7 Models of animal movements

Several movement models have been proposed in the litteratured to describe
animal movements. The package adehabitatLT contains several functions al-
lowing to simulate these models. Such simulations can be very useful to test
hypotheses concerning a trajectory, because all the descriptive parameters of
the steps are also generated by the functions. Actually, the package proposes 6
functions to simulate such models:

e simm.brown can be used to simulate a Brownian motion;

e simm.crw can be used to simulate a correlated random walk. This model
has been often used to describe animal movements (Kareiva and Shigesada
1983);

e simm.mba can be used to simulate an arithmetic Brownian motion (with
a drift parameter and a covariance between the coordinates, see Brillinger
et al. 2002);

50

e simm.bb can be used to simulate a Brownian bridge motion (i.e. a Brow-
nian motion constrained by a fixed start and end point);

e simm.mou can be used to simulate a bivariate Ornstein-Uhlenbeck motion
(often used to describe the sedentarity of an animal, e.g. Dunn and Gipson
1977);

e simm.levy can be used to simulate a Levy walk, as described (Bartumeus
et al. 2005).

All these functions return an object of class 1traj. For example, simulate a
correlated random walk built by 1000 steps characterized by a mean cosine of
the relative angles equal to 0.95 and a scale parameter for the step length equal
to 1 (see the help page of simm.crw for additional details on the meaning of
these parameters):

> sim <- simm.crw(1:1000, r = 0.95)
> sim

wkkkkkkkkkk List of class ltraj skxkkkskkkk

Type of the traject: Type II (time recorded)
Regular traject. Time lag between two locs: 1 seconds

Characteristics of the bursts:
id burst nb.reloc NAs date.begin date.end
1 A1 Al 1000 0 1970-01-01 01:00:01 1970-01-01 01:16:40

infolocs provided. The following variables are available:
[1] "pkey"

Note that the vector 1:1000 passes as an argument is considered here as a
vector of dates (it is converted to the class POSIXct by the function, see section
2.4 for more details on this class). Other dates can be passed to the functions.
Have a look at the simulated trajectory:

> plot(sim, addp = FALSE)

o1

300

200
|
i
L

100
|
"‘-\-\\

-100
1

0 100 200 300 400 500

5 Conclusion and perspectives

Several other methods can be used to analyze a trajectory. Thus, the first pas-
sage time method, developed by Fauchald and Tveraa (2003) to identify the
areas where area restricted search occur is implemented in the function fpt.
Several methods are available in the package adehabitatHR to estimate a home
range based on objects of class 1traj. Thus, the Brownian bridge kernel method
(Bullard 1999, Horne et al. 2007), the biased random bridge kernel method
(Benhamou and Cornelis 2010, Benhamou 2011), and the product kernel algo-
rithm (Keating and Cherry 2009) are implemented in the functions kernelbb
and kernelkc respectively.

But one thing is important: at many places in this vignette, we have noted
that the descriptive parameters of the steps can be analysed as a (possibly mul-
tiple) time series. The R environment provides many functions to perform such
analyses, and we stress that the package adehabitatLT should be con-
sidered as a springboard toward such functions.

We included in the package adehabitatLT several functions allowing the
analysis of animal movements. All the brother packages adehabitat* contain

92

a vignette similar to this one, which explains not only the functions, but also in
some cases the philosophy underlying the analysis of animal space use.

References

Bartumeus, F., da Luz, M.G.E., Viswanathan, G.M. and Catalan, J. 2005.
Animal search strategies: a quantitative random-walk analysis. Ecology,
86: 3078-3087.

Benhamou, S. and Cornelis, D. 2010. Incorporating movement behavior and
barriers to improve kernel home range space use estimates. Journal of
Wildlife Management, 74, 1353-1360.

Benhamou, S. 2011. Dynamic approach to space and habitat use based on
biased random bridges. PLOS ONE, 6, 1-8.

Benhamou, S. 2004. How to reliably estimate the tortuosity of an animal’s
path: straightness, sinuosity, or fractal dimension? Journal of Theoretical
Biology, 229, 209-220.

Brillinger, D., Preisler, H., Ager, A., Kie, J. and Stewart, B. 2002. Employing
stochastic differential equations to model wildlife motion. Bulletin of the
Brazilian Mathematical Society, 2002, 33, 385-408.

Brillinger, D., Preisler, H., Ager, A. and Kie, J. 2004. An exploratory data
analysis (EdA) of the paths of moving animals. Journal of Statistical
Planning and Inference, 122, 43-63.

Bullard, F. 1999. Estimating the home range of an animal: a Brownian bridge
approach Johns Hopkins University.

Calenge, C. 2005. Des outils statistiques pour I'analyse des semis de points
dans I'espace ecologique. Universite Claude Bernard Lyon 1.

Calenge, C. 2006. The package adehabitat for the R software: a tool for the
analysis of space and habitat use by animals. Ecological modelling, 197,
516-519.

Calenge, C., Dray, S. and Royer-Carenzi, M. 2009. The concept of animals’
trajectories from a data analysis perspective. Ecological Informatics, 4,
34-41.

Diggle, P. 1990. Time series. A biostatistical introduction Oxford University
Press.

Dray, S., Royer-Carenzi, M. and Calenge, C. 2010. The exploratory analysis
of autocorrelation in animal-movement studies. Ecological Research, 4,
34-41.

93

Dunn, J. and Gipson, P. 1977. Analysis of radio telemetry data in studies of
home range. Biometrics, 33, 85-101

Fauchald, P. and Tveraa, T. 2003. Using first-passage time in the analysis of
area-restricted search and habitat selection Ecology, 84, 282-288.

Graves, T. and Waller, J. 2006. Understanding the causes of missed global
positioning system telemetry fixes. Journal of Wildlife Management, 70,
844-851.

Gueguen, L. 2001. Segmentation by maximal predictive partitioning according
to composition biases. Pp 32-44 in: Gascuel, O. and Sagot, M.F. (Eds.),
Computational Biology, LNCS, 2066.

Horne, J., Garton, E., Krone, S. and Lewis, J. 2007. Analyzing animal move-
ments using Brownian bridges. Ecology, 88, 2354-2363.

Kareiva, P. and Shigesada, N. 1983. Analysing insect movement as a correlated
random walk. Oecologia, 56, 234-238.

Keating, K. and Cherry, S. 2009. Modeling utilization distributions in space
and time. Ecology, 90, 1971-1980.

Marsh, L. and Jones, R. 1988. The form and consequences of random walk
movement models. Journal of Theoretical Biology, 133, 113-131.

Pebesma, E. and Bivand, R.S. 2005. Classes and Methods for Spatial data in
R. R News, 5, 9-13.

Root, R. and Kareiva, P. 1984. The search for resources by cabbage butter-
flies (Pieris Rapae): Ecological consequences and adaptive significance of
markovian movements in a patchy environment. Ecology, 65, 147-165.

Turchin, P. 1998. Quantitative Analysis of Movement: measuring and model-
ing population redistribution in plants and animals. Sinauer Associates,
Sunderland, MA.

Wald, A. and Wolfowitz, J. 1944. Statistical Tests Based on Permutations of
the Observations The Annals of Mathematical Statistics, 15, 358-372.

Wiktorsson, M., Ryden, T., Nilsson, E. and Bengtsson, G. 2004. Modeling the
movement of a soil insect. Journal of Theoretical Biology, 231, 497-513.

o4

	History of the package adehabitatLT
	What is a trajectory?
	Two types of trajectories
	Descriptive parameters of the trajectory
	Several bursts of relocations
	Understanding the class ltraj
	Two points of views: steps (ltraj) or points (data.frame)?

	Managing objects of class ltraj
	Cutting a burst into several segments
	Playing with bursts
	Placing the missing values in the trajectory
	Rounding the timing of the trajectories to define a regular trajectory
	A special type of trajectories: same duration
	Metadata on the trajectories (Precision of the relocations, etc.)

	Analyzing the trajectories
	Randomness of the missing values
	Should we consider the time?
	Type II or type I?
	Rediscretizing the trajectory

	Dynamic exploration of a trajectory
	Analyzing autocorrelation
	Testing for autocorrelation of the linear parameters
	Analyzing the autocorrelation of the parameters
	Testing autocorrelation of the angles
	Analyzing the autocorrelation of angular parameters

	Partitioning a trajectory into segments characterized by a homogenous behaviour
	Rasterizing a trajectory
	Models of animal movements

	Conclusion and perspectives

