bcRep: Advanced Analysis of B Cell Receptor
Repertoire Data

Julia Bischof Julia.Bischof@uksh.de

2015-10-28
Contents
Introduction 2
Package features e e e 2
General information and package data 2
Parallel processing 2
Datasets o e e 2
Processing of IMGT/HighV-QUEST data 3
Amino acid distribution L 3
Diversity e 6
True diversity oL e 6
Giniindex L e 7
GENE USAZE .« v v v i i e e 8
Functions for a set of sequences L 9
Filter sequences L L 9
Functionality and junction frames. 10
Mutations e e 10
Functions for a set of clones 11
Defining clones and shared clones 11
Filter clones for their size 12
Filter clones for functionality or junction frame usage 13
Clone features e e 14
Comparison of different sampleso 17
Comparison of gene usage 17
Comparison of amino acid distribution 0oL oo 18
Comparison of richness and diversity Lo 20
Looking for clones, that are shared between several samples 21

mailto:Julia.Bischof@uksh.de

Introduction

Th bcRep package helps to analyze IMGT /HighV-QUEST output, in more detail. It functions well with B
cells, but can also be used for T cell data, in some cases. Using this package you can read IMGT/HighV-
QUEST output files and study sequences and clones. In special their functionality, junction frames, gene
usage and mutations. Functions to analyze clones out of the IMGT/HighV-QUEST output, but also to
compare sequences and clones, are provided.

Package features

o Handling IMGT/HighV-QUEST output: combine several output folders; read IMGT tables

e Data manipulation: filtering sequences or clones for functionality or junction frames

o Descriptive statistics: functionality and junction frame usage; CDR3 length distribution

e Clonotype analysis: cluster sequences to clones

e Gene usage analysis

o Basic mutation analysis

e Amino acid distribution and diversity: amino acid distribution, richnes, Shannon index, inverse Shannon
index, Gini index

o Comparison of different samples: gene usage, amino acid distribution, diversity, clones

o several visualization methods

General information and package data

Before installing bcRep, following packages need to be installed: vegan, gplots, ineq, parallel,
doParallel, foreach.

Parallel processing

Parallel processing is possible for functions clones(), clones.shared(), sequences.geneComb(),
compare.aaDistribution(), compare.geneUsage() and compare.trueDiversity. Using only one core is
the default parameter.

Datasets

There are several datasets provided in the package. Most of them are examples of IMGT /HighV-QUEST
output; two additional files represent clonotype files:

library (bcRep)
data(summarytab) # An extract from IMGT/HighV-QUEST output file 1_Summary(...).tzt
data(ntseqtab) # An extract from IMGT/HighV-QUEST output file 3_Nt-sequences(...).tzt
data(aaseqtab) # An extract from IMGT/HighV-QUEST output file 5_AA-sequences(...).tzt
data(mutationtab) # An extract from IMGT/HighV-QUEST output file

77_V-REGION-mutation—-and-AA-change-table(...).txt

data(clones.ind) # Clonotypes of one individual
data(clones.allind) # Clonotypes of eight individuals

Get first 6 lines of each file
head (summarytab)
head (ntseqtab)

head (aaseqtab)

head (mutationtab)
head(clones.ind)
head(clones.allind)

Processing of IMGT /HighV-QUEST data

IMGT/HighV-QUEST can process datasets with up to 500.000 sequences. If you like to study bigger
datasets, you have to split the input FASTA-file into smaller datasets and upload them individually to IMGT.
Afterwards you can use function combineIMGT () to combine several folders.

Example: combine folders IMGTla, IMGT1b and IMGT1c to a new datset NewProject
combineIMGT (folders = c("pathTo/IMGT1la", "pathTo/IMGT1b", "pathTo/IMGT1c"),
name = "NewProject")

To read IMGT /HighV-QUEST output files, use readIMGT ("PathTo/file.txt",filterNoResults=TRUE).
You can choose between including or excluding sequences without any information (that are lines with a
sequence ID, but “No results”). Spaces and “-” in headers will be replaced by “_“ If there is a special table
required as input for a function, this is mentioned in the corresponding help file.

Amino acid distribution

Amino acid distribution can be analyzed using aaDistribution() and visualized with plotAADistribution().

This function returns a list containing proportions of all amino acids (including stop codons “*¢) for each
analyzed sequence length. Optionally, also the number used for analysis can be given.

Figures can be saved as PDF to the working directory.

Example:
data(aaseqtab)
aadistr<-aaDistribution(sequences = aaseqtab$CDR3_IMGT, numberSeq = TRUE)

First 4 columns of Amino acid distribution table:
for a sequence length of 13 AA (¥ = stop codon)
(aadistr$Amino_acid_distribution$ sequence length = 137)

Positionl Position2 Position3 Position4
F 0 0 0.007018 0.01053
L 0 0.003509 0.04561 0.08772
I 0 0.02105 0.02456 0.03158
M 0 0 0.01404 0.01754
Vv 0.003509 0.007018 0.09123 0.04561
S 0 0.07719 0.08421 0.07368
P 0.003509 0 0.02105 0.07018
T 0.02105 0.05614 0 0.03158
A 0.9614 0.003509 0.05965 0.05614

Position1 Position2 Position3 Position4

Y 0 0 0.01754 0.05263
H 0 0.01404 0.01053 0.007018
C 0 0 0.02105 0.007018
w 0 0 0.007018 0.02807
N 0 0.01404 0.007018 0.04211
D 0 0 0.2281 0.06316
G 0.003509 0.01053 0.1825 0.207

Q 0 0 0.01053 0.01404
R 0.007018 0.607 0.06316 0.0807
K 0 0.186 0.007018 0.03509
E 0 0 0.09825 0.0386
Kook koK 0 0 0 0

Plot example for sequence lengths of 14-17 amino acids:
aadistr.part<-list(aadistr$Amino_acid_distribution[13:16],
data.frame (aadistr$Number_of_sequences_per_length[13:16,]))
names (aadistr.part)<-names(aadistr)
plotAADistribution(aaDistribution.tab=aadistr.part, plotAADistr=TRUE,
plotSeqN=TRUE, PDF=NULL)

Percentage

Percentage

25 50 75 100

0

25 50 75 100

0

sequence length = 14

Amino acid distribution

sequence length = 15

o
o
—
n
g 0~
o
c o
[7] Yol
IS
8
o
10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Position Position
sequence length = 16 sequence length = 17
]
-
n
g N
©
c o
[] T3]
o
¢ g
o
9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17
Position Position
F & L I M Y S & P
T € A Y € H & C & W N
¢ D ¢ G ¢ Q ¢ R ¢ K E *

Number of sequences per length

343
I

317
I

sequence length = 15

sequence length = 14

Number of sequences
291
|

265
I

238
I

Diversity

Diversity of sequences and clones can be analyzed using trueDiversity() or clones.giniIndex().

True diversity

Using trueDiversity() richness or diversity of sequences with the same length can be analyzed. Basically
diversity of amino acids per position is calculated. True diversity can be measured for orders q = 0, 1 or 2.
plotTrueDiversity() can be used for visualization.

Order 0: Richness (in this case it represents number of different amino acids per position).

Order 1: Exponential function of Shannon entropy using the natural logarithm as the base (weights all amino
acids by their frequency).

Order 2: Inverse Simpson entropy (weights all amino acids by their frequency, but weights are given more to
abundant amino acids).

These indices are very similar (Hill, 1973). For example the exponential function of Shannon index is linearly
related to inverse Simpson.

Amino acid sequences can be found in IMGT output table 5_AA-sequences(...) .txt.

Example:

data(aaseqtab)

trueDiv<-trueDiversity(sequences = aaseqtab$CDR3_IMGT, order = 1)
using exponent of Shannon entropy

True diversity of order 1 for amino acid length of 5 AA
(trueDiv$True_diversity$'sequence length = 5')

Positionl Position2 Position3 Position4 Positiond

1 3 3 1.89 3

True diversity for sequences of amino actid length 14-17:

trueDiv.part<-list (trueDiv$True_diversity_order, trueDiv$True_diversity[13:16])
names (trueDiv.part)<-names (trueDiv)
plotTrueDiversity(trueDiversity.tab=trueDiv.part,color="darkblue", PDF=NULL)

True diversity, order 1

sequence length = 14 sequence length = 15
2 9 2 o
g 3 o°°°°°°°oo . g 3 00000000000 .
= [e] [0} = O o
8 © FT T T T 8 © Tt T T 711
1 4 7 14 14 8 15
Position Position
sequence length = 16 sequence length = 17
g 8 g 8
(T.) 3 000000000000 (T) 3 00000000oooo
= o o o° 2 o Oc®
a L S a (i s e
1 8 12 1 8 13
Position Position

Gini index

clones.giniIndex() calculates the Gini index of clones. Input is a vector containing clone sizes (copy
number). The Gini index measures the inequality of clone size distribution. It’s between 0 and 1. An index
of 0 represents a polyclonal distribution, where all clones have same size. An index of 1 represents a perfect
monoclonal distribution.

If a PDF project name is given, the Lorenz curve will be returned, as well. Lorenz curve can be interpreted
as p*100 percent have L(p)*100 percent of clone size.

Exzample:

data(clones.ind)
clones.giniIndex(clone.size=clones.ind$total_number_of_sequences, PDF = NULL)
[1] 0.7473557

Gene usage

Gene usage can be analyzed using functions geneUsage () and sequences.geneComb().

It can be differentiated between subgroup (f.e. IGHV1), gene (f.e. IGHV1-1) or allele (f.e. IGHV1-1*2), as
well as between relative or absolute values.

When using function geneUsage (), functionality and junction frame usage, dependent on gene usage can be
studied. Important ist, that input vectors have same order. Single genes per line, as well as several genes per
line, can be processed. IMGT nomenclature has to be used (f.e. “Homsap IGHV4-34*01)!

Example:
data(summarytab)
Vgene<-geneUsage (genes = summarytab$V_GENE_and_allele, level = "subgroup",
functionality = summarytab$Functionality)
plotGeneUsage (geneUsage.tab = Vgene, plotFunctionality = TRUE, PDF = NULL,
title = "IGHV usage")

IGHV usage IGHV usage

2 - Functionality
o | productive
© ® unproductive
_| unknown
o) S _
F o ST - - —
s 3
3 o
g ® S
c o _|
R s
o
2 - 9 -
o - = o —
— N [< o o N~ — AN ™ < Lo © N~
P R S T T P R S T S
T I I T T T T T I I T T T T
© 9 90 90 0 O 9 O Q0 90 90 0 O 9

Using function sequences.geneComb(), gene/gene ratios of two gene families will be analyzed. IMGT
nomenclature has to be used (f.e. “Homsap IGHV4-34*01¢), again. Results can be plotted with gene/gene
combination, where one or both genes are unknown, or without.

Exzample:
data(summarytab)
VDcomb.tab<-sequences.geneComb(familyl = summarytab$V_GENE_and_allele,
family2 = summarytab$D_GENE_and_allele,
level = "subgroup", abundance = "relative")
plotGeneComb(geneComb.tab = VDcomb.tab, withNA = FALSE, PDF = NULL)

Color Key))
:— IGHV & IGHD combinations
0 0.01 0.03

proportion

IGHD7
IGHD4
IGHD5
IGHD1
IGHD3
IGHD2
IGHD6

Functions for a set of sequences

There are some functions, which filter or summarize IMGT /HighV-QUEST output data:

Filter sequences

Sequence files can be filtered for functionality or junction frame usage:

« sequences.getProductives(): filters for productive sequences

« sequences.getUnproductives(): filters for unproductive sequences

o sequences.get AnyFunctionality(): excludes sequences without any functionality information
o sequences.getInFrames(): filters for in-frame sequences

« sequences.getOutOfFrames(): filters for out-of-frame sequences

IGHV3

IGHV1

IGHV4

IGHVS5

IGHV6

IGHV2

IGHV7

o sequences.getAnyJunctionFrame(): excludes sequences without any junction frame information

The function looks for a column containing functionality or junction frame information and filters the whole
table. All columns will remain, rows will be filtered. Junction frame information is only available in the
IMGT summary table (1_Summary(...).txt). Functionality information is available in every table.

Example: filter for productive sequences

data(summarytab)

ProductiveSequences<-sequences.getProductives (summarytab)

dimension of the summary table [rows, columns]:

dim(summarytab)

[1] 3000 29

dimension of the summary table, filtered for productive sequences [rows, columns]:
dim(ProductiveSequences)

[1] 2645 29

Functionality and junction frames

Some basic statistics about functionality and junction frames can be given by sequences.functionality()
and sequences.junctionFrame(). Both functions return absolute or relative values for each kind of
sequences.

Example:
data(summarytab)

sequences.functionality(data = summarytab$Functionality, relativeValues=TRUE)

Proportion of productive and unproductive sequences:

productive unproductive unknown

0.8817 0.1127 0.005667

Mutations

Some basic mutation analysis can be done with sequences.mutation(). Input is the IMGT output table
7_V-REGION-mutation-and-AA-change-table(...).txt and optionally 1_Summary(...).txt. Mutation
analysis can be done for V-region, FR1-3 and CDR1-2 sequences. Functionality, as well as junction frame
analysis can be included. Further the R/S ratio (ratio of replacement and silent mutations) can be returned.

data(mutationtab)

data(summarytab)

V.mutation<-sequences.mutation(mutationtab = mutationtab, summarytab = summarytab,
sequence = "V", junctionFr = TRUE, rsRatio=TRUE)

V.mutation$Number_of mutations, first 6 lines:

V_REGION_ identity_ nt number__mutations number__replacement

244/245 nt 1 1

10

V_REGION_ identity nt number mutations number_replacement

244/244 nt 0 0
243 /244 nt 1

240/247 nt 7 4
220,/248 nt 29 21
241/244 nt 3 1

Table 4: Table continues below

number__ silent RS ratio
0 0
0 0
1 0
3 1.333
8 2.625
2 0.5
V.mutation$Junction frame:
proportion
mutation__in__in-frame__sequences 0.6677
mutations_ in_ out-of-frame_ _sequences 0.005
mutations__in__sequences_ with__ unknown_ JUNCTION__ frame 0.066
no__mutation__in__in-frame__sequences 0.2417
no__mutations__in_ out-of-frame__sequences 0.001333
no__mutations_ in_ sequences_ with_ unknown_ JUNCTION__ frame 0.01833

Functions for a set of clones

BcRep provides some functions to study clone features. Some columns of the clonotype file can simply be
plotted using boxplot () or barplot().

Defining clones and shared clones

Clones can be defined from a set of sequences, using clones (). Criteria for sequences, belonging to the same
clones are:

o same CDR3 (amino acid) length and a identity of a given treshold (it’s possible, to look for same CDR3
sequences or for a CDR3 identity of f.e. 85%)

11

e same V gene
o same J gene (optional)

Output of the clone table can be individually specified (see help), but following columns are mandatory:

o shared CDR3 amino acid sequence(s)

e CDR3 amino acid sequence length

o Number of unique CDR3 sequences (each CDR3 sequence is mentioned once)
o Number of all CDR3 sequences (CDR3 sequences are listed with duplicates)
e Sequence count per CDR3

o V gene (as used for analysis)

o V gene and allele (IMGT nomenclature)

o J gene (as used for analysis)

o J gene and allele (IMGT nomenclature)

Optionally columns like D gene, CDR3 amino acid sequences (f.e. for diversity analysis), CDR3 nucleotide
sequences, functionality, junction frames and so on, can be specified.

Example:

data(aaseqtab)

data(summarytab)

clones.tab<-clones(aaseqtab = aaseqtab, summarytab = summarytab, ntseqtab = NULL,
identity = 0.85, useJ = TRUE, dispD = FALSE, dispSeqID = FALSE,

dispCDR3aa = FALSE, dispCDR3nt = FALSE,

dispJunctionFr.ratio = FALSE, dispJunctionFr.list = FALSE,
dispFunctionality.ratio = FALSE, dispFunctionality.list = FALSE,
dispTotalSeq = FALSE, nrCores=1)

Example of a clonotype file (not from the command above)
data(clones.ind)

Filter clones for their size

Using clones.filterSize() you can filter a set of clonotypes by their size. There are 3 methods for filtering:

Giving a treshold for the parameter

e number, filters the table for a given number of sequences; f.e. 20 smallest clones

o prop0fClones, filters the table for a proportion of the total number of clones, f.e. the 10% biggest
clones

e propOfSequences, filters the table for a proportion of all sequences, beloging to all clones; f.e. clones,
that include 1% of all sequences

Further it can be filtered for both ends (biggest and smallest clones; two.tailed), or only for biggest
(upper.tail) or smallest (lower.tail) clones. Biggest clones means clones with biggest sequence num-
ber /size/copy number.

Example 1: Getting the 3 smallest clones (clones with 85) CDR3 identity)

clones.filteredi<-clones.filterSize(clones.tab=clones.ind,
column="total_number_of_sequences",
number=3, method="lower.tail")

12

Output of clones.filteredl[,c("total_number_of_sequences",
"unique_CDR3_sequences_AA", "CDR3_length_AA", "V_gene")]:

total number of sequences unique_ CDR3__sequences_ AA
2 GALITMVRGVISWRFDP,
GALIAMVRGVISWRFDP
2 ARGLQRLVL, VRGLQRLVL
2 AKDRYGDYALY, ARDRYGDYALY

Table 7: Table continues below

CDR3_length_ AA V__gene

17 IGHV4-4
10 IGHV4-4
11 IGHV4-4

Exzample 2: Getting 10J biggest and smallest clones

(clones with 85J CDR3 identity; column 4 = "total_number_of_sequences")
clones.filtered2<-clones.filterSize(clones.tab=clones.ind, column=4, propOfClones=0.1,

method="two.tailed")

names(clones.filtered2) # a list with biggest and smallest 10/ clones
[1] "upper.tail" "lower.tail"
dim(clones.filtered2$upper.tail) # dimenstion of table with biggest clones [rows, columns]
[1] 100 14
dim(clones.filtered2$lower.tail) # dimension of table with smallest clones [rows, columns]
[1] 100 14

Example 3: Getting clones, that include 0.5/ of all sequences

(clones with 85J CDR3 identity; column 4 = "total_number_of_sequences"")
clones.filtered3<-clones.filterSize(clones.tab=clones.ind, column=4,

prop0fSequences=0.005, method="two.tailed")

names (clones.filtered3) # a list with biggest and smallest 10/ clones
[1] "upper.tail" "lower.tail"
dim(clones.ind) ## dimension of clones.ind table [rows, columns]
[1] 1000 14
--> number of rows is equal to number of rows of biggest and smallest clones
dim(clones.filtered3$upper.tail) # dimension of table with biggest clones [rows, columns]
[1] 48 14
dim(clones.filtered3$lower.tail) # dimension of table with smallest clones [rows, columns]
[1] 952 14

Filter clones for functionality or junction frame usage

clones.filterFunctionality() and clones.filterJunctionFrame filter set of clones for functionality or
junction frame usage.

13

o Filtering for functionality: you can filter for clones including only productive or only unproductive
sequences

Ezample
data(clones.ind)
productiveClones<-clones.filterFunctionality(clones.tab = clones.ind,
filter = "productive")
dimension of clomes.ind [rows, columns]:
dim(clones.ind)
[1] 1000 14
dimension of clones.ind, filtered for productive sequences [rows, columns]:
dim(productiveClones)
[1] 1000 14

o Filtering for junction frame usage: you can filter for clones including only in-frame or only out-of-frame
sequences

Ezample

data(clones.ind)

inFrameClones<-clones.filterJunctionFrame(clones.tab = clones.ind, filter = "in-frame")
dimension of clomes.ind [rows, columns]:

dim(clones.ind)

[1] 1000 14

dimension of clones.ind, filtered for in-frame sequences [rows, columns]:
dim(inFrameClones)

[1] 873 14

Clone features

There are some function provided to analyse clone features, like CDR3 length distribution or clone copy
number.

CDRS3 length distribution of clones Using clones.CDR3Length() CDR3 length distribution of clones
can be measured. The corresponding visualization method is plotClonesCDR3Length(). Input for both
functions are vectors containing nucleotide or amino acid sequences. Further functionality and junction frame
usage, depending on CDR3 length can be studied. Absolute or relative values can be returned.

Example:

data(clones.ind)

CDR3length<-clones.CDR3Length(CDR3Length = clones.ind$CDR3_length_AA,
functionality = clones.ind$Functionality_all_sequences)

output of some CDR3 length proportions (CDR3length$CDR3_length[1:3]):

CDR3_length_ 7 CDR3_length_ 8 CDR23_length_9

0.018 0.013 0.007

14

output of functionality ratios for some CDR3 lengths
(CDR3length$CDR3_length_wvs_ functionality[,1:3)])

CDR3_length_7 CDR3_length_8 CDR3_length_9
productive 0.8889 0.8462 1
unproductive 0.1111 0.1538 0
unknown 0 0 0

plotClonesCDR3Length (CDR3Length = clones.ind$CDR3_length_AA,
functionality = clones.ind$Functionality_all_sequences,
title = "CDR3 length distribution", PDF = NULL)

CDR3 length distribution

0 _
—
Q
()]
8 o _|
c —
(]
o
()
Q
o .-- I.-----____
7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
CDR3 length

15

CDRa3 length distribution

Functionality

= productive
® unproductive
“ unknown

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

75 100
|

Percentage
50
|

25
|

o -

CDR3 length

Clone copy number distribution plotClonesCopyNumber() can be used to plot clone sizes as an
boxplot.

Example: Clone copy number distribution with and without outliers
plotClonesCopyNumber (copyNumber = clones.ind$total_number_of_sequences,
withOutliers=TRUE, color = "darkblue",
title = "Copy number distribution", PDF = NULL)

Copy number distribution

o e
o _| (@]
o
(9p]
5 _
o o g
e o
5 Q 8
z
- _
o O
§ & -
—
1
o —]

16

plotClonesCopyNumber (copyNumber = clones.ind$total_number_of_sequences,
withOutliers=FALSE, color = "darkblue",
title = "Copy number distribution", PDF = NULL)

Copy number distribution

o !

Lo — |
— i |
q) |
2 :
E o |
- o 1
c i :
>
o
O 3B

o —

(without outliers)

Further functions like geneUsage (D or trueDiversity() can be used to further analysis of clone sets.

Comparison of different samples

If more than one sample should be analyzed, bcRep provides some function, to compare different samples.
Gene usage, amino acid distribution, diversity and shared clones can be compared and visualized.

Comparison of gene usage

Gene usage can be compared using compare.geneUsage (). Input is a list including sequence vectors of each
individual. If no names for the samples are specified, samples will be called Samplel, Sample2, ... in the
input order. Analysis of subgroup (f.e. IGHV1), gene (f.e. IGHV1-1) or allele (f.e. IGHV1-1*2), as well as of
relative or absolute values is possible.

Results can be visualized using plotCompareGeneUsage () (optional be saved as PDF in working directory).
A heatmap will be returned, with samples as rows and genes as columns. Proportions of genes are color
coded.

data(aaseqtab)
data(aaseqtab2)
V.comp<-compare.geneUsage(gene.list = list(aaseqtab$V_GENE_and_allele,
aaseqtab2$V_GENE_and_allele),
level = "subgroup", abundance = '"relative",
names = c("Individuall", "Individual2"),
nrCores = 1)

17

IGHV1 IGHV2 IGHV3 IGHV4 IGHV5

Individuall 0.2477 0.004005 0.507 0.2096 0.02236
Individual2 0.1863 0.007667 0.5523 0.2077 0.03

Table 11: Table continues below

IGHV6 IGHV7
Individuall 0.006008 0.003338
Individual2 0.007 0.009

plotCompareGeneUsage (comp.tab = V.comp, color = c("gray97", "darkblue"), PDF = NULL)

Color Key

_ IGHV usage

01 03 05
proportion

A —

Individual2

Individuall

IGHV6
IGHV2
IGHV7
IGHV5
IGHV4
IGHV1
IGHV3

Comparison of amino acid distribution

The amino acid distribution between two or more individuals can be compared using compare.aaDistribution().
Input is again a list including sequence vectors for each individual. Sequences of the same length will ne
analyzed together. Optional the number of sequences used for analysis can be returned, as well. If no names
for the samples are specified, samples will be called Samplel, Sample2, ... in the input order.

The output is a list, containing amino acid distributions for each sequence length and each individual.

plotCompareAADistribution() returns a plot (optional be saved as PDF in working directory), where

18

columns represent the samples, and rows represent different sequence length. In each field, one bar represents
one position of the sequence.

data(aaseqtab)
data(aaseqtab2)
AAdistr.comp<-compare.aaDistribution(sequence.list = list(aaseqtab$CDR3_IMGT,
aaseqtab2$CDR3_IMGT),
names = c("Individuall", "Individual2"),
numberSeq = TRUE, nrCores = 1)

Comparison of sequence length of 14-16 amino acids:
Individual 1: grep("14(15|16" ,names(AAdistr.comp$Amino_acid_distribution$Individuall))

--> 13:15
Individual 2: grep("14(15]16",names(AAdistr.comp$Amino_acid_distribution$Individual2))
#t --> 12:14

AAdistr.comp.part<-list(list(AAdistr.comp$Amino_acid_distribution$Individuall[13:15],
AAdistr.comp$Amino_acid_distribution$Individual2[12:14]),
list (AAdistr.comp$Number_of_sequences_per_length$Individuall[13:15],
AAdistr.comp$Number_of_sequences_per_length$Individual2[12:14]))
names (AAdistr.comp.part)<-names (AAdistr.comp)
names (AAdistr.comp.part$Amino_acid_distribution)<-
names (AAdistr.comp$Amino_acid_distribution)
names (AAdistr.comp.part$Number_of _sequences_per_length)<-
names (AAdistr.comp$Number_of_sequences_per_length)

plotCompareAADistribution(comp.tab = AAdistr.comp.part, plotSeqN = TRUE,
colors=c("darkblue","darkred"), PDF = NULL)

19

Amino acid distribution

Individuall Individual2

FeL MV

SOPOTOAGY
Number of sequences per length

SOPOTOASY eHO®COW NOD

sequence length = 14 sequence length = 15 sequence length = 16

©))
M <
] ™ ™
© < ®©
0 - ~ - 0 -
« (N «

== |ndividuall
=== |ndividual2

Comparison of richness and diversity

Richness and diversity can be compared using compare.trueDiversity(). Input can be a list of sequences
or the output of compare.aaDistribution(). Diversity can be analyzed for order 0 (richness), 1 (exponent
of Shannon entropy) or 2 (inverse Simpson) (see diversity analysis above). If no names for the samples are
specified, samples will be called Samplel, Sample2, ... in the input order.

The output is a list, containing richness or diversity indices for each sequence length and each individual.

20

Results can be visualized using plotCompareTrueDiversity() (optional be saved as PDF in working
directory). A plot will be returned, with one figure for each sequence length. Each figure contains the
sequence position on the x-axis and the richness/diversity index on the y-axis. If no colors are specified,
rainbow () will be used.

data(aaseqtab)

data(aaseqtab2)

trueDiv.comp<-compare.trueDiversity(sequence.list = list(aaseqtab$CDR3_IMGT,
aaseqtab2$CDR3_IMGT),

c("Individuall", "Individual2"),

1, nrCores = 1)

names
order

Comparison of sequence length of 14-16 amino acids:
grepindex1<-grep("14|15|16" ,names (trueDiv.comp$Individuall))
grepindex2<-grep("14|15|16" ,names (trueDiv.comp$Individual2))
trueDiv.comp.part<-list(trueDiv.comp$True_diversity_order,
trueDiv.comp$Individuall [grepindex1],
trueDiv.comp$Individual2[grepindex2])
names (trueDiv.comp.part)<-names (trueDiv.comp)
plotCompareTrueDiversity(comp.tab = trueDiv.comp.part, colors=c("darkblue","darkred"),
PDF = NULL)

True diversity, g = 1

sequence length = 14 sequence length = 15 sequence length = 16

15
1
15
1
15

Diversity
10
1
Diversity
10
10
1

5
1
5
1
Diversity
5
1

0

1
0
1
0

1

1 3 5 7 9 11 13 1 4 8 11 15 1 4 8 12 16
Position Position Position

e |ndividuall
e |ndividual2

Looking for clones, that are shared between several samples

To compare clones of different samples, the function clones.shared() can be used. The criteria are the
same than in function clones():

o same CDR3 (amino acid) length and a identity of a given treshold (so it’s possible, to look for same
CDR3 sequences or for a CDR3 identity of 85%)

e same V gene
o same J gene (optional)

21

The input for the function has to be prepared as following: combine all individual clone files to one using
rbind() and add a column in front of all other columns with sample ID’s. An example, how the table should
look like, you can find in data(clones.allind).

Example:

data(clones.allind) # includes 300 clones for 8 individuals (C6-9, P1-3/10)
dim(clones.allind) # dimensions of clomes.allind [rows, columns]

[1] 2400 15

Some lines and columns from clones.allind:
data. frame(rbind(clones.allind[1:3,1:3],
clones.allind[(nrow(clones.allind)-2) :nrow(clones.allind),1:3]),
row.names=NULL)

individuals unique_ CDR3_sequences AA CDR3_length_ AA
C6 ARGSGAY, ARGSGEY 7
C6 ARDFADY, ARYFADY 7
C6 ARDRGLDY, ARDRQLDY, 8
ARDRSLDY
P3 AKSARPFDY, AKSARPVDY 9
P3 ARETMVYFDY, ARETMVYLDY 10
P3 ASLADDESVY, ASLTDDESVY 10

Output of the table is the same than for clones(). Individual data is seperated by “;”.

)

Example:
data(clones.allind)
sharedclones<-clones.shared(clones.tab = clones.allind, identity = 0.85, useJ = TRUE)

Some columns of sharedclones

number individuals individuals CDR3_length AA

2 C9; P1 8

Table 14: Table continues below

shared CDR3 number_shared CDR3

ARGLPFDY; ARGLSFDY 2

Table 15: Table continues below

22

CDR3__sequences_ per_individual sequence__count_ per_ CDR3 V__gene

ARGLSFVY, ARGLSFDY; ARGLPFDY, 1, 16; 367, 1 IGHV4-34
ARGLPIDY

The table including shared clones can be summarized using clones.shared.summary(). This function
returns a data frame, which contains the number of individual clones (optional, only if clone table is given)
and the number of shared clones. The number of individual clones is equivalent to the total number of clones
per individual minus the number of shared clones.

Example:
data(clones.allind) # includes 300 clomes for 8 individuals (C6-9, P1-3/10)
sharedclones<-clones.shared(clones.tab = clones.allind, identity = 0.85, useJ = TRUE)
sharedclones.summary<-clones.shared.summary(shared.tab = sharedclones,

clones.tab = clones.allind)

group number__clones
only in C6 300
only in C7 300
only in C8 300
only in C9 299
only in P10 300
only in P1 299
only in P2 300
only in P3 300
C9; P1 1

23

	Introduction
	Package features
	General information and package data
	Parallel processing
	Datasets

	Processing of IMGT/HighV-QUEST data
	Amino acid distribution
	Diversity
	True diversity
	Gini index

	Gene usage
	Functions for a set of sequences
	Filter sequences
	Functionality and junction frames
	Mutations

	Functions for a set of clones
	Defining clones and shared clones
	Filter clones for their size
	Filter clones for functionality or junction frame usage
	Clone features

	Comparison of different samples
	Comparison of gene usage
	Comparison of amino acid distribution
	Comparison of richness and diversity
	Looking for clones, that are shared between several samples

