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The caret package (short for classification and regression training) contains functions to streamline
the model training process for complex regression and classification problems. The package utilizes
a number of R packages but tries not to load them all at package start-up'. The package “suggests”
field includes: ada, affy, Boruta, bst, caTools, class, Cubist, 1071, earth (> 2.2-3), elasticnet, ellipse,
evtree, fastlCA, foba, gam, GAMens (> 1.1.1), gbm, glmnet (> 1.7.1), gpls, grid, hda, HDclassif,
Hmisc, ipred, kernlab, klaR, lars, leaps, LogicForest, logicFS, LogicReg, MASS, mboost, mda, mgcv,
mlbench, neuralnet, nnet, nodeHarvest, obliqueRF, pamr, partDSA, party (> 0.9-99992), penalized,
penalizedLDA, pls, proxy, grnn, quantregForest, randomForest, RANN, rda, relaxo, rFerns, rocc, rpart,
rrcov, rrlda, RWeka (> 0.4-1), sda, SDDA, sparseLDA (> 0.1-1), spls, stepPlIr, superpc, vbmp. caret
loads packages as needed and assumes that they are installed. Install caret using

install.packages("caret", dependencies = c("Depends", "Suggests"))

to ensure that all the needed packages are installed.

1 Model Training and Parameter Tuning

caret has several functions that attempt to streamline the model building and evaluation process.

The caret function can be used to

e evaluate, using resampling, the effect of model tuning parameters on performance

!By adding formal package dependencies, the package startup time can be greatly decreased
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e choose the “optimal” model across these parameters

e estimate model performance from a training set

More formally:

Define sets of model parameter values to evaluate
for each parameter set do
for each resampling iteration do
Hold—out specific samples
[Optional] Pre—process the data
Fit the model on the remainder
Predict the hold—out samples
end
Calculate the average performance across hold—out predictions

© 00 N o oA W N =

end
Determine the optimal parameter set
Fit the final model to all the training data using the optimal parameter set

[Err—
N R O

First, a specific model must be chosen. Currently, 129 are available using caret; see Tables 1, 2 and
3 for details.

In Tables 1, 2 and 3, there are lists of tuning parameters that can potentially be optimized. The
first step in tuning the model (line 1 in Algorithm 1) is to choose a set of parameters to evaluate.
For example, if fitting a Partial Least Squares (PLS) model, the number of PLS components to
evaluate must be specified.

Once the model and tuning parameter values have been defined, the type of resampling should
be also be specified. Currently, k—fold cross—validation (once or repeated), leave-one—out cross—
validation and bootstrap (simple estimation or the 632 rule) resampling methods can be used by
caret. After resampling, the process produces a profile of performance measures is available to
guide the user as to which tuning parameter values should be chosen. By default, the function
automatically chooses the tuning parameters associated with the best value, although different
algorithms can be used (see Section 2.5).

1.1 An Example

As an example, the multidrug resistance reversal (MDRR) agent data is used to determine a pre-
dictive model for the “ability of a compound to reverse a leukemia cell’s resistance to adriamycin”
(Svetnik et al, 2003). For each sample (i.e. compound), predictors are calculated that reflect char-
acteristics of the molecular structure. These molecular descriptors are then used to predict assay
results that reflect resistance.
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The data are accessed using data(mdrr). This creates a data frame of predictors called mdrrDescr
and a factor vector with the observed class called mdrrClass.

To start, we will:

e use unsupervised filters to remove predictors with unattractive characteristics (e.g. spare
distributions or high inter—predictor correlations)

e split the entire data set into a training and test set

See the package vignette “caret Manual — Data and Functions” for more details about these opera-
tions.

> print(ncol (mdrrDescr))

[1] 342

> nzv <- nearZeroVar (mdrrDescr)
> filteredDescr <- mdrrDescr[, -nzv]
> print (ncol(filteredDescr))

[11 297

> descrCor <- cor(filteredDescr)

> highlyCorDescr <- findCorrelation(descrCor, cutoff = .75)
> filteredDescr <- filteredDescr/[,-highlyCorDescr]

> print (ncol(filteredDescr))

(1] 50

> set.seed(1)

> inTrain <- sample(seq(along = mdrrClass), length(mdrrClass)/2)
> trainDescr <- filteredDescr[inTrain,]

> testDescr <- filteredDescr[-inTrain,]

> trainMDRR <- mdrrClass[inTrain]

> testMDRR <- mdrrClass[-inTrain]

> print(length(trainMDRR))

[1] 264

> print (length(testMDRR))

[1] 264
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1.2 Basic Parameter Tuning

By default, simple bootstrap resampling is used for line 4 in Algorithm 1. Others are availible, such
as repeated K—fold cross—validation. The function trainControl can be used to specifiy the type of

resampling:

>
+
+
+
+
+
+

fitControl <- trainControl (## 10-fold CV
method
number

"repeatedcv"”,
10,

## repeated three times

repeats = 3,

## Save all the resampling results
returnResamp = "all")

More information about trainControl is given in Section 2.3.

The first two arguments to caret are the predictor and outcome data objects, respectively. The third
argument, method, specifies the type of model (see Tables 1, 2 and 3). We will fit a boosted tree
model via the gbm package. The basic syntax for fitting this model using repeated cross—vlaidation

is shown below:

> gbmFitl <- train(trainDescr, trainMDRR,

+ method = "gbm",

+ trControl = fitControl,

+ ## This last option is actually one
+ ## for gbm() that passes through

+ verbose = FALSE)

> gbmFit1

264 samples

50 predictors

2 classes: 'Active', 'Inactive'

No pre-processing

Resampling: Cross-Validation (10 fold, repeated 3 times)

Summary of sample sizes: 238, 237, 238, 238, 237, 237,

Resampling results across tuning parameters:

interaction.depth n.trees

50
100
150
50
100
150
50

WNNNDRE - -

Accuracy Kappa Accuracy SD Kappa SD

0

O O O O OO

.813
.817
.814
.813
.818
.808
.815

0.614 0.0753 0.157
0.624 0.0606 0.124
0.619 0.0691 0.141
0.617 0.066 0.135
0.627 0.0717 0.146
0.607 0.0679 0.138
0.618 0.0606 0.128
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3 100 0.812 0.614 0.0622 0.127
3 150 0.814 0.619 0.0582 0.118

Tuning parameter 'shrinkage' was held constant at a value of 0.1

Accuracy was used to select the optimal model using the largest value.

The final values used for the model were interaction.depth = 2, n.trees =
100 and shrinkage = 0.1.

For a gradient boosting machine (GBM) model, there are three main tuning parameters:

e number of iterations, i.e. trees, (called n.trees in the gbm function)
e complexity of the tree, called interaction.depth

e learning rate: how quickly the algorithm adapts, called shrinkage

The default values tested for this model are shown in the first two columns (shrinkage is not shown
beause the grid set of candidate models all use a value of 0.1 for this tuning parameter). The
column labeled “Accuracy” is the overall agreement rate averaged over cross—validation iterations.
The agreement standard deviation is also calculated from the cross-validation results. The column
“Kappa” is Cohen’s (unweighted) Kappa statistic averaged across the resampling results. caret works
with specific models (see Tables 1, 2 and 3). For these models, caret can automatically create a
grid of tuning parameters. By default, if p is the number of tuning parameters, the grid size is
3P. For example, regularized discriminant analysis (RDA) models have two parameters (gamma and
lambda), both of which lie on [0, 1]. The default training grid would produce nine combinations in
this two—dimensional space.

1.3 Notes

e There is a formula interface (e.g. train(y~., data = someData) that can be used. One of the
issues with a large number of predictors is that the objects related to the formula which are
saved can get very large. In these cases, it is best to stick with the non—formula interface
described above.

e The function determines the type of problem (classification or regression) from the type of
the response given in the y argument.

e The ... option can be used to pass parameters to the fitting function. For example, in random
forest models, you can specify the number of trees to be used in the call to caret.

e For regression models (i.e. a numeric outcome), a similar table would be produced showing
the average root mean squared error and average R? value statistic across tuning parameters,
otherwise known as Q? (see the note below related to this calculation). For regression models,
the classical R? statistic cannot be compared between models that contain an intercept and
models that do not. Also, some models do not have an intercept only null model.
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To approximate this statistic across different types of models, the square of the correlation
between the observed and predicted outcomes is used. This means that the R? values produced
by caret will not match the results of 1m and other functions.

Also, the correlation estimate does not take into account the degrees of freedom in a model and
thus does not penalize models with more parameters. For some models (e.g random forests or
on-linear support vector machines) there is no clear sense of the degrees of freedom, so this
information cannot be used in R? if we would like to compare different models.

The nearest shrunken centroid model of Tibshirani et al (2003) is specified using method = "pam".
For this model, there must be at least two samples in each class. caret will ignore classes where
there are less than two samples per class from every model fit during bootstrapping or cross—
validation (this model only).

For recursive partitioning models, an initial model is fit to all of the training data to obtain
the possible values of the maximum depth of any node (maxdepth). The tuning grid is created
based on these values. If tuneLength is larger than the number of possible maxdepth values
determined by the initial model, the grid will be truncated to the maxdepth list.

The same is also true for nearest shrunken centroid models, where an initial model is fit to
find the range of possible threshold values, and MARS models (see the details below).

For multivariate adaptive regression splines (MARS), the earth package is used with a model
type of mars or earth is requested. The tuning parameters used by caret are degree and nprune.
The parameter nk is not automatically specified and, if not specified, the default in the earth
function is used.

For example, suppose a training set with 40 predictors is used with degree = 1 and nprune = 20.
An initial model with nk = 41 is fit and is pruned down to 20 terms. This number includes
the intercept and may include “singleton” terms instead of pairs.

Alternate model training schemes can be used by passing nk and/or pmethod to the earth
function. Also, using method = ’gcvEearth’ will use the basic GCV pruning procedure and
only tune the degree.

Also, there may be cases where the message such as “specified 'nprune’ 29 is greater than
the number of available model terms 24, forcing 'nprune’ to 24” show up after the model fit.
This can occur since the earth function may not actually use the number of terms in the
initial model as specified by nk. This may be because the earth function removes terms with
linear dependencies and the forward pass counts as if terms were added in pairs (although
singleton terms may be used). By default, the caret function fits and initial MARS model is
used to determine the number of possible terms in the training set to create the tuning grid.
Resampled data sets may produce slightly different models that do not have as many possible
values of nprune.
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e For the glmboost and gamboost functions from the mboost package, an additional tuning param-
eter, prune, is used by train. If prune = "yes", the number of trees is reduced based on the AIC
statistic. If "no", the number of trees is kept at the value specified by the mstop parameter.
See the mboost package vignette for more details about AIC pruning.

e The partitioning model of Molinaro et al. (2010) has a tuning parameter that is the number
of partitions in the model. The R function partDsA has the argument cut.off.growth which is
described as “the maximum number of terminal partitions to be considered when building the
model.” Since this is the maximum, the user might ask for a model with X partitions but the
model can only predict Y < X. In these cases, the model predictions will be based on the
largest model available (V).

e For generalized additive models, a formula is generated from the data. First, predictors with
degenerate distributions are excluded (via the nearZerovar function). Then, the number of
distinct values for each predictor is calculated. If this value is greater than 10, the predictor
is entered into the formula via a smoothed term (otherwise a linear term is used). For models
in the gam package, the smooth terms have the same amount of smoothing applied to them
(i.e. equal daf or span across all the smoothed predictors).

e For some models (blackboost, bstTree, bstLs, bstSm, cubist, earth, enet, foba, gamboost, gbm,
glmboost, glmnet, lars, lars2, lasso, leapForward, leapBackward, leapSeq, logitBoost, pam, partDSA,
pcr, PenalizedLDA, pls, relaxo, rpart2, rpart, scrda, simpls, superpc, widekernelpls), the caret func-
tion will fit a model that can be used to derive predictions for some sub-models. For example,
for MARS (via the earth function), for a fixed degree, a model with a maximum number of
terms will be fit and the predictions of all of the requested models with the same degree and
smaller number of terms will be computed using update.earth instead of fitting a new model.
When the verboseIter option of the trainControl function is used, a line is printed for the
“top—level” model (instead of each model in the tuning grid).

e There are print and plot methods for the train class. The plot method visualizes the profile
of average resampled performance values across the different tuning parameters using scatter
plots or level plots. See Figures 1 and 2 for examples. Functions that visualize the individual
resampling results for caret objects are discussed in Section 5.1.

e Using the first set of tuning parameters that are optimal (in the sense of accuracy or mean
squared error), caret automatically fits a model with these parameters to the entire training
data set. That model object is accessible in the finalModel object within caret. For example,
gbmFit$finalModel is the same object that would have been produced using a direct call to
the gbm function with the final tuning parameters.

There is additional functionality in caret that is described in the next section.
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2 Customizing the Tuning Process

There are a few ways to customize the process of selecting tuning/complexity parameters and
building the final model.

2.1 Pre—Processing Options

As previously mentioned, caret can pre—process the data in various ways prior to model fitting. The
caret function preProcess is automatically used. This function can be used for centering and scaling,
imputation (see details below), applying the spatial sign transformation and feature extraction
via principal component analysis or independent component analysis. Options to the preProcess
function can be passed via the trainControl function.

These processing steps would be applied during any predictions generated using predict.train,
extractPrediction Or extractProbs (see Section 3 later in this document). The pre—processing would
not be applied to predictions that directly use the object$finalModel object.

For imputation, there are two methods currently implemented:

e k-nearest neighbors takes a sample with missing values and finds the k£ closest samples in
the training set. The average of the k training set values for that predictor are used as a
substitute for the original data. When calculating the distances to the training set samples,
the predictors used in the calculation are the ones with no missing values for that sample and
no missing values in the training set.

e another approach is to fit a bagged tree model for each predictor using the training set samples.
This is usually a fairly accurate model and can handle missing values. When a predictor for a
sample requires imputation, the values for the other predictors are fed through the bagged tree
and the prediction is used as the new value. This model can have significant computational
cost.

If there are missing values in the training set, PCA and ICA models only use complete samples.

2.2 Alternate Tuning Grids

The tuning parameter grid can be specified by the user. The argument tuneGrid can take a data
frame with columns for each tuning parameter (see Tables 1, 2 and 3 for specific details). The
column names should be the same as the fitting function’s arguments with a period preceding the
name. For the previously mentioned RDA example, the names would be .gamma and .lambda. caret
will tune the model over each combination of values in the rows.

We can fix the learning rate and evaluate more than three values of n.trees:
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> gbmGrid <- expand.grid(.interaction.depth = c(1, 3),

+ .n.trees = c(10, 50, 100, 150, 200, 250, 300),
+ .shrinkage = 0.1)
> set.seed(3)
> gbmFit2 <- train(trainDescr, trainMDRR,

+ method = "gbm",

+ trControl = fitControl,

+ verbose = FALSE,

+ ## Now specify the exact models
+ ## to evaludate:

+ tuneGrid = gbmGrid)

> gbmFit2
264 samples

50 predictors

2 classes: 'Active', 'Inactive'

No pre-processing
Resampling: Cross-Validation (10 fold, repeated 3 times)

Summary of sample sizes: 237, 237, 237, 237, 238, 237,
Resampling results across tuning parameters:

interaction.depth n.trees Accuracy Kappa Accuracy SD Kappa SD

1 10 0.762 0.494 0.0614 0.131
1 50 0.807 0.601 0.0701 0.146
1 100 0.819 0.629 0.0694 0.14

1 150 0.815 0.621 0.0729 0.148
1 200 0.82 0.633 0.072 0.144
1 250 0.81 0.613 0.0728 0.146
1 300 0.807 0.608 0.0698 0.138
3 10 0.795 0.572 0.0699 0.147
3 50 0.824 0.639 0.0635 0.13

3 100 0.812 0.615 0.0633 0.129
3 150 0.812 0.615 0.0648 0.132
3 200 0.818 0.626 0.0681 0.137
3 250 0.814 0.618 0.0706 0.143
3 300 0.815 0.622 0.0689 0.137

Tuning parameter 'shrinkage' was held constant at a value of 0.1

Accuracy was used to select the optimal model using the largest value.

The final values used for the model were interaction.depth = 3, n.trees =
50 and shrinkage = 0.1.
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2.3 The trainControl :FU.IICtiOIl

The function trainControl generates parameters that further control how models are created, with
possible values:

e method: The resampling method: boot, boot632, cv, LOOCV, LGOCV, repeatedcv and oob. The last
value, out—of-bag estimates, can only be used by random forest, bagged trees, bagged earth,
bagged flexible discriminant analysis, or conditional tree forest models. GBM models are
not included (the gbm package maintainer has indicated that it would not be a good idea to
choose tuning parameter values based on the model OOB error estimates with boosted trees).
Also, for leave-one—out cross—validation, no uncertainty estimates are given for the resampled
performance measures.

® number and repeats: number controls with the number of folds in K—fold cross—validation or
number of resampling iterations for bootstrapping and leave—group—out cross—validation. repeats
applied only to repeated K—fold cross—validation. Suppose that method = "repeatedcv", number = 10
and repeats = 3, then three separate 10—fold cross—validations are used as the resampling
scheme.

e verboseIter: A logical for printing a training log.
e returnData: A logical for saving the data into a slot called trainingData.
e p: For leave-group out cross-validation: the training percentage

e classProbs: a logical value determining whether class probabilities should be computed for
held—-out samples during resample. Examples of using this argument are given in Section 2.4.

e index: a list with elements for each resampling iteration. Each list element is the sample rows
used for training at that iteration. When these values are not specified, caret will generate
them.

e summaryFunction: a function to compute alternate performance summaries. See Section 2.4 for
more details.

® selectionFunction: a function to choose the optimal tuning parameters. See Section 2.5 for
more details and examples.

e PCAthresh, ICAcomp and k: these are all options to pass to the preProcess function (when used).

e returnResamp: a character string containing one of the following values: "a11", "final" or "none".
This specifies how much of the resampled performance measures to save.
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Figure 1: Examples of output from plot.tain. left a plot produced using plot(gbmFit3) show-
ing the relationship between the number of boosting iterations, the interaction depth and the
resampled classification accuracy right the same plot, but the Kappa statistic is plotted using
plot(gbmFit3, metric = "Kappa'")
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Figure 2: For the boosted  tree example in Section 2.2, using

plot(gbmFit metric = "Kappa", plotType = "level") shows the relationship (using a 1levelplot)
between the number of boosting iterations, the interaction depth and the resampled estimate of
the Kappa statistic.
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2.4 Alternate Performance Metrics

The user can change the metric used to determine the best settings. By default, RMSE and R?
are computed for regression while accuracy and Kappa are computed for classification. Also by
default, the parameter values are chosen using RMSE and accuracy, respectively for regression
and classification. The metric argument of the caret function allows the user to control which the
optimality criterion is used. For example, in problems where there are a low percentage of samples
in one class, using metric = "Kappa" can improve quality of the final model.

If none of these parameters are satisfactory, the user can also compute custom performance met-
rics. The trainControl function has a argument called summaryFunction that specifies a function for
computing performance. The function should have these arguments:

e data is a reference for a data frame or matrix with columns called obs and pred for the observed
and predicted outcome values (either numeric data for regression or character values for clas-
sification). Currently, class probabilities are not passed to the function. The values in data
are the held—out predictions (and their associated reference values) for a single combination
of tuning parameters. If the classProbs argument of the trainControl object is set to TRUE,
additional columns in data will be present that contains the class probabilities. The names of
these columns are the same as the class levels.

e lev is a character string that has the outcome factor levels taken from the training data. For
regression, a value of NULL is passed into the function.

e model is a character string for the model being used (i.e. the value passed to the method value
of caret).

The output to the function should be a vector of numeric summary metrics with non—null names.
By default, caret evaluate classification models in terms of the predicted classes. Optionally, class
probabilities can also be used to measure performance. To obtain predicted class probabilities within
the resampling process, the argument classProbs in trainControl must be set to TRUE. This merges
columns of probabilities into the predictions generated from each resample (there is a column per
class and the column names are the class names).

As shown in the last section, custom functions can be used to calculate performance scores that
are averaged over the resamples. Another built-in function, twoClassSummary, will compute the
sensitivity, specificity and area under the ROC curve (see Section 4.2 for details).

21 of 49



The caret Package

> twoClassSummary

function (data, lev = NULL, model = NULL)

{
require (pROC)
if ('all(levels(datal, "pred"]) == levels(datal[, "obs"])))
stop("levels of observed and predicted data do not match")
rocObject <- pROC:::roc(data$obs, datal, lev[1]])
out <- c(rocObject$auc, sensitivity(datal, "pred"], datal,
"obs"], lev[1]), specificity(datal, "pred"], datal, "obs"],
lev[2]))
names (out) <- c("ROC", "Sens", "Spec")
out
}

<environment: namespace:caret>

To rebuild the boosted tree model using this criterion, we can see the relationship between the
tuning parameters and the area under the ROC curve using the following code:

> fitControl <- trainControl (method = "repeatedcv",

+ number = 10,

+ repeats = 3,

+ returnResamp = "all",

+ ## Estimate class probabilities
+
+
+
+

classProbs = TRUE,

## Evaluate performance using

## the following function
summaryFunction = twoClassSummary)

> set.seed(3)
> gbmFit3 <- train(trainDescr, trainMDRR,
+ method = "gbm",
+ trControl = fitControl,
+ verbose = FALSE,
+ tuneGrid = gbmGrid,
+ ## Specify which metric to optimize
+ metric = "ROC")
> gbmFit3
264 samples
50 predictors
2 classes: 'Active', 'Inactive'

No pre-processing
Resampling: Cross-Validation (10 fold, repeated 3 times)

Summary of sample sizes: 237, 237, 237, 237, 238, 237,

22 of 49



The caret Package

Resampling results across tuning parameters:

interaction.depth n.trees ROC Sens Spec ROC SD Sens SD Spec SD
1 10 0.836 0.943 0.553 0.0802 0.0717  0.097
1 50 0.875 0.88 0.705 0.0533 0.09 0.107
1 100 0.881 0.869 0.746 0.0535 0.0965 0.111
1 150 0.878 0.869 0.752 0.0635 0.0999 0.108
1 200 0.868 0.859 0.754 0.0593 0.105 0.109
1 250 0.866 0.839 0.74 0.0649 0.113 0.12
1 300 0.861 0.83 0.743 0.0651 0.109 0.115
3 10 0.853 0.901 0.656 0.0673 0.0731 0.132
3 50 0.87 0.862 0.743 0.0636 0.111 0.101
3 100 0.865 0.859 0.745 0.066 0.101 0.113
3 150 0.864 0.853 0.746 0.0646 0.109 0.105
3 200 0.864 0.848 0.757 0.0649 0.116 0.1

3 250 0.859 0.842 0.746 0.0666 0.107 0.106
3 300 0.862 0.846 0.748 0.0658 0.116 0.11

Tuning parameter 'shrinkage' was held constant at a value of 0.1

ROC was used to select the optimal model using the largest value.

The final values used for the model were interaction.depth = 1, n.trees =
100 and shrinkage = 0.1.

In this case, the average area under the ROC curve associated with the optimal tuning parameters
was 0.881 across the 30 resamples.

2.5 Choosing the Final Model

Another method for customizing the tuning process is to modify the algorithm that is used to select
the “best” parameter values, given the performance numbers. By default, the caret function chooses
the model with the largest performance value (or smallest, for mean squared error in regression
models). Other schemes for selecting model can be used. Breiman et al (1984) suggested the “one
standard error rule” for simple tree-based models. In this case, the model with the best performance
value is identified and, using resampling, we can estimate the standard error of performance. The
final model used was the simplest model within one standard error of the (empirically) best model.
With simple trees this makes sense, since these models will start to over-fit as they become more
and more specific to the training data.

caret allows the user to specify alternate rules for selecting the final model. The argument selectionFunction
can be used to supply a function to algorithmically determine the final model. There are three ex-
isting functions in the package: best is chooses the largest /smallest value, oneSE attempts to capture

the spirit of Breiman et al (1984) and tolerance selects the least complex model within some percent
tolerance of the best value. See ?best for more details.

User—defined functions can be used, as long as they have the following arguments:
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e x is a data frame containing the tune parameters and their associated performance metrics.
Each row corresponds to a different tuning parameter combination

e metric a character string indicating which performance metric should be optimized (this is
passed in directly from the metric argument of caret.

e maximize is a single logical value indicating whether larger values of the performance metric
are better (this is also directly passed from the call to caret).

The function should output a single integer indicating which row in x is chosen.

As an example, if we chose the previous boosted tree model on the basis of overall accuracy (Figure
1), we would choose: interaction depth = 1, n trees = 100, shrinkage = 0.1. However, the scale in
this plots is fairly tight, with accuracy values ranging from 0.836 to 0.881. A less complex model
(e.g. fewer, more shallow trees) might also yield acceptable accuracy.

The tolerance function could be used to find a less complex model based on (& — Xpest) /Tpest X 100,
which is the percent difference. For example, to select parameter values based on a 2% loss of
performance:

> whichTwoPct <- tolerance(gbmFit3$results, "ROC", 2, TRUE)
> cat("best model within 2 pct of best:\n")

best model within 2 pct of best:

> gbmFit3$results[whichTwoPct, ]

interaction.depth n.trees shrinkage ROC Sens Spec ROCSD

2 1 50 0.1 0.8750637 0.88 0.705303 0.05331201
SensSD SpecSD
2 0.08998136 0.1071993

This indicates that we can get a less complex model with and accuracy of 0.875 (compared to the
“pick the best” value of 0.881).

The main issue with these functions is related to ordering the models from simplest to complex. In
some cases, this is easy (e.g. simple trees, partial least squares), but in cases such as this model,
the ordering of models is subjective. For example, is a boosted tree model using 100 iterations
and a tree depth of 2 more complex than one with 50 iterations and a depth of 87 The package
makes some choices regarding the orderings. In the case of boosted trees, the package assumes that
increasing the number of iterations adds complexity at a faster rate than increasing the tree depth,
so models are ordered on the number of iterations then ordered with depth. See ?best for more
examples for specific models.
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2.6 Parallel Processing

If a model is tuned using resampling, the number of model fits can become large as the number
of tuning combinations increases (see the two loops in Algorithm 1). To reduce the training time,
parallel processing can be used. For example, to train the gradient boosting machine model in
Section 1.2, each of the 9 candidate models was fit to 30 separate resamples. Since each resample
is independent of the other, these 270 models could be computed in parallel.

R has several packages that facilitates parallel processing when multiple processors are available (see
Schmidberger et al., 2009). caret can be used to build multiple models simultaneously. As of caret
version 4.99, a new parallel processing framework is used to increase the computational efficiency.
The foreach package allows parallel computations using several different technologies. Although the
execution times using foreach is similar to the framework used prior to version 4.99, there are a few
advantages:

e the call to train (or rfe or sbf) does not change. Parallel “backends” are registered with foreach
prior to the call to train

e compared to the kludgy techniques in caret prior to version 4.99, foreach does a much better
job of managing memory.

e foreach code can be added in several places in the package and nest parallelism can be used.

For example, to use the multicore package to parallelize the computations, invoking these commands
prior to train would split the computations into two workers:

> library(doMC)
> registerDoMC(2)

One common metric used to assess the efficacy of parallelization is speedup = Tyeq/Tpar, Where T,
and T, denote the execution times to train the model serially and in parallel, respectively. Exclud-
ing systems with sophisticated shared memory capabilities, the maximum possible speedup attained
by parallelization with P processors is equal to P. Factors affecting the speedup include the over-
head of starting the parallel workers, data transfer, the percentage of the algorithm’s computations
that can be done in parallel, etc.

Figure 3 shows the results of a benchmarking study run on a 16 core machine. In the left panel,
the actual training time for a radial basis function SVM model for a data set with 5,000 samples
and 400 predictors. The model was tuned over 10 values of the cost parameter using 50 bootstrap
samples. The “new” curve corresponds to the foreach infrastructure.

One downside to parallel processing in this manner is that the dataset is held in memory for every
node used to train the model. For example, if parallelism is used to compute the results from 50
bootstrap samples using P processors, P data sets are held in memory. For large datasets, this can
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Figure 3: Training time profiles using parallel processing via caret for a benchmarking data set run
on a 16 core machine. The left panel shows the elapsed time to train a model using single or multiple
processors. The panel on the right shows the “speedup,” defined to be the time for serial execution
divided by the parallel execution time. The “old” line corresponds to version 4.98 and below while
the “new” curve is using foreach.

become a problem if the additional processors are on the same machines where they are competing
for the same physical memory. The old codebase starts to slow down around 10 workers due to
exhausting the physical memory on the machine. The new codebase does a better job at managing
memory with no additional slowdown.

3 Extracting Predictions and Class Probabilities

As previously mentioned, objects produced by the caret function contain the “optimized” model in
the finalModel sub—object. Predictions can be made from these objects as usual. In some cases,
such as pls or gbm objects, additional parameters from the optimized fit may need to be specified. In
these cases, the caret objects uses the results of the parameter optimization to predict new samples.

For example, we can load the Boston Housing data:

> library(mlbench)

> data(BostonHousing)

> # we could use the formula interface too

> bhDesignMatrix <- model.matrix(medv ~. - 1, BostonHousing)

split the data into random training/test groups:
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set.seed(4)

inTrain <- createDataPartition(BostonHousing$medv, p = .8, list = FALSE, times = 1)
trainBH <- bhDesignMatrix[inTrain,]

testBH <- bhDesignMatrix[-inTrain,]

trainMedv <- BostonHousing$medv/[inTrain]

testMedv <- BostonHousing$medv[-inTrain]

vV V.V Vv VvV

fit partial least squares and multivariate adaptive regression spline models:

> set.seed(5)
plsFit <- train(trainBH, trainMedv,
"pls",
preProcess = c("center", "scale"),
tunelLength = 10,
trControl = trainControl (verboselter = FALSE,

returnResamp = "all"))

marsFit <- train(trainBH, trainMedv,

"earth",

tuneLength = 10,

trControl = trainControl (verboselter = FALSE,

>

+

+

+

+

+

> set.seed(5)
>

+

+

+

+ returnResamp = "all"))
>

To obtain predictions for the MARS model, predict.earth can be used.

> marsPredl <- predict(marsFit$finalModel, newdata = testBH)
> head (marsPred1)

y
[1,] 34.18241

[2,] 20.90113
[3,] 18.83659
[4,] 14.56850
[5,]1 16.44564
[6,] 22.12989

Alternatively, predict.train can be used to get a vector of predictions for the optimal model only:

> marsPred2 <- predict(marsFit, newdata = testBH)
> head (marsPred2)

[1] 34.18241 20.90113 18.83659 14.56850 16.44564 22.12989

Note that the plsFit object used pre—processing. In this case, we cannot directly call predict.mvr
and expect to get the same answers as predict.train. The latter function knows that centering
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and scaling is required and execute these calculations on the new samples, whereas predict.mvr
does not. For the pls function, there is an argument called scale that can be used instead of the
pre—processing options in the caret function.

For multiple models, the objects can be grouped using a list and predicted simultaneously:

> bhModels <- list(pls = plsFit, mars = marsFit)
> bhPredl <- predict(bhModels, newdata = testBH)
> str(bhPred1)

List of 2
$ pls : num [1:99] 30.2 21.9 16.1 16 15.8 ...
$ mars: num [1:99] 34.2 20.9 18.8 14.6 16.4 ...

In some cases,observed outcomes and their associated predictions may be needed for a set of models.
In this case, extractPrediction can be used. This function takes a list of models and test and/or
unknown samples as inputs and returns a data frame of predictions:

> allPred <- extractPrediction(bhModels,
+ testX = testBH,
+ testY = testMedv)
> testPred <- subset(allPred, dataType == "Test")
> head(testPred)
obs pred model dataType object
408 34.7 30.15640 pls Test pls
409 21.7 21.87263 pls Test pls
410 20.2 16.06634 pls Test pls
411 15.2 16.01122 pls Test pls
412 15.6 15.80842 pls Test pls
413 14.5 17.94325 pls Test pls

> ddply(testPred, .(model), defaultSummary)

model RMSE Rsquared
1 earth 4.605244 0.8016275
2 pls 5.501675 0.7286127

>

The output of extractPrediction is a data frame with columns:

e obs, the observed data

e pred, the predicted values from each model

M«

e model, a character string (“rpart”, “p1s” etc.)
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e dataType, a character string for the type of data:

— “Training” data are the predictions on the training data from the optimal model,
— “Test” denote the predictions on the test set (if one is specified),

— “Unknown” data are the predictions on the unknown samples (if specified). Only the
predictions are produced for these data. Also, if the quick prediction of the unknowns is
the primary goal, the argument unkOnly can be used to only process the unknowns.

Some classification models can produce probabilities for each class. The functions predict.train
and predict.list can be used with the type = "probs" argument to produce data frames of class
probabilities (with one column per class). Also, the function extractProbs can be used to get
these probabilities from one or more models. The results are very similar to what is produced by
extractPrediction but with columns for each class. The column pred is still the predicted class from
the model.

4 Evaluating Test Sets

A function, postResample, can be used obtain the same performance measures as generated by caret
for regression or classification.

4.1 Confusion Matrices

caret also contains several functions that can be used to describe the performance of classification
models. The functions sensitivity, specificity, posPredValue and negPredValue can be used to
characterize performance where there are two classes. By default, the first level of the outcome
factor is used to define the “positive” result (i.e. the event of interest), although this can be changed.

The function confusionMatrix can also be used to summarize the results of a classification model:

> mdrrPredictions <- extractPrediction(list(gbmFit3), testX = testDescr, testY = testMDRR)
> mdrrPredictions <- mdrrPredictions[mdrrPredictions$dataType == "Test",]
> sensitivity(mdrrPredictions$pred, mdrrPredictions$obs)

[1] 0.7866667

> confusionMatrix (mdrrPredictions$pred, mdrrPredictions$obs)

Confusion Matrix and Statistics

Reference
Prediction Active Inactive
Active 118 27
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Inactive 32 87

Accuracy : 0.7765
95% CI : (0.7214, 0.8253)
No Information Rate : 0.5682
P-Value [Acc > NIR] : 1.092e-12

Kappa : 0.5469

Mcnemar's Test P-Value : 0.6025
Sensitivity : 0.7867
Specificity : 0.7632

Pos Pred Value : 0.8138

Neg Pred Value : 0.7311
Prevalence : 0.5682

Detection Rate : 0.4470
Detection Prevalence : 0.5492

'Positive' Class : Active

The “no—information rate” is the largest proportion of the observed classes (there were more actives
than inactives in this test set). A hypothesis test is also computed to evaluate whether the overall
accuracy rate is greater than the rate of the largest class. Also, the prevalence of the “positive
event” is computed from the data (unless passed in as an argument), the detection rate (the rate of
true events also predicted to be events) and the detection prevalence (the prevalence of predicted
events).

Suppose a 2 x 2 table with notation

Reference
Predicted | Event | No Event
Event A B
No Event C D
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The formulas used here are:

S itivity =
ensitivity = 7
Spec ficity —
peci ficity B1D
Prevalence = Arc
~ A+B+C+D
PPV — sensitivity X prevalence
~ ((sensitivity x prevalence) + ((1 — specificity) x (1 — prevalence))
NPV — speci ficity x (1 — prevalence)
~ ((1 — sensitivity) x prevalence) + ((speci ficity) x (1 — prevalence))
A
Detection Rate = 1T B1C1D
A+ B
Detection Prevalence = 178 i 1D

When there are three or more classes, confusionMatrix will show the confusion matrix and a set of
“one—versus—all” results. For example, in a three class problem, the sensitivity of the first class is
calculated against all the samples in the second and third classes (and so on).

Also, a resampled estimate of the training set can also be obtained using confusionMatrix.train. For
each resampling iteration, a confusion matrix is created from the hold—out samples and these values
can be aggregated to diagnose issues with the model fit.

For example, in the two—class SVM model used in Section 1.2, we could use:

> confusionMatrix(gbmFit3)

Cross-Validated (10 fold, repeated 3 times) Confusion Matrix

(entries are percentages of table totals)

Reference
Prediction Active Inactive
Active 48.5 12.1
Inactive 7.6 31.8

These values are the percentages that hold—out samples landed in the confusion matrix during
resampling. There are several methods for normalizing these values. See ?confusionMatrix.train for
details.
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4.2 ROC Curves
The function roc? can be used to calculate the sensitivity and specificity used in an ROC plot.
For example, using the previous support vector machine fit to the MDRR data, the predicted class
probabilities on the test set can used to create an ROC curve. The area under the ROC curve, via
the trapezoidal rule, is calculated using the auckoc function.

> mdrrProbs <- extractProb(list(gbmFit3), testX = testDescr, testY = testMDRR)
> mdrrProbs <- mdrrProbs[mdrrProbs$dataType == "Test",]

> mdrrROC <- roc(mdrrProbs$Active, mdrrProbs$obs)

> aucRoc (mdrrROC)

[1] 0.868538

See Figure 5 for an example.

Plotting Predictions and Probabilities

Two functions, plotObsVsPred and plotClassProbs, are interfaces to lattice to plot model results. For
regression, plotObsVsPred plots the observed versus predicted values by model type and data (e.g.
test). See Figures 6 and 5 for examples. For classification data, plotObsVsPred plots the accuracy
rates for models/data in a dotplot.

To plot class probabilities, plotClassProbs will display the results by model, data and true class (for
example, Figure 4).

2I'm looking into using the ROCR package for ROC curves, so don’t get too attached to these functions
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Figure 4: The predicted class probabilities from a gradient boosting machine fit for the MDRR test
set. This plot was created using plotClassProbs(mdrrProbs).
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Figure 5: An ROC curve from the predicted class probabilities from a gradient boosting fit for the
MDRR test set.
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Figure 6: The results of using plotObsVsPred to show plots of the observed median home price
against the predictions from two models. The plot shows the training and test sets in the same
Lattice plot
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5 Exploring and Comparing Resampling Distributions

5.1 Within—Model

There are several Lattice functions than can be used to explore relationships between tuning pa-
rameters and the resampling results for a specific model:

e xyplot and stripplot can be used to plot resampling statistics against (numeric) tuning pa-
rameters.

® histogram and densityplot can also be used to look at distributions of the tuning parameters
across tuning parameters.

For example, the following statements produces the images in Figure 7.

> xyplot(marsFit, type= c("g", "p", "smooth"), degree = 2)
> densityplot(marsFit, as.table = TRUE, subset = nprune < 10)
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Figure 7: Scatter plots and density plots of the resampled RMSE by the number of retained terms

for the MARS model fit to the Boston Housing data
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5.2 Between—Models

caret also includes functions to characterize the differences between models (generated using caret,
sbf or rfe) via their resampling distributions. These functions are based on the work of Hothorn et
al. (2005) and Eugster et al (2008).

Using the blood-brain barrier data (see ?BloodBrain), three regression models were created: an rpart
tree, a conditional inference tree using ctree, M5 rules using M5Rules and a MARS model using earth.
We ensure that the models use the same resampling data sets. In this case, 100 leave-group—out
cross—validation was employed.

> data(BloodBrain)

> set.seed(1)

> tmp <- createDataPartition(logBBB, p = 0.8, times = 100)

> rpartFit <- train(bbbDescr, logBBB,

+ "rpart",

+ tunelLength = 16,

+ trControl = trainControl(method = "LGOCV", index = tmp, timingSamps = 50))
Fitting: maxdepth=16

> set.seed(1)

> ctreeFit <- train(bbbDescr, logBBB,

+ "ctree2",

+ tunelLength = 10,

+ trControl = trainControl (method = "LGOCV", index = tmp, timingSamps = 50))
Fitting: maxdepth=1

Fitting: maxdepth=2

Fitting: maxdepth=3

Fitting: maxdepth=4

Fitting: maxdepth=5

Fitting: maxdepth=6

Fitting: maxdepth=7

Fitting: maxdepth=8

Fitting: maxdepth=9

Fitting: maxdepth=10

> set.seed(1)

> earthFit <- train(bbbDescr, 1logBBB,

+ "earth",

+ tunelLength = 20,

+ trControl = trainControl (method = "LGOCV", index = tmp, timingSamps = 50))
Fitting: degree=1, nprune=76

> set.seed(1)

> mbFit <- train(bbbDescr, logBBB,

+ "M5Rules",

+ trControl = trainControl (method = "LGOCV", index = tmp, timingSamps = 50))
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Fitting: pruned=Yes
Fitting: pruned=No

Given these models, can we make statistical statements about their performance differences? To do
this, we first collect the resampling results using resamples.

> resamps <- resamples(1ist(CART = rpartFit,

+ CondInfTree = ctreeFit,
+ MARS = earthFit,
+ M5 = mbFit))

> resamps

Call:

resamples.default(x = list(CART = rpartFit, CondInfTree = ctreeFit, MARS = earthFit, M5 = mbFit))

Models: CART, CondInfTree, MARS, M5

Number of resamples: 100

Performance metrics: RMSE, Rsquared

Time estimates for: everything, final model fit, prediction

> summary (resamps)

Call:
summary.resamples(object = resamps)

Models: CART, CondInfTree, MARS, M5
Number of resamples: 100

RMSE

Min. 1st Qu. Median Mean 3rd Qu. Max.
CART 0.5204 0.5744 0.6337 0.6312 0.6821 0.7942
CondInfTree 0.4689 0.6016 0.6489 0.6472 0.6913 0.8275
MARS 0.4664 0.5613 0.6126 0.6162 0.6639 0.8634
M5 0.3886 0.5787 0.6343 0.6243 0.6753 0.8044
Rsquared

Min. 1st Qu. Median Mean 3rd Qu. Max.
CART 0.06821 0.2975 0.3672 0.3599 0.4335 0.5984
CondInfTree 0.07995 0.2628 0.3496 0.3536 0.4415 0.6113
MARS 0.09452 0.3452 0.4148 0.4186 0.4881 0.6727
M5 0.12510 0.3243 0.4175 0.4124 0.4820 0.7139

There are several Lattice plot methods that can be used to visualize the resampling distributions:
density plots, box—whisker plots, scatterplot matrices and scatterplots of summary statistics. In the
latter case, the plot consists of a scatterplot between the two models. (See Figure 8). In Figure 9,
density plots of the data are shown. In this figure, the R? distributions indicate that M5 rules and
MARS appear to be similar to one another but different from the two tree-based models. However,

this pattern is inconsistent with the root mean squared error distributions.
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bwplot (resamps, metric = "RMSE")
densityplot (resamps, metric = "RMSE")
xyplot (resamps,
models = c("CART", "MARS"),
metric = "RMSE")
splom(resamps, metric = "RMSE")

vV + + Vv VvV

Since models are fit on the same versions of the training data, it makes sense to make inferences on
the differences between models. In this way we reduce the within—resample correlation that may
exist. We can compute the differences, then use a simple t—test to evaluate the null hypothesis that
there is no difference between models.

> difValues <- diff(resamps)
> difValues

Call:
diff.resamples(x = resamps)

Models: CART, CondInfTree, MARS, M5
Metrics: RMSE, Rsquared

Number of differences: 6

p-value adjustment: bonferroni

> summary(difValues)

Call:
summary.diff.resamples(object = difValues)

p-value adjustment: bonferroni
Upper diagonal: estimates of the difference
Lower diagonal: p-value for HO: difference = 0

RMSE

CART CondInfTree MARS M5
CART -0.016041 0.014967 0.006932
CondInfTree 0.123858 0.031008 0.022973
MARS 0.516146 0.004699 -0.008035
M5 1.000000 0.067874 1.000000
Rsquared

CART CondInfTree MARS M5
CART 0.006338 -0.058676 -0.052450
CondInfTree 1.0000000 -0.065014 -0.058787
MARS 6.595e-05 5.055e-06 0.006226
M5 0.0008924 4.973e-05 1.0000000

Note that these results are consistent with the patterns shown in Figure 9; there are more differences
in the R? distributions than in the error distributions.
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Figure 8: Examples of output from xyplot(resamps, models = c("CART", "MARS")).

Several Lattices methods also exist to plot the differences (density and box—whisker plots) or the
inferential results (level and dot plots). Figures 10 and 11 show examples of level and dot plots.

> dotplot(difValues)

> densityplot(difValues,
+ metric = "RMSE",

+ auto.key = TRUE,

+ pch = "[")

> bwplot(difValues,

+ metric = "RMSE")

> levelplot(difValues, what = "differences")

6 Custom Methods for train

Although there are currently more than 120 methods available to train, there may be the need to
create custom model functions (e.g. testing a new model etc). One application of custom models
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Figure 9: Examples of output from densityplot(resamps). Looking at &%, M5 rules and MARS
appear to be similar to one another but different from the two tree-based models. However, this
pattern is inconsistent with the root mean squared error distributions.
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Figure 10: Examples of output from levelplot(difValues, what = "differences"). The pair-wise

differences in RMSE are shown
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Figure 11:  Examples of output from dotplot(difvalues). The differences in RMSE and their
associated confidence intervals are shown.
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would be to create diverse ensembles of models. For example, a set of different classification models
may be fit to the same data and a "pick—the—winner” approach can be taken (or the average of the
class probabilities could be used, see Kuncheva (2004) or Seni and Elder (2010)). train already has
a framework for resampling and tuning models and predict.train can be used to encapsulate the
ensemble of models into one call for prediction.

Why Not Re—Write train Altogether?

One could make a strong argument that back—fitting the package to work with custom models is a
bit kludgy. This is probably true, but there are several munches of the current code base that, if
implemented in a more formal manner, would make the new code base overly complicated.

For example, the current code base exploits models that can produce predictions for many tuning
parameters using a single model object. For example PLS can fit a K component model and make
predictions from models with 1... K components. This potentially saves us K —1 model fits. PLS is
fairly fast, but pother models with this same feature (gbm, cubist, etc) are computationally taxing
and this saves a lot of time.

Also, the package currently does many types of resampling and some, such as the bootstrap 632
estimator, are not as simple as others. In this case, an additional model must be fit for all the data
to get the apparent error rate. Formalizing this (or starting over) with a new code base would be
unnecessarily complex.

6.1 How To Write Custom Methods

The user will need to deviate from the standard call in two ways:

e use method = "custom" in the call to train, and

e add the required functions for the model using trainControl

The custom argument of trainControl requires a list of named functions with the following elements:

parameters, model, prediction, prob and sort.

6.1.1 The parameters Argument

This element is used to specify or generate the models tuning parameters. This can be done either
as a function to generate them or a data frame of the actual parameters.

Inputs:
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e data: a data frame of the training set data. The outcome will be in a column labeled .outcome.
If the formula method for train was invoked, the data passed into this function will have been
processed (i.e. dummy variables have been created etc).

e len an optional parameter passed in form the tuneLength argument to train
Outputs: a data frame where

e all columns start with a dot

e there is at least one row

Instead of a function, the final data frame can be passed in

6.1.2 The model Function

This element fits the model and any other functions (e.g. pre—processing of the data)

Inputs:

e data: a data frame of the training set data. The outcome will be in a column labeled .outcome.
If case weights were specified in the train call, these are in the column .modelWeights. If
the formula method for train was invoked, the data passed into this function will have been
processed (i.e. dummy variables have been created etc).

e weights case weights
e parameter a single row data frame with the current tuning parameter
e levels: either NULL or a character vector or factor labels

e last a logical vector for the final model fit with the selected tuning parameters and the full
training set

e ... arguments passed form train to this function
Outputs: a list with at least one element:
e fit: the object corresponding to the trained model

Anything else can be attached to this object. If custom pre—processing is required, this can be
estimated in the model function and attached to the output list. Subsequent calls to the prediction
and probability functions will have the entire list available, so the processing can be applied to the
new data.
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6.1.3 The prediction Function

This should be a function that produces either a number vector (for regression) or a factor (or
character) vector for classification.

Inputs:

e object: a list with two elements resulting from the model function

e newdata: a matrix or data frame of predictors to be processed through the model (and possibly
pre-processing routine)

The output should be either a numeric, character or factor vector. For classification, factors are
converted to character elsewhere to ensure the proper levels are in the output.

6.1.4 The probability Argument

For classification models, this function should generate a data frame of class probabilities. For
regression, a value of NULL can be used.

Inputs:

e object: a list with two elements resulting from the model function

e newdata: a matrix or data frame of predictors to be processed through the model (and possibly
pre-processing routine)

The output should be a data frame with these characteristics:

e as many columns are factor levels

e column names are the same as the factor levels and in the same order

6.1.5 The sort Function

There are cases where multiple tuning parameters yield the same level of performance. In these
situations, train will choose the parameters associated with the most simplistic model. This function
should take the grid of tuning parameters and order them from least complex to most complex.

The input is a data frame of tuning parameters (without the preceding dot in the name).

The output is the same data frame sorted appropriately.
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6.2 An Example

As an example, suppose we want to test out rpart models where we tune over the complexity
parameter and the minimum number of samples in a node to do further splitting (a.k.a minsplit).

We'll use the Blood—brain barrier data in caret to illustrate.

First, we would need to create a training grid with the candidate values of cp and minsp1it. When
using the nominal rpart method in train, an initial rpart model is created and the unique values
of the complexity parameter are obtained from the sub-object cptable. We will test two values of
minsplit: 10 and 30. First, we get the unique C), values for minsplit = 10

> ## rpart requires a formula method

> tmpData <- bbbDescr

> tmpData$logBBB <- logBBB

> cpValues10 <- rpart(logBBB ~ ., data = tmpData,

+ control = rpart.control(minsplit = 10))$cptablel[,"CP"]
> cpValues30 <- rpart(logBBB ~ ., data = tmpData,

+ control = rpart.control(minsplit = 30))$cptablel[,"CP"]
> head(cpValues10)

1 2 3 4 5 6
0.36985527 0.09302467 0.05786716 0.03435632 0.03422223 0.02945773

From these, we will create the tuning grid of canidiate models (3 values of minsplit for each of the
possible C,, values:

> rpartGrid <- data.frame(.cp = c(cpValues10, cpValues30),
+ .minsplit =

+ c(rep(10, length(cpValues10)),

+ rep(30, length(cpValues30))))
>

We can now write a model function:

> modelFunc <- function(data, parameter, levels, last, ...)
+ 1

+ library(rpart)

+ ctrl <- rpart.control(cp = parameter$.cp,

+ minsplit = parameter$.minsplit)
+
+
+

list(fit = rpart(.outcome ~ ., data = data, control = ctrl))

}

It is a good idea to load the rpart package and anything else needed within the function.

The prediciton function is simple:
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> predFunc <- function(object, newdata)
+ q

+ library(rpart)

+ predict (object$fit, newdata)

+ F

Sorting by complexity is somewhat subjective. Both parameters govern how deep the tree can be.
We will sort by cp then minsplit:

> sortFunc <- function(x) x[order(x$cp, x$minsplit),]

Now we can create a control object for train:

> ctrl <- trainControl(custom = list(

+ parameters = rpartGrid,
+ model = modelFunc,

+ prediction = predFunc,
+ probability = NULL,

+ sort
+ method
> set.seed(581)

> customRpart <- train(bbbDescr, logBBB, "custom", trControl = ctrl)

sortFunc),
”CV”)

The predict, print, plot and resamples methods work with custom models. In the case of plot.train,
the axis and key labels will be the parameter names. However, update can be used to make the
labels more descriptive:

> rpartPlot <- plot(customRpart, xTrans = 1log10)
> rpartPlot <- update(rpartPlot, xlab = "Complexity Parameter")

7 Session Information

R version 2.14.0 (2011-10-31), x86_64-apple-darwin9.8.0

Locale: C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

Base packages: base, datasets, grDevices, graphics, grid, methods, splines, stats, utils

Other packages: Hmisc 3.8-3, MASS 7.3-16, caret 5.10-13, class 7.3-3, cluster 1.14.1,
codetools 0.2-8, e1071 1.6, earth 3.2-1, ellipse 0.3-5, foreach 1.3.2, gam 1.04.1, gbm 1.6-3.1,
ipred 0.8-11, iterators 1.0.5, kernlab 0.9-14, klaR 0.6-6, lattice 0.20-0, leaps 2.9,

mlbench 2.1-0, nnet 7.3-1, pROC 1.5, plotmo 1.3-1, plotrix 3.2-8, pls 2.2-0, plyr 1.6,

proxy 0.4-7, randomForest 4.6-2, reshape 0.8.4, rpart 3.1-50, survival 2.36-10
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e Loaded via a namespace (and not attached): RWeka 0.4-8, RWekajars 3.7.4-1, coin 1.0-20,
colorspace 1.1-0, compiler 2.14.0, modeltools 0.2-18, party 0.9-99995, rJava 0.9-1,
statsd 2.14.0, tools 2.14.0
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