JOURNAL OF ECONOMIC THEORY 61, 189-205 (1993)

Intertemporal Transfer Institutions

JoaN MARIA ESTEBAN AND JOZSEF SAKOVICS*

Institut d’ Analisi Economica (CSIC), Campus Universitat Autonoma de Barcelona,
08193 Bellaterra, Spain

Received March 12, 1992; revised October 1, 1992

We consider a single commodity overlapping generations model where, at a cost,
institutions can be created (or transformed) 1o carry out intergenerational transfers.
We analyze the game with both strategic and cooperative methods, characterizing
the “unique™ stationary equilibrium, as well as the set of transfer institutions that
belong to the core (which we show to coincide with the consistent core). We
conclude that, as long as the creation of an institution is costly, it is possible to
sustain positive transfers, though those will be below the optimal level. Moreover,
the lower the costs, the more efficient the transfer will be. Journal of Economic
Literature Classification Numbers: C71, C72, D23, E21, H55. ¢ 1993 Academic

Press. Inc

1. INTRODUCTION

In this paper we examine the social viability of intergenerational
transfers in a model of Overlapping Generations (OG). Since the first OG
model was laid down by Samuelson [16], it is known that competitive
equilibria may be dynamically inefficient and would never entail a positive
amount of intergenerational transfer. Further, it is also well known that the
introduction of valueless fiat money may bring about the existence of
Pareto efficient monetary equilibria with a positive price for money. Inter-
generational transfers are thus possible when appropriately backed with
some implicit social contract. Samuelson himself called this the “social
contrivance of money.” But, as pointed out in his seminal paper, “the
Golden Rule of Kant’s Categorical Imperative (enjoining like people to
follow the common pattern that makes each best off) is often not self-
enforcing.” As a matter of fact, it was Hume [9] who first made the point
that human society is composed of overlapping generations of citizens and
that the newly born individuals could not feel obliged by a pre-existing
social contract they did not even implicitly agree upon.’

* We are grateful to Carmen Matutes for her suggestions. Financial support has been
provided by the Spanish Ministry of Education through Grant DGICYT PB90-0172.
' Hume's argument was later taken up by Bentham [1].
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The social viability of intergenerational implicit contracts has been
recently analyzed from both the cooperative and noncooperative points of
view. Hendricks et al. [8] and Esteban [3] have proven that in a one-
commodity OG pure exchange economy, no monetary equilibrium belongs
to the core. Later, Esteban and Millan [4] showed that this negative result
is robust: despite the fact that with many commodities and many agents
some monetary equilibria can belong to the core, as the economy becomes
large all those equilibria are eventually excluded from the set of core
allocations.

The noncooperative case was first examined in a one-commodity OG
model by Hammond [6] and later by Kandori [10] and Salant [15]. It
is easy to see that when the set of strategies is not history-dependent and
consists of either performing the prescribed transfer or defecting, the domi-
nant strategy equilibrium is defection. However, Hammond in his “penston
game,” as well as Kandori and Salant, show that, using strategies
depending on the full history, with punishment rules for deviant genera-
tions it is possible to sustain all individually rational intergenerational
transfers as a subgame-perfect equilibrium. We find that the recourse to
players with unbounded memory is not very insightful in this specific
environment. Thus, our endeavor is to present a model where transfers are
self-enforced (arise and are maintained naturally) instead of being enforced
by the subsequent generations.?

It is our view that societies have solved the need for intergenerational
trust by creating social artifacts called “institutions.” As North [13]
has recently put it, “institutions are the humanly devised constraints that
structure political, economic and social interaction. They consist of both
informal constraints (sanctions, taboos, customs, traditions, and codes of
conduct), and formal rules (constitutions, laws, property rights).” The role
of institutions is to crystallize agreements by means of built-in rules that
make eventual changes costly. Political constitutions are a good example of
the social device we have in mind. They have a built-in mechanism that
makes it quite cumbersome to change the rights and duties embodied in
them. The autonomy of monetary authorities with respect to the government
also illustrates the point.

In this paper we examine the role of institutions in supporting inter-
generational transfers.” We use the canonical one-commodity, pure
exchange, stationary overlapping generations model with agents who live

?To that effect we restrict our attention to Markov strategies, where, conditional cn
the previous transfer, the agents' choice of action is independent of the past. {See also the
discussion following Definition 1.)

* The role of institutions, laws, and social rules in making viable intergenerational transfers
has already been examined by Engineer [2], Veall [17], Kotlikoff er al, [12], and Hansson
and Stuart [7], among others.
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for two periods. Institutions are designed to carry out transfer policies for
the entire sequence of generations. A particular transfer policy is a single
number, independent of the history, that represents the transfer from young
to old.* Individual generations can amend the existing institution and
define a new one, which they themselves are also supposed to abide by,
performing an alternative intertemporal sequence of transfers. Moreover,
we assume that changing the existing institution has a fixed cost.

We study the emergence and viability of institutions from both the non-
cooperative and the cooperative approaches and obtain remarkably similar
results. The availability of institutions (with non-zero change costs) makes
intergenerational transfers viable. Specifically, we obtain that the golden
rule transfer always belongs to the core (which we show to coincide with
the consistent core} and that the set of core transfers coincides with the
maximal set of fixed points of the equilibria in stationary strategies of the
non-cooperative game. The results from the cooperative and non-
cooperative approaches agree in predicting that the core, and thus the set
of fixed points of the stationary equilibria, shrinks to the golden rule
transfer as the fixed cost becomes small. However, the two approaches
diverge in that in the limit the core contains the golden rule only, while
under strategic behavior we obtain many other equilibria, including the
no-transfer institution. Finally, our results predict that if the economy
starts with no intergenerational transfer, it will eventually reach a
stationary positive transfer, though an inefficient one, below the golden
rule level.

The paper is organized as follows. After outlining the model in the next
section, Section 3 is devoted to the case of noncooperative behavior, while
in Section 4 we examine the core of the game. The conclusions are drawn
in the last section.

2. THE MoODEL

We assume an infinite horizon economy in which time is divided into
discrete periods of constant length. In every period 1 >0 a new generation
of agents is born and lives for two periods, ¢ and t+ 1. Generations
are composed of one single agent each. Thus, at any point in time the
generation just born (7) will coexist with the old generation (7T—1).
In period r=0 there also exists a generation of old agents, born in

*In principle, the transfer policy could be more complex but, in addition to the technical
and expositional complications that it would create, we believe that the appropriate model of
a transfer policy in a stationary environment is the constant one.
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the previous (unmodeled) period. We assume that there is one single
commodity, which cannot be stored from one period to the next. We
denote by a(r) and b(¢+ 1) the consumption of this commodity by agent
T in his youth and in his old days, respectively. Individual preferences will
be assumed to be identical over generations and representable by the utility
function?®

Ua(t), b1+ 1))=alt) b(t +1).

Each individual receives endowments w>1 and 1 in the first and second
period of his life, repectively. Therefore, the environment is stationary. The
commodity is transferable between coexisting generations. To simplify
matters we assume that only the young can transfer to the old, in line
with the assumption that the young have the larger endowment. Inter-
generational transfers can be performed through institutions. Institutions
can be set up, transformed, or terminated at a cost. We identify institutions
by the transfer they perform, x € [0, w]. Whenever the institution is altered
(that is, the size of the transfer is changed), the corresponding (giving)
generation will have to bear the cost of that change. This cost could
possibly depend on the size of the institution which is to be dismantled and
of the new one that is being set up, ¢(x, ,, x,). In this paper we assume,
however, that ¢(x,_,, x,)=c¢>0 whenever x, |, #x,, and ¢(x, ,,x,)=0
otherwise.® An institutional transfer x is feasible if 0 <x<w and it is
constrained feasible if 0 < x <w—c=®. We denote these sets by F and
CF, respectively. We assume that the set of constrained feasible transfers,
CF, i1s non-empty, that is, ¢ <w. We use as benchmarks two institutional
transfers: the golden rule and the constrained golden rule, x* and X,
respectively. These transfers are defined by

(w—x*)1+x*)2(w—x)(1+x) VxeF (1)
and
(=) 1+ X)=(@—x)(1+x) Vxe CF. (2)

It is routine work to obtain that x* ={w —1)/2 and x = (& — 1)/2. Further,
it is immediate that since ¢ >0, we have that ¥ < x*.

The Pareto efficient consumption allocations will correspond to the ones
generated by transfers x satisfying x > x*. It is essential o our model that

*Our results can be easily extended to the more general class of preferences satisfying
concavity (in the transfer) and that the marginal rate of substitution along the 45 degree
line is unity. In our view the slim gain in generality does not compensate for the increase in
clumsiness.

¢ Kotlikoff et al. [12] also assume a fixed cost for rewriting a social contract.
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intergenerational transfers can only be carried out by means of costly
institutions. Therefore, it is natural to introduce the notion of constrained
efficiency, taking into account the actual feasibility constraints. In that
case, the constrained Pareto efficient consumption allocations will be
generated by transfers satisfying x > ¥.

3. NONCOOPERATIVE ANALYSIS

We start by the strategic analysis of our model. In this section, we
assume that agents cannot sign enforceable contracts or engage in any form
of explicit cooperation. They single-mindedly try to maximize their own
utility, taking into account, however, the effects of their actions on other
players’ behavior, which has thus an indirect effect on their own payoff.

DEFINITION 1. We define a (pure) strategy of plaver T to be a function
that maps the level of the transfer institution inherited from player T—1 to
the new transfer institution. A mixed strategy is then defined as

V[0, 0] — F#,
where .[F is the set of probability distributions over [0, ®].

Note that these are Markov-type strategies, since an agent’s action
depends only on the current institution and not on the full history of the
game. We make this restriction for several reasons: First, we are using non-
cooperative methods partly to find out what happens if people are only
concerned with what happens to them and not even indirectly with what
happens to others. Second, given the time horizon for any application, the
assumption that players remember the full history, and condition their
actions on 1it, is quite unrealistic. Third, we want to liberate ourselves
from the Folk-theorem-like results of repeated games, where by using
“punishment strategies” an embarrassingly large number of equilibria can
be supported, rendering the predictions useless. Finally, we are interested in
modeling intergenerational transfers via institutions. In this context it is a
natural assumption that agents will condition their behavior on the existing
institution only.’

As the solution concept we use the notion of subgame-perfect (Nash)
equilibrivm. Lemma | demonstrates that the difficuities that could arise
from the fact that in the model there are an infinite number of agents
moving sequentially can be circumvented, and there exists a simple
recursive characterization of equilibrium.

" Consider, if you will, the current institution as a “sufficient statistic™ of the full history.
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LEMMA 1. An infinite sequence of strategies, V{(-) i=0,1,2, ..,
constitutes a subgame-perfect (Nash) equilibrium if and only if the following
holds for every t(=T) and every x €[0,w]:

supp Vi, (x, Jcargmax (w—c(x, ,x,)—x )1+ EV,, (x,))

X

stw—c(x, ,x,)—x,20

Proof. Note that the above condition states that T’s strategy has to be
a best response to T+ I’s strategy (subject to the feasibility constraint).
Since T’s payoff is independent of the actions of all subsequent players,
such a strategy is a best response to the strategies of agents 7+ 1, T+ 2, ...
On the other hand, since the previous agents’ actions are summarized by
the current institution, the optimal action of the current agent will by
definition be a best response to the previous players’ strategy. Subgame
perfection follows from the fact that each agent moves only once and that
we check optimality in exactly that subgame. Q.E.D.

At this level of generality we can say little about the set of equilibrium
strategies or that of equilibrium paths. Therefore, in what follows
we restrict our attention to equilibria where the agents’ strategies are
stationary, or, in other words, they are the same:® V,(y)=V,, (¥)
VT > 0. Given the fact that all agents have identical preferences and are
in the same situation (that is, the environment is stationary), and our
previous assumption that they use Markov-type strategies, so their actions
are not dependent on the full history, it seems intuitive to require them to
act independently of their place in the stream of generations.

Let 3(x) =0 or x or 1.” Also, define o, =(y—c¢)/y(w—y) and 4=
Vix*+ 1) —o.

PROPOSITION 1. If &y < 1 then the “unique” stationary equilibrium is the
following:"?

¥, if 0<y<e
V(p)=10(2,)® y@ (1 —d(x,))®0, if c<ys<x*+4
0, if x*+A<y<ao.

The proof is in the Appendix.

¥ Note that this assumption does not require the equilibrium sequence of transfers to be
stationary, it only refers to the decision rules.

° That is, in each equilibrium it has to take exactly one out of the three possible values.

" We denote a mixed strategy that puts weight « on action x and weight | —a on action

rby a®@x@®(1—2)® y.
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V(y)

FiG. 1. The stationary equilibrium strategy if &> < 1.

Thus, if the cost of changing the institution is more than the difference
between the endowments the agents are getting in their two periods of life
(¢z2w—1), then the only feasible change is to dismantle the institution
completely, since after paying the cost of change the remaining endowment
in the first period is less than the second period endowment and therefore
an intergenerational transfer from young to old is not efficient. Conse-
quently, if the existing transfer is less than ¢ it is never optimal to change.
If the current transfer is very large then the savings achieved by not
carrying out the transfer compensate for the cost of change and the fact
that the agent will not receive a transfer in his old days. There is also a
transitionary region'' of the existing transfers, where both strategies are
optimal, and there is even an equilibrium with in strategies.

Let

I+ —wt )
T (w=y—-x)

B.

Also let

B=/(x*+1) —(X+1)2

Il

PROPOSITION 2. If | < < w then the “unique’
the following:

stationary equilibrium is

B.®y@(1-B)®%, if 0<y<x*-B
Viy)= ¥, if 0<x*-—B<y<xi+c¢
| PR yD(1-d(BN®X, if X+c<y<x*+B
X, if x*+B<y<uw.

' Note that ¢ < x* + 4 for ce(0, w).
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T

-8B #+c *+ B w Yy

FiG. 2. The stationary equilibrium strategy if 1 <.

The proof is in the Appendix.

Thus, when the cost of changing the institution is sufficiently small then,
if the transfer is changed at all, it is changed to the constrained golden rule,
X. If the existing transfer is close to X then it is not worthwhile to change.
If the existing transfer is low'? then a mixed strategy must'* be used, since
if the agent’s strategy were to change to X then the previous generation
would prefer not to change, and, similarly, if the current agent was
planning to leave the institution intact, the previous one would rather
change it.

We can also see in this case that, if we start out with zero initial transfer
and ¢ < (\/(;— 1)? then with probability 1 eventually the institution will be
built, to a level of X, at which level it will thereafter be maintained. Since
X < x* this means that even in the steady state the transfer carried out will
fall below the socially optimal level. It is also worth noting, however, that
if some external force initiated the economy with a transfer institution that
carries out the golden rule transfer, in equilibrium no generation would
want to change the institution, regardless of the size of ¢ > 0.

Finally, if change is costless, we lose uniqueness:

COROLLARY 1 (to Lemma 1). If the ¢l . »e of institutions is costless
(¢=0) and V(z) is a stationary equilibrium, then

xesupp V(z)

(3)
xearg max(w — x}{1 + EV(x)).

The corollary directly follows from Lemma 1. The difficulties arising from
the lack of an institution (an institution that is costless to change has no

2 As well as the cost, for note that if ¢ > (\/‘6— 1)? then x* — B <.
¥ Note that in the other region where a mixed strategy may be used, there are also two
pure strategy equilibria. Here the mixed strategy is unique.
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effect on the agents’ behavior) are twofold: first, it is easy to see from the
corollary that there exists a large number of stationary equilibria; second,
the “mistrust strategy” (¥(y)=0) is a stationary equilibrium.

4. COOPERATIVE BEHAVIOR

We now examine the outcome of cooperative behavior. In this
framework, agents can lead an objection to the ruling institutional transfer
by initiating a new size of transfer and reneging from the old one. In that
case, that leading generation will bear the cost of substituting one institu-
tion for another. Agents can object to the existing transfer when there is
another institution such that, taking into account both its cost and
the transfers it performs, it makes both the leader and all subsequent
generations strictly better off. Then, we shall say that the core is the set of
un-objected institutional transfers.

Since we are assuming a stationary environment and stationary institu-
tions, it is clear that if an institution is objected to by a coalition headed
by generation 7, it will also be objected to by the infinite sequence of
coalitions we can form by choosing 7=0, 1, 2, ... as the leading generation.
We can therefore concentrate on coalitions headed by generation T=0.

Let us proceed to a formal definition of blocking by means of coalitions
and of the core as the set of unblocked institutions.

DERNITION 2. We say that codlition S blocks institution x with y if:

(1) (w—c— 3yl +1r)>(0w—x)1+x), for the leading generation,
and

(1) (w— 1+ y)>(@w—x)1+x), for all the subsequent genera-
tions.

The core is the set C of unblocked institutional transfers.

For ¢ >0 it is immediate that (w — y)(1 + v) = {w—c— y)}(1 + v). There-
fore, condition (i) in Definition 2 becomes the only binding inequality.

Our notion of the core deserves some comments. When looking at
cooperative outcomes, we are interested in those allocations at which no
subset of agents finds it advantageous to exclude the rest of agents while
reallocating the available resources within the coalition. This notion can be
made rigorous in a number of ways, according to the object of study and
the assumed environment. In our case, individuals are supposed to choose
among alternative institutions available to them. Therefore the object
of cooperation or exclusion are the institutions themselves. Here we are
identifying institutions with the transfers they are designed to carry out.
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Therefore, when a generation decides to break away and set up a new
institution, that generation reneges from the transfer commitment implicit
in the previous institution, pays the transformation costs, and starts
abiding by the intergenerational transfer rules associated with the new
institution just created.

Let us start by characterizing the core.

PROPOSITION 3.  The institutional transfer x belongs to the core, xe C, if
and only if xe[x,,, Xy ], where"

X = max(os x*— B)a (4)

and
x*4+ A, if c2w-1
'wz{ . (5)

x*+ B, if e<w-—1

Proof. Let us start by proving sufficiency: It is easy to check that
xe€{x,. x, ] implies that (w — x)(1 + x) 2 max. , o{® — z)(1 + z). Therefore
such an institution x cannot be blocked, so it belongs to the core.

To verify necessity, consider first the case when ¢>=w— 1. In this
case x,, =0, so we only need to show that no x> x* + A4 belongs to the
core. But for such an x, (w—x){1 + x)<® and therefore the no-transfer
institution would block any such transfer. If (\/6 —1Y¥<c<w—1thenx,,
is still zero, so we need to show that no x> x*+ B is in C. But for such
an x (w—x)(1 +x)<(d—¥)(1 +x) and therefore the constrained golden
rule transfer, X, is blocking. Finally, if 0<c<(\/5— 1)? then x,, is the
same as before, while x,,=x*— B. Thus we only need to show that no
x<x*-— B belongs to the core. But for such an x (w-—x)1+x)<
(0 —x)1+x) and therefore the constrained golden rule transfer is
blocking. Q.E.D.

We now turn to existence.

PROPOSITION 4.  C is nonempty.

Proof. From the definitions of x,, and x,,, (4) and (5), it is trivial to
observe that x* e [x,,, x,,] for all 0 <¢ < w and hence x*e C.

COROLLARY 2. [f ¢=0 then C is a singleton.

Proof. For ¢=0, x=x*=x,,=x,,.
The bounds x,, and x,,, and thus the size of the core set, depend on the
value of ¢. The lower bound, x,,, is decreasing and the upper bound, x,,,

" Recall that 4= /(1 +x*)?—a and B= /(1 +x*)? = (1 + %)%
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is increasing in c. It is easy to compute that for all ¢ such that (\/;— 1)y’ <
¢ <w the no-transfer institution x =0 belongs to the core. In order to
object to an existing institution, the leading generation of the blocking
coalition has to choose an alternative institution from the set of CF institu-
tions. By Corollary 2 when ¢=0, CF=F and only the golden rule (x*)
belongs to the core. On the other hand, as ¢ increases, CF shrinks and as
¢— w it converges to a singleton set containing x=0 only. In that case,
the set of feasible objections reduces to the no-transfer institution and
correspondingly the core coincides with the set of feasible transfers, F.

Heretofore, we have described the economy from an arbitrary starting
time, with a pre-existing institution. It seems natural to address the
question of how this institution came about, or, in other words, whether all
institutions are equally likely to be observed at a random time 1. This is
equivalent to examining what would be the choice of a generation when
faced with an existing institution not belonging to the core. Note that a rele-
vant special case is when the economy starts with x =0, and this does not
belong to the core. From the previous analysis it is clear that max(0, X) is
the most preferred institution in CF. But since max{0, x) < x* for ¢ >0, the
most likely institution to be observed will carry out an inefficient (too low)
intergenerational transfer. Therefore, either an external decision maker has
chosen at some point in the past a Pareto efficient institution that belongs
to the core, or else the blocking generation will always choose a core, but
Pareto inefficient, transfer except for the exceptional case ¢ =0.

Let us now examine whether the core as defined here strictly refines the
set of solutions satisfying the different consistency conditions that have
recently been explored in the literature. The approach initiated by
Ray [14] and followed by Esteban and Ray [5] is to introduce the notion
of credibility, which requires for a blocking objection raised by coalition §,
involving all generations, ¢ 2 r, to be credible in the sense than it cannot be
blocked by any other subcoalition S,,s>r, raising an objection itself
credible. With a countable infinity of agents, this approach presents an
obvious problem of infinite regress. In Esteban and Ray [5] this is solved
by defining k-credible objections and the corresponding k-consistent core,
C(k), and letting k tend to infinity. Let us introduce the formal definition.
Bear in mind, though, that because of the infinite horizon, the set of actions
open to any coalition S, is identical to the set available to the full sequence
of players as seen at ¢t =0.

DeriNITION 3. We say that an institutional transfer x is k-credibly
blocked by S, with the transfer y, if yeClk—1)} and condition (i)
of Definition 2 is satisfied. The transfer x belongs to the k-consistent
core if it cannot be k-credibly blocked by any coalition. Whenever
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lim sup, _, , C(k)=Iliminf, _ , C(k) the Consistent Core, (CC) exists and is
equal to this limit.

Khan and Mookherjee [11] follow a different route, much closer in
spirit to the von Neumann-Morgenstern solution set. We paraphrase their
definition below. Let us consider the set of feasible institutional transfers F.

DEFINITION 4. We say that the sets G and B are a consistent partition of
Fif
(a) xe B<3dveG such that y blocks x,
(b) xeG<=2yeG such that y blocks x.

If the set F can be consistently partitioned then G is the set of Consistent
Codalition Proof Equilibria (CCPE).

It is clear from this definition that here we are requiring the blocking
allocations to belong to a set in which allocations cannot block each other.

PrOPOSITION 5. C=CC=CCPE.

Proof. In Proposition 3 we have fully characterized the core, that is, the
set C(0). Let us now examine the set (1), which obtains by restricting the
potential blocking coalitions to object with some ye C(0). We have now
that every x ¢ C(0) can be blocked with £e C(0). Therefore, C(1)= C(0). It
follows that C(k)= C(k — 1) for all k=1, 2, ... and therefore that CC exists
and CC=C.

Let us now check whether the core coincides with CCPE. We start by
noting that the sets C and C form a partition. Let us first check 8. Assume
that xe C. Then we know from Proposition 3 that x is blocked by £e C.
Let us now suppose that x is blocked by some y € C. Then x cannot belong
to C, that is, xe C. Hence xe B<>xe (.

Let us now check for G. Assume that xe C. Then by the definition of C
there is no y € C blocking x. Consider now that there is no y € C blocking
x. Then xeC, since by Proposition 3 all xeC are blocked by %eC.
Therefore, xe G < xe C. Hence CCPE =C. Q.E.D.

In our model institutions provide an intergenerational link in two ways.
On the one hand, when agents set up a new institution they start by
performing the transfer in benefit of the current old generation whose
institution has been rejected. On the other, we have the inertial role played
by the existence of costs to institutional change, which may restrain agents
from blocking the ruling institution. The former is responsible for the core
being non-empty, while the latter for its size. indeed, when the leading
generation does not have to start by performing the new transfer the core
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1s empty, as shown in Hendricks et al. [8] and Esteban [3]. Not even the
golden rule transfer is in the core because each generation finds it advan-
tageous to lead a blocking coalition proposing the same golden rule scheme
but delayed for one period. In this way they expect to receive a transfer
without having made one.

5. CONCLUSION

We have presented a model of intergenerational transfer institutions that
gives an intuitive argument for the existence of intergenerational transfers
(for example, pensions), explains their relative size, and also justifies
the need for institutions to carry them out. We have isolated a single
characteristic of institutions as the significant factor, their inertia. By
building an institution today we can ensure that future generations be
committed to it, at least to the degree of the costliness of implementing a
change. This implicit commitment is sufficient to steer us away from
the disheartening result of mistrust: no transfer at all. Once we believe
(with reason) that the next generation will make us a cransfer if we do, it
becomes optimal to perform. In fact, we have shown even more: if the setup
costs are not prohibitive, it is optimal to perform a transfer (that is, to
create an institution) even if the previous generation did not “oblige” us to
make a transfer. Thus, we have an explanation for the emergence of
institutions: the efficiency loss from the lack of enforceable cooperation is
so important that it pays to incur a significant cost in order to ensure at
least a form of implicit cooperation.

We have made full use of the fact that our setup is amenable to both
strategic and cooperative analysis. The results obtained by the two
approaches are strikingly(?) in line with one another. For non-zero costs of
change the transfers belonging to the (consistent) core are exactly' the
fixed points of the stationary equilibrium. That is, once a level of transfer
that belongs to the core is established, both methods of analysis predict
that the institution will be kept intact. By Corollary 2 this interval always'®
includes the golden rule transfer, conforming with the intuition that
the most efficient transfer should not be changed. In general, the set of
stationary transfers is an interval around x*, the golden rule, corresponding
to the fact that if we are “close enough” to the optimum, then it does not
pay to incur the fix cost of change. As the cost reaches the level of the first
period endowment, all transfers become stationary: people cannot afford to
change.

'S Assuming that a generation will not change the institution if it is indifferent.
% For positive costs, in the non-cooperative case.

642 61 2-2
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The two approaches only differ in the benchmark case of zero cost.
While the cooperative outcome predicts the golden rule transfer as the
unique outcome (since the golden rule is the socially optimal outcome, any
coalition prefers it to any other institutional program), in the non-
cooperative case we get multiple equilibria, including the dreaded no-
transfer equilibrium. In this instance we side with the conclusion of the
strategic analysis. When costs are positive then the cooperative method
distinguishes the leading generation of the blocking coalition by the fact
that it will have to absorb the full cost of change. However, when the cost
is zero, the coalition is symmetric, the pivotal role of the leading generation
gets lost in contrast to our understanding of the situation. On the other
hand, the noncooperative method and result agree both with our intuition
and existing results in the literature. Therefore, we conclude that costly
institutions are necessary to ensure positive intergenerational transfers.

What about the evolution of institutions? If costs are not too high
(0<c<(\/;— 1)?), then O is not a stationary transfer. The cooperative
approach predicts a change to one of the core transfers, while the strategic
analysis predicts a (eventual) change to the constrained golden rule. In this
case the non-cooperative method refines the cooperative result. Since the
constrained golden rule is strictly less then the golden rule, this means that
the transfers we are likely to observe are strictly below optimal. We can
also conclude that the smaller the inertia of an institution, the closer to the
efficient level its transfer will be. Therefore, if a social planner were to
decide on the preferred cost of change then, since as we have seen, the zero
cost case is not desirable, she would find that, though the smaller the cost
the better, there does not exist an (socially) optimal cost level. That is,
costly transfer institutions are useful but they should be as flexible as
possible.

APPENDIX

The Proof of Proposition 1

Optimality. Let us assume agent T+ I's strategy is as specified in the
proposition and let us verify that it is a best reponse to itself:

If y<c then T has two options: either he leaves the institution
unchanged and earns (w — y)(1 + y) or he changes the transferred amount.
In this second case the optimal new transfer is arg max . o(@— x}(1 + EV(x))
=argmax (0 —x)}(1 +x)=0, since &< 1. Thus it is optimal not to
change the transfer if (w— y)(1 + y) > @. But this is implied by y <c.

If c < y<x*+ A then T’s options are again either to leave the institution
intact and to earn (w — y)(1 + 8(x,) y) or to change it to zero and to earn
@. But note that if 8(x,)=0 then (w—p)(1+da,)y)=w—y<ad, so
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abolishing the institution is optimal; if é(«,)=1 then (w— p)(1 + y)> o,
so leaving it intact is a best response, while if do(a,)=«, then
(= y)1+a, y)=a, for all v, therefore mixing between 0 and j is
optimal. '

If y>x*+ A4 then T’s options are again either to leave the institution
intact and to earn w— y or to change it to zero and to earn @. Now, if
y>c¢ then @ — y < @, so it is optimal to abolish the institution.

Uniqueness. It is straightforward to verify that if V() is a stationary
equilibrium then it has to satisfy the following for all ye [0, w]:

supp V(3 < {y | (@~ ¥+ EV(y))=sup (0 —x)}1 + EV(x))}

=20
v Jarg max (& — x)(1 + EV(X)) | (0 — »)(1 + EV(y))
[LESR A Y
<{d—xN1 + EV(x))}. (6)

That is, if the existing institution is y then in order for a transfer to be in
the support of a stationary equilibrium strategy, either it has to be
the same transfer y yielding at least as much utility as any possible other
transfer or it has to be the best possible new transfer that on top gives a
higher payoff than sticking to the old institution.

Let X earg max,, (@ — x)(1 + EF(x)). (If the maximum does
not exist then by (6) supp F(y)c {y}.) Then (w—x)1+ EV(X))>
max(& — x)(1 + EV(x)) and therefore V(¥)= x. But then

{(0—X)1+ EV(X))=(dd—X)(1 + X). (7)
If @<t then (7) has its unique maximum at ¥=0. Thus the second set in
(6) is either empty or it contains 0 only. Consequently, supp ¥(y) < {0, y}.
Then by (6), Oesupp ¥(y) only if (w— y)(1+ y)<& and similarly
yesupp V(y) only if w— y=¢. In the transitionary region it is easy to
verify that there are three possible solutions: V(y)=0, V(y)=y, and
V(iy)=a, @ y®(l —a,)®0. Q.E.D.

The Proof of Proposition 2

Optimality. Let us assume agent T+ I's strategy is as specified in the
proposition and let us verify that it is a best response to itsell:

If y<x*— B then T has two options: either he leaves the institution
unchanged and earns (in expectation) (w— y)(1+ B8, v+ (1 —,)x) or
he changes the transferred amount. In this second case the optimal new
transfer is

arg max( max X{(s), max Y(s), max Z(s)),
A B

s<x* B X Bsy<i+o N+

where X(s)=(d—s)(I+ B, s+ (1 =B,)%), Y(s)=(d—s)1+s), and Z(s)=
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(D —sWS(B,)s+ (1 —o(B,))x). It is clearly suboptimal to increase the
transfer above x* + B since changing it to ¥ would give the same payoff
at a lower cost.

Now, observe that (w —s)(1 + .5+ (1 — )5 =(— )] + %)=
max Y(z) for all s <x*-— B. Therefore, max,_ .~ zAX(s)<max Y{(z) since
@ < w. Similarly, it is easy to see that max Y(z)> Z(s) for all s> %+ ¢.
Moreover, T will be indifferent between his two best choices (keeping the
old institution or changing the transfer to %) since both give him
(& — X)(1 + x). Consequently, it is optimal to randomize.

If x*~ B< y< X+ cthen T has two options: either he leaves the institu-
tion unchanged and earns (w— y)(1+ y) or he changes the transferred
amount, In this second case the optimal new transfer is ¥ as before. Then,
it is optimal not to change the transfer (to ) if (w— )1+ y)=
(0 — X)}(1 + ). But this is implied by y <X+ c<x*+ 8.

If $+c<y<x*+ 8 then T has two options: either he leaves the
institution unchanged and earns (w— y)(1+3(f,) y+ (1 —d(f,))%) or he
changes the transferred amount. In this second case the optimal new
transfer is again X. Thus if é(f,)=0 it is optimal to change the transfer
to ® since then (w— p)(1+d(B)y+(1—0(B)NI)<(@—X)1+x). If
o{B,)=1 then similarly it is optimal not to change the institution. Finally,
if (f,)=p, then T will be indifferent between his two options.

If y>x*+ B then T's options are again either to leave the institution
intact and to earn (w— y)1+xX) or to change it to ¥ and to earn
(O—xXN1+x). But when y>x*+ B, (w—1r)(l+X)<(w—1)(1+ )<
(0 — X)(1+ X), so it is optimal to change the transfer to ¥.

Uniqueness. If l<w<2 \/Z;— I then (7) has its unique maximum
at x=x. Thus the second set in (6) is either empty or contains X only.
Consequently, supp V(y)< {X, v}. Then by (6), Xesupp V(y) only if
(w— )1 +max(%, y))<(d—x)1 + %) and similarly y e supp V(v) only if
(@— vl +min(x, ¥))=(d— )1+ x). Thus, if p<¥+¢ then V(y)=1»
while if y > x* + B then V(y)= <. Finally, in the transitionary region it is
easy to verify that there are three possible solutions: V(y)=x, V(y)=y,
and V(»)=f,® ry®(1 - ,)® .

If ©>2 \/a—l then (7) still has its maximum at x=x and thus
supp V(y)= {% vy}. The conditions for yesupp ¥(») and xesupp V())
are also the same: yesupp V(y) only if (w— v)(1+max(Xx, y))<
(o—x}1+x) while xesupp V(y) only if (w—y)}1l+min(% y))=
(& — %)(1 + £). The difference is that now the equation (w— y)(1+ y)=
(& — X)(1+ %) has two nonnegative solutions y=x*+ B. Thus for y>
x* —B<X+c¢ V(y) must be the same as before. If y <x*— B then it is
easy to verify that only the strictly mixed strategy giving weight f, to y is
a stationary equilibrium. Q.E.D.
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