cxxPack User Guide

R,/C++ Tools for Literate Statistical Practice

Dominick Samperi

May 31, 2010

Contents
1 Introduction
2 Using Sweave++

2.1 Preliminaries e e e e e
2.2 Hello World e e e
2.3 Dot product
2.4 Processing a vignette Lo
2.5 Stangle e
R Package Creation Quick Start

3.1 Generic comments Lo e
3.2 Linux e e
3.3 Windows e e e
3.4 Package creation checklist Lo
Examples

4.1 High Frequency Time Series e
4.2 Payment Schedule
4.3 Call R’s Fast Fourier Transform from C++
4.4 Special Functions: Complex Gamma
4.5 Root Finding and Optimization 0oL
4.6 Bank Account Example: Persistent C++ Objects
Rcpp classes

5.1 Reppina Nutshell e
5.2 NumericVector copy semanticso e
cxxPack classes

6.1 CNumericVector class and copy-by-value
6.2 Financial Date Library
6.3 DataFrame class. e e e e
6.4 Factorclass. e e
6.5 ZooSeries class. e e e
Advanced Topics

A.1 Safer Hello World: Exceptions i
A.2 Compatibility and Technical Notes

1 Introduction

The cxxPack package facilitates the process of building R packages and research compendiums
that make heavy use of both R and C++. It extends the R package Rcpp by providing an
application layer on the C++ side, and it extends Sweave by making it possible to create vignettes
with embedded R and C++ code chunks. The package includes C++ classes that model commonly
used R data structures like data frames and time series, and it provides an extensible collection of
tools including special functions and a financial date library.

This document serves as a user guide for the cxxPack package and also as an example of how
to create a vignette that contains both R and C++ code chunks. The same technology can be
used to create research compendiums following the ideas of reproducible research [1, 4] and literate
statistical practice, or LSP ([6],[9], [8])-

Recall that a vignette is a file with extension .Rnw that is normally stored in the package
subdirectory inst/doc. It contains IMTEX source with embedded R code chunks (delimited using
special character sequences). The cxxPack package permits C++ chunks to be included as well.
These C++ code chunks can be compiled on the fly to create a shared library that is called from
an R chunk in the usual way using .Call(). C++ code chunks are compiled using the R function
loadcppchunk().

Sweave transforms a vignette file into a TEX file with suffix .tex that can be processed with
pdflatex, bibtex, etc. In the process it executes each R code chunk that it finds and places the
output into the target TEX file, optionally preceded by the R code itself.

Several packages have been built on the cxxPack framework and will be released shortly in-
cluding: FractalPack (time series), CreditRiskPack (credit modeling), VolSurfPack (volatility
surfaces including implied trees), ComplexSysPack (complex networks, fractal structures, etc.),
and BondPack (fixed-coupon bond calculator with support for many “odd” features).

See http://www.stat.uni-muenchen.de/ leisch/Sweave/ for more information on Sweave
including the latest version of the Sweave User Manual. In this connection also see [8]. For details
about package creation see the Writing R Extensions document available at the R web site. For
more information about the Repp package see [5]. For information about the zoo time series
package see [11]. For information about the RUnit see [2]. For general information on the design
of R, S4 classes, and foreign language interfaces, see [3].

This document is organized as follows. Section 2 explains how to use the Sweave extensions
with the help of the obligatory “hello world” program and a simple dot product example. The logic
should be easy to follow even though we do not discuss syntax in detail until later. We also explain
how vignettes in R packages are processed.

Section 3 explains how to create a package that uses the cxxPack and Rcpp libraries. This is
done with the help of a bare bones skeleton or template package that can be used as the starting
point when creating a new package.

Section 4 presents a number of examples using most of the classes from cxxPack, again without
getting into a lot of detail regarding syntax. For more details on the individual classes see Section 6.

Sections 5 and 6 discuss details about the Rcpp classes that we use, and about the cxxPack
classes, respectively.

There are two appendices that discuss advanced topics like exception handling and compatibility
issues. The user should at least skim through this material to prevent surprises.

We will follow the following color conventions. Code that is in a vignette file will be colored
cyan, C++ source code that is included in the final output by Sweave will be colored red, and R
commands and output that are written to the final output will be colored blue. Vignette code will
only be shown in the following section to explain how Sweave++ is used.

Incidentally, to get an R code chunk to display as is, that is, to not be executed by Sweave, it
is not enough to use the Verbatim environment. Each line of the block must begin with a blank
space.

2 Using Sweave++

2.1 Preliminaries

The package vignette file cxxPackGuide.Rnw will be used to illustrate how to use the new features
of Sweave.! It is located in the package directory cxxPack/inst/doc/. C++ source code chunks
that are to be loaded on the fly are placed into the directory cxxPack/inst/doc/cpp/.2

At the top of cxxPackGuide.Rnw there is the following important line:

\usepackage [nogin] {Sweave++}

Note that we use Sweave++.sty instead of the standard Sweave.sty style file. Sweave++.sty
is part of the package skeleton (or template) that has been prepared for use with cxxPack.

Near the top of cxxPackGuide.Rnw Sweave options are specified using ITEX commands
\SweaveOpts and \setkeys. These settings are recommended for use with Sweave++. For
details see the Sweave User Manual.

Here is the first R code chunk in the file. It’s name is “1ib” and it does not generate any
output (echo=FALSE). It simply loads the package library and sets flags compile and quiet that
are used to control the behavior of loadcppchunk ()). When compile is FALSE the compilation step
is suppressed, and when quiet is TRUE output is less verbose (no effect under Windows though).
See the man page for loadcppchunk () for more information on these options.

<<1lib,echo=FALSE>>=
library(cxxPack)
compile=TRUE
quiet=TRUE

¢

The syntax (called “noweb” syntax) is very simple. A Chunk begins with a line of the form
<<name,options>>=, and it ends when a line beginning with @ is encountered.

2.2 Hello World

Now let’s include our first C++ code chunk, the obligatory “hello world” example.
\srcinclude[red] {testHello}

This basically includes cxxPack/src/testHello.cpp in verbatim mode (colored red). This is
what you get after processing with Sweave:

#include <cxxPack.hpp>
RcppExport SEXP testHello() {

return Rcpp::wrap("hello world");
}

All R objects are accessed through pointers of type SEXP on the C++ side. What is happening
here is that the C++ string "hello world" is copied to R’s address space and a pointer to it (of
type SEXP) is returned by Rcpp: :wrap(). This value is then returned by testHello().

Here is an R code chunk that calls testHello:

<<testHello.R,echo=TRUE>>=
<<1lib>>

.Call('testHello"')

Q

IThe .Raw suffix derives from 'R’ and ’noweb’, and the code chunk syntax follows that of ’noweb’.
2] might be helpful compare this vignette with the much simpler one that is part of the template package
MyPack—see Section 3.

This chunk is named testHello.R, and we specify that the output should be echoed to the
target TEX file. Note that this chunk refers to the previously defined one named 1ib. This is what
Sweave produces in the final report:

> library(cxxPack)
> compile=TRUE

> quiet=TRUE

> .Call('testHello')

[1] "hello world"

We see here that Sweave did a kind of macro substitution, expanding the 1ib chunk. Since
testHello.cpp is in the package src subdirectory the compiled function is stored in the package
shared library, and the .Call() here runs that function, producing the expected result.

2.3 Dot product

Next we consider the problem of calling a C++ function whose source file is not in the package src
subdirectory. The file testDotProduct.cpp is located in cxxPack/inst/doc/cpp/. To include
this source file we use:

\cppinclude [red] {testDotproduct}
After Sweave processing we get:

#include <cxxPack.hpp>
RcppExport SEXP testDotproduct (SEXP x, SEXP y) {
SEXP ret = R_NilValue;
BEGIN_RCPP
Rcpp: :NumericVector nvl(x), nv2(y);
double sum=0;
for(int i=0; i < nvl.size(); ++i)
sum += nvl(i)*nv2(i);
ret = Rcpp: :wrap(sum);
END_RCPP
return ret;

This function simply computes the dot product of two input vectors. The RcppExport macro
does whatever is necessary to ensure that this function is exposed by the shared library that it
is written to (OS-dependent). The logic should be easy to follow if not the detailed syntax. For
details on the syntax see Section 5.1.

Note that Rcpp: :NumericVector is a proxy class in the sense that nvl refers directly to the
R object pointed to by x, and similarly for nv2 and y. In particular, the R vector is not copied.
Section 5.2 explains the benefits and costs of this implementation.

Here is an R code chunk that calls this function. The call to loadcppchunk() takes care of
compiling the function, creating a shared library (for example, testDotProduct.so), and loading
this library.

<<testDotProduct.R,echo=TRUE>>=

<<1ib>>
loadcppchunk('testDotproduct',compile=compile,quiet=quiet)
x <- 1:5

y <- 1:5

sum (x*y)

.Call('testDotproduct',x,y)

e

The newly created library is used to resolve the reference in the .Call(), where two vector
inputs are supplied. Note that we nave not passed PACKAGE=’cxxPack’ to .Call(), because
testDotproduct is not defined in the package shared library.?

Here is what we get after Sweave processing;:

> library(cxxPack)

> compile=TRUE

> quiet=TRUE

> loadcppchunk ('testDotproduct', compile=compile,quiet=quiet)
> x <= 1:5

>y <= 1:5

> sum(x*y)

[1] 565
> .Call('testDotproduct',x,y)
[1] 565

When compile is FALSE here the compilation step is skipped, and loadcppchunk() just loads
the library, which must have been created previously. This is useful for a vignette like this one that
contains many uses of loadcppchunk(). Processing is much faster if compilation is not required.
When quiet is TRUE compilation output is less verbose (under Linux).

Important Note: If vignette processing fails with an error about not being able to open a shared
object file, a common cause is that compile=FALSE here. Use this feature only after a successful
run where all libraries are built, and do not forget to set it back to TRUE in the 1ib chunk above.

2.4 Processing a vignette

R packages are normally available from CRAN in several formats including: source archive (.tar.gz
suffix), windows binary (.zip suffix), and MacOS X binary (.tgz suffix). Since MacOS is very
similar to Linux most of our comments about Linux should apply to MacOS, and we will say no
more about MacOS in this document.

The package cxxPack includes a vignette defined by cxxPack/inst/doc/cxxPackGuide.Rnw.
More generally, R packages can contain vignettes defined by files with suffix .Rnw in the package
subdirectory inst/doc. Since vignettes can include code chunks that refer to package functions
the package library needs to be built in order to process vignettes in that package. In the case of
the cxxPack package the end result of this processing is the PDF file cxxPackGuide.pdf (in the
same subdirectory).

Assume that the source archive for cxxPack has been unpacked so the root of the corresponding
package hierarchy is in the current working directory. To build a package source archive use:

$ R CMD build cxxPack

This will generate cxxPack_7.0.tar.gz (and will overwrite the original source archive if it was not
moved to a different location). This command processes the vignette so the corresponding PDF
file is contained in this archive.

The vignette processing step can be skipped using:

$ R CMD build --no-vignettes cxxPack

If vignette processing was not previously done the result will be an source archive cxxPack_7.0.tar.gz
that is missing vignette PDF files. To distinguish this case from the last one we will call this an
unprocessed source archive. Source archives at CRAN are normally of the processed variety (they
include vignette PDF files).

The -no-vignettes option is useful for building a source archive (or a Windows binary) in cases
where the vignettes have already been processed. For example, the Windows binary for cxxPack
can be built from its source archive as follows:

31f it was defined in both libraries and the PACKAGE options was not used, the local version would be used (not
the package library) because that library was loaded last.

$ tar -xvzf cxxPack_7.0.tar.gz
$ Remd build --binary --no-vignettes cxxPack

The output file is cxxPack_7.0.zip. This assumes that all of the necessary Windows tools have
been installed (see Section 3.3).

When processing a vignette with R and C++ code chunks shared libraries and other scratch
files are created that are only needed for this processing. These files should not go into an archive
intended for distribution (either tar.gz or zip). Under Linux this is taken care of automatically
because the script file cxxPack/cleanup is run before the archive is created. Unfortunately, the
current version of R does not run cxxPack/cleanup.win before creating the archive.

Thus to create an archive under Windows with vignette processing use something like:

$ tar -xvzf cxxPack_7.0.tar.gz

$ Remd build --binary cxxPack

$ cd cxxPack; sh cleanup.win; cd ..

$ Rcmd build --binary --no-vignettes cxxPack

The first Remd build here will process the vignette, but it will create a large zip file because
cleanup.win is not called. So we call it explicitly and use Remd build again with the -no-vignettes
option. The final cxxPack_7.0.zip will not be too large.

Before a final INSTALL or submission to CRAN a package is normally checked using:*

$ R CMD check cxxPack_7.0.tar.gz
A package source archive can be installed (under UNIX) using:
$ R CMD INSTALL cxxPack_7.0.tar.gz
and the vignette can be viewed by staring R and using:
> vignette('cxxPackGuide')

Under Windows the package is normally installed from a Windows binary (zip file). This can
be done by starting R and using:

> install.packages('cxxPack_7.0.zip")
> vignette('cxxPackGuide')

cxxPack can also be installed directly from CRAN using:
> install.packages('cxxPack')

The system will present a list of repositories to choose from.

The cycle of editing the .Rnw file, then building the package, then installing the package, then
starting R to view the vignette (PDF file) is not very convenient. Thus for development purposes a
vignette can be processed by hand (after its corresponding package has been installed) as follows:

$ cd cxxPack/inst/doc
$ make

The Makefile contains the following:

target:
R CMD Sweave cxxPackGuide.Rnw
pdflatex cxxPackGuide.tex
bibtex cxxPackGuide
pdflatex cxxPackGuide.tex
pdflatex cxxPackGuide.tex

clean:
rm —-f <temp files...see Makefile>

4If the source archive is unprocessed this command will try to process the vignette. This will not work with
Sweave++ (see the technical notes). Thus only use check on processed source archives that include vignette PDF
files.

First Sweave is used to transform cxxPackGuide.Rnw into cxxPackGuide.tex. Then the standard
TEX tools are used to process this TEX file in the usual way (running pdflatex twice at the end
to get the cross references right). Another way to speed the development process is to use the
compile option of loadcppchunk()—see Section 2.3.

With this method the development cycle switches from edit Rnw file, build, INSTALL, run R,
run vignette() to: edit Rnw file, make, view PDF file.

As we noted above, it is important that vignette shared libraries and other scratch files not go
into a package archive to be distributed. When it is time to create a package archive without a lot
of large files that are no longer needed use:

$ cd cxxPack/inst/doc

$ make
$ make clean
$cd ../../..

$ R CMD build --no-vignettes cxxPack

2.5 Stangle

While not important for our purposes we mention that there is another program related to Sweave
named Stangle. Instead of "weaving” source code and text, it extracts all of the code chunks ("un-
tangles them”). This is how it would be used to untangle the R code chunks from cxxPackGuide .Rnw:

$ R CMD Stangle cxxPackGuide.Rnw

The R chunks are written to R scripts using the chunk name, so in our case one of the generated
scripts is testHello.R. To run it stand-alone simply start R and source() this file. Alternatively,
Rscript can be used:

$ Rscript testHello.R

Note that if there is graphics output (for example, testFFT.R), the second method will not work.

3 R Package Creation Quick Start

3.1 Generic comments

The purpose of this section is to indicate how to create a new package that employs cxxPack
(and Repp) as quickly as possible with minimal fuss. For this purpose we will use the archive
cxxPack/inst/template/MyPack_1.0.tar.gz that comes with cxxPack. It is a bare bones pack-
age that is pre-configured to use cxxPack, Rcpp, zoo and RUnit (unit testing package). All
of these packages must be installed before the template can be used. The template package also
includes a skeleton vignette that has embedded C++ code chunks.

To install cxxPack along with all of the packages that it depends on use:

> install.packages('cxxPack')

You will be prompted for a location to download from. Select one that is nearby.

The build process under Windows is very similar to the one under Linux thanks to a collection
of UNIX emulation tools named Rtools and a Windows version of TEX named MikTeX. The
Linux case will be discussed in the next section, and the changes needed for Windows will be
indicated in Section 3.3

3.2 Linux
To unpack the source archive for the template package use:

$ tar -xvzf MyPack_1.0.tar.gz

This will create a directory hierarchy rooted at MyPack including MyPack/R, MyPack/man, MyPack/src,
MyPack/inst/doc, etc.

Normally the user would insert new source files into the respective subdirectories, change
MyPack/DESCRIPTION to reflect the new package name and author, update MyPack/NAMESPACE,
etc., and every occurrence of MyPack would be replaced with the new package name.

Let’s assume for the time being that we will keep the name MyPack (useful for quick tests). To
build a source achive use:

$ R CMD build MyPack

This will create the package shared library in order to process the vignette (MyPack/inst/doc/MyPackDoc.Raw),
and the final result MyPack_1.0.tar.gz will contain the package source plus the vignette PDF file
(MyPackDoc . pdf).

To install the package (with its vignettes) use:

$ R CMD INSTALL MyPack_1.0.tar.gz
The package can also be installed by starting R and using:
> install.packages('MyPack_1.0.tar.gz')

Now R can be started and the package loaded in the usual way using the library() function.
The package includes a function MyTest () that is defined in MyPack/R/MyTest.R and documented
in MyPack/man/MyTest.Rd. It is basically the exported interface for a C++ function that is defined
in MyPack/src/MyPack.cpp. The returned value from this function is assigned the (S3) class
MyTest, and a print method for this class is defined in MyPack/R/MyTest.R. Both MyTest () and
the associated print method are exported in MyPack/NAMESPACE. See Writing R Extensions for
additional information on this.

After loading the MlyPack package the MyTest () man page can be viewed using ?MyTest, and
this function can be invoked directly with no arguments. This will cause the print method for
MyTest to be called, displaying the values that were returned.

Looking at MyPack/src/MyTest . cpp we see that the function expects two arguments, a double
value, and a data frame. It converts that input SEXP’s to the appropriate C++ data types. In
the case of the input data frame, this is done in two essentially equivalent ways, illustrating that
Repp: :as<>() behaves essentially like a SEXP constructor (see Section 5.1 for more details). Finally,
the class Repp: :List is used to build and return four named items, two doubles, and two data
frames (the last two are equal, of course).

Now looking at MyPack/R/Mytest.R, we see how the class MyTest is assigned to the return
value, and we see how the print function print.MyTest fetches the items that are returned and
prints them. In the case of the data frames (with class data.frame), printing is dispatched to
print.data.frame().

It should be noted that S3 class dispatching like this can be done in a cleaner object-oriented
fashion using the newer S4 classes (and generic methods), but this requires a little more work. See
Section 4.6 for an example.

The file MyPack/src/Makevars shows how compiler and linker flags are set so that the headers
and libraries of cxxPack (and Rcpp) are found at build time. Of course, both of these packages
must be installed before MyPack can be built. There are commented lines in Makevars that indicate
how external libraries can be added. For more sophisticated auto-configuration (under UNIX) see
the sample files in MyPack/inst/examples.

3.3 Windows

To build under Windows the Rtools collection must be downloaded and installed. Rtools can be
found at http://www.murdoch-sutherland.com/Rtools/index.html. The tools include a UNIX
shell (sh), rm, 1s, tar, etc. Also included are perl and the MinGW version of the GNU C++ compiler
(g++).

Note that the version of Rtools must be compatible with the version of R that is installed. See
the Web site for more information. By default Rtools is installed into c:\Rtools.

Another important tool set needed to process vignettes is the Windows implementation of
TEX named MikTeX. After downloading Rtools and MikTeX, the search path can be set using
something like (change versions as needed):

set R_HOME=c:\Program Files\R\R-2.11.1

set PATH=Y%R_HOMEY\bin;’%PATH/,

set PATH=c:\Rtools\bin;%PATHY,

set PATH=c:\Rtools\MinGW\bin;%PATHY,

set PATH=c:\Rtools\perl\bin;%PATHY,

set PATH=c:\Program Files\MikTeX 2.7\miktex\bin;%PATH,

With the environment set the MyPack package can be used as in the Linux case, except that “R
CMD” needs to be replaced with “Remd” in some cases. For example, to build a source archive use:

$ Rcmd build MyPack
To create a Windows binary when vignettes have already been processed (PDF files exist) use:
$ Rcmd build --binary --no-vignettes MyPack

This will create MyPack_1.0.zip.
A Windows binary can be installed by starting R and using:

> install.packages('MyPack_1.0.zip"')

3.4 Package creation checklist

The definitive reference on R package creation is of course the Writing R Fxtensions manual that
can be found at the R web site. Here is a quick checklist on package creation steps employing the
MyPack package template:

1. Replace all occurrence of MyPack with the new package name.
. Update the DESCRIPTION file.
. Add C++ source to MyPack/src as needed.

. Add R scripts to MyPack/R as needed.

2

3

4

5. Add documentation files for R functions to MyPack/man.

6. Add demos to MyPack/demo as needed, and update MyPack/demo/00Index.

7. Add data files to MyPack/data as needed.

8. Create other directories that are to be moved to MyPack in MyPack/inst if there are any.
9. Add vignette files (.Rnw files) to MyPack/inst/doc as needed.

10. Modify Makevars if there are external libraries

11. Optionally create unit tests in MyPack/inst/unitTests.

4 Examples

4.1 High Frequency Time Series

In this example the C++ function shown below will be called from the R code chunk that follows
it. As can be seen from the R code two objects of R’s datetime type (POSIXct) are passed, where
the second is 50 minutes larger than the first. The function testHighFreqSeries computes a time
series of standard normal values, where the time index starts at the first datetime supplied, and
then increases by 10 minute increments until the datetime is larger than the second one supplied
(not included in the series).

#include <cxxPack.hpp>
RcppExport SEXP testHighFreqSeries(SEXP start_, SEXP end_) {
SEXP ret = R_NilValue;
BEGIN_RCPP
RcppDatetime start(start_);
RcppDatetime end(end_);
std::vector<RcppDatetime> index;
std: :vector<double> obs;
GetRNGstate(); // initialize R's random number generator.

20

21

22

23

24

25

26

RcppDatetime datetime = start;

int dt = 60*%10; // 10 minute intervals
while(datetime < end) {

index.push_back(datetime) ;
obs.push_back(norm_rand()); // standard normal
datetime = datetime + dt;

}

PutRNGstate(); // finished with random number generator

cxxPack: :ZooSeries zoo(obs, index); // ordered but not regular

cxxPack: :ZooSeries zooreg(obs, index, 1.0/dt); // regular (liks ts)

Rcpp::List rl;

rl["zoo"] = Rcpp: :wrap(zoo);
rl["zooreg"] = Rcpp: :wrap(zooreg) ;

ret = rl;
END_RCPP
return ret;

library (cxxPack)

compile=TRUE

quiet=TRUE

startDatetime = Sys.time()

endDatetime = startDatetime + 60*50 # fifty minutes later
loadcppchunk ('testHighFreqSeries', compile=compile,quiet=quiet)
z = .Call('testHighFreqSeries', startDatetime, endDatetime)
attributes (z$zooreg)

V VVVVVVYV

$class
[1] "zooreg" "zoo"

$frequency
[1] 0.001666667

$index

[1] "2010-06-07 00:29:12 EDT" "2010-06-07 00:39:12 EDT"
[3] "2010-06-07 00:49:12 EDT" "2010-06-07 00:59:12 EDT"
[6] "2010-06-07 01:09:12 EDT"

> z$zooreg

2010-06-07 00:29:12 2010-06-07 00:39:12 2010-06-07 00:49:12 2010-06-07 00:59:12
0.8729292 -0.5291739 1.0823328 0.3966891
2010-06-07 01:09:12
-1.2299818

The class RcppDatetime is used to model R’s datetime objects, and the final time series is
returned as an object of type ZooSeries. Actually two ZooSeries objects are created from the

10

24

25

26

27

28

same data, the second of which is regular because the frequency is specified (see lines 18-19). This
is similar to the way the zoo () function works on the R side (see the man page).

See the interface file cxxPack/inst/include/ZooSeries.hpp for more information on what
constructors and methods are available for the ZooSeries class.

4.2 Payment Schedule

In this example a payment schedule is computed based on the input start and end dates and other
parameters (time is measured in days here, not seconds). The C++ function defined below is called
the the R code chunk that follows it.

The schedule consists of the nth specified weekday (3rd Friday here) in each month after the
start date, but not exceeding the end date. After computing the schedule payments are computed
for all dates after the first based on the number of days since the last date in the schedule, counted
using the specified day count convention (30/360 ISDA in this case).

We could pass in each parameter as a separate SEXP like we did in the last example, but to
illustrate how input lists are processed we use a named list instead. The R code below shows how
the list is defined and passed to C++. On the C++ side the input list is processed with the help
of the Repp: :List class (lines 5-10). The parameters are fetched from the list by name as a SEXP
that is then converted to the appropriate type using Rcpp: :as<>().

After fetching the parameters the schedule is computed with the help of the nthWeekday method
of FinDate (lines 11-28). Then the payments are computed with the help of the diffDays class
function (lines 29-47), storing the results into vectors that will be used to construct a data frame
to be returned as the final result.

The data frame (type DataFrame is constructed by specifying a vector of FrameColumn’s that
are in turn constructed from the vectors just computed (lines 48-54).

See the interface file cxxPack/inst/include/DataFrame.hpp for more information on what
constructors and methods are available for the DataFrame class.

#include <cxxPack.hpp>

RcppExport SEXP testPaymentSchedule (SEXP params_) {
SEXP ret = R_NilValue;
BEGIN_RCPP

// Fetch params.

Rcpp::List params(params_);

cxxPack: :FinDate start(Rcpp::as<cxxPack::FinDate>(params["start"]));
cxxPack: :FinDate end = Rcpp::as<cxxPack: :FinDate>(params["end"]);
int nth = Rcpp::as<int>(params["nth"]);

int weekday = Rcpp::as<int>(params["weekday"]);

double coupon = Rcpp::as<double>(params["coupon"]) ;

int nextMonth, nextYear;

cxxPack: :FinDate date = start.nthWeekday(nth, weekday);
cxxPack: :FinDate lastDate = date;
std::vector<cxxPack::FinDate> dateVec;

// Get schedule
while(date <= end) {
if (date >= start) // could have nthWeekday < start in first month.
dateVec.push_back(date) ;
if (date.getMonth() == cxxPack::Dec) {
nextMonth = 1;
nextYear = date.getYear()+1;
}
else {
nextMonth = date.getMonth()+1;

11

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

60

61

62

63

64

65

66

67

[

nextYear = date.getYear();

¥
date = cxxPack::FinDate(cxxPack: :Month(nextMonth),1,nextYear);
date = date.nthWeekday(nth, weekday);

}

// Computer payments and insert in data frame.
std::vector<std::string> colNames(4);

colNames[0] = "Date";
colNames[1] = "Days";
colNames[2] = "Pmt";

colNames [3] "Priority"; // High, Low, Med (factor column)
int nrow = dateVec.size();
std: :vector<std::string> rowNames (nrow) ;
std: :vector<int> colDays(nrow) ;
std: :vector<double> colPmt(nrow);
std::vector<std::string> priority(nrow); // factor observation
rowNames[0] = "1";
colDays[0] = 0; colPmt[0] = 0; priority[0] = "Low";
for(int i=1; i < nrow; ++i) {
rowNames[i] = cxxPack::to_string(i+1);

colDays[i] = cxxPack::FinDate::diffDays(dateVec[i-1],dateVec[i],
cxxPack: :FinEnum: :DC303601) ;

colPmt [i] = 100*coupon*colDays[i1]/360.0;
priority[i] = (i%2 == 0) 7 "Med" : "High"; // arbitrary
}

cxxPack: :Factor factor(priority);

std: :vector<cxxPack: :FrameColumn> cols(0);
cols.push_back(cxxPack: :FrameColumn(dateVec)) ;
cols.push_back(cxxPack: :FrameColumn(colDays)) ;
cols.push_back(cxxPack: :FrameColumn(colPmt)) ;
cols.push_back(cxxPack: :FrameColumn(factor)) ;
cxxPack: :DataFrame df (rowNames, colNames, cols);

ret = df;
END_RCPP
return ret;

Here is an R code chunk that exercises the payment schedule function:

library (cxxPack)
compile=TRUE
quiet=TRUE
startDate = as.Date('2010-04-15"')
endDate = as.Date('2011-02-28"')
nth = 3
weekday = 5 # 3rd Friday
coupon = .05 # coupon 57,
params = list(start=startDate, end=endDate,
nth=nth, weekday=weekday, coupon=coupon)
loadcppchunk ('testPaymentSchedule', compile=compile,quiet=quiet)
.Call('testPaymentSchedule', params)

Date Days Pmt Priority
2010-04-16 0 0.0000000 Low

12

20

21

22

23

24

25

26

27

28

30

31

32

33

34

35

2 2010-05-21 35 0.4861111 High
3 2010-06-18 27 0.3750000 Med
4 2010-07-16 28 0.3888889 High
5 2010-08-20 34 0.4722222 Med
6 2010-09-17 27 0.3750000 High
7 2010-10-15 28 0.3888889 Med
8 2010-11-19 34 0.4722222 High
9 2010-12-17 28 0.3888889 Med
10 2011-01-21 34 0.4722222 High
11 2011-02-18 27 0.3750000 Med

4.3 Call R’s Fast Fourier Transform from C++

The C++ function below exercises a C++ interface to R’s fast Fourier transform, cxxPack: : £ft1d().
It permits the programmer to work in terms of C++ types like std: : complex<double>. There is
some copy overhead here because std: :vector types must be transformed to R vector types.

#include <cxxPack.hpp>
/*%
* Calls R's fft() with step function input.
* Also works with Rcpp::ComplexVector.
*/
RcppExport SEXP testFFT() {
SEXP ret = R_NilValue;
BEGIN_RCPP
int N = 128;
double u0 = -1.5, du = 3.0/N, dx=2%3.14159265/N/du, x0 = -N*dx/2;
std: :vector<double> u(lN);
std: :vector<double> x(N);
std::vector<std::complex<double> > £f(N); // f(u) = 1 on [-.5,.5]
int fac = 1;
for(int i=0; i < N; ++i) {
uli] = u0 + ix*du;
x[i] = x0 + ix*dx;
f[il.real() = fac * ((ul[i] >= -0.5 && ul[i] < 0.5) ? 1.0 : 0.0);
fac = -fac;
f[i].imag() = 0.0;

}

std::vector<std::complex<double> > cresult = cxxPack::fftl1d(f);

std: :vector<double> result(N);

fac = (N/2 % 2==0) 2 1 : -1;

for(int i=0; i < N; ++i) {
result[i] = fac*duxcresult[i] .real();
fac = -fac;

}

Recpp::List rl;

r1["x"] = Rcpp: :wrap(x);

r1["ft"] = Rcpp::wrap(result);

ret = rl;

END_RCPP

return ret;

> library(cxxPack)
> compile=TRUE

13

> quiet=TRUE

> loadcppchunk('testFFT',compile=compile,quiet=quiet)

> foo <- .Call('testFFT')

> plot(foox, fooft, type='l',main='Fourier transform of unit step',
+ xlab='x"',ylab="ft(x)',col="'magenta')

Fourier transform of unit step

1.0

0.8
|

ft(x)
0.4

0.2

-100 -50 0 50 100

4.4 Special Functions: Complex Gamma

The complex gamma function (and the fast Fourier transform) are useful tools that have been
applied in some recent credit risk management studies. This function is not currently available as
part of the R core, and after implementing it I learned that there is another version in the Rmetrics
package fAsianOptions. That version is written in FORTRAN, while the one in this package is
written in C++.

Incidentally, one of the motivations for this package was to collect useful general purpose func-
tions like this in one place, at least until they are provided as part of the R core.

Here is some R code that exercises the complex gamma function from this package. It simply
evaluates the function on a rectangular grid of complex numbers and plots the modulus of the
result vs z.

library (cxxPack)

compile=TRUE

quiet=TRUE

complexify <- function(x,y) {
complex(real=x, imaginary=y)

}

Nreal <- 50

Nimag <- 100

rl <- seq(-4,4,length.out=Nreal)

im <- seq(-2,2,length.out=Nimag)

z <- outer(rl, im, complexify)

gamma <- cxxPack::cgamma(z)

VVVVVV+ + VYV VYV

14

> persp(rl, im, abs(gamma),ticktype='detailed',theta=-20,
+ main='Modulus of Complex Gamma Function',col='cyan',
+ xlab='real',ylab='imag',zlab="'|Gamma(z)[')

Modulus of Complex Gamma Function

|@)e %meo\

The complex gamma function from the fAsianOptions package yields the same image, but
there is a small problem: it drops the dimensions and returns a 1D vector instead of a matrix. This
is easily fixed by resetting the dimensions on the returned vector.

4.5 Root Finding and Optimization

The class RootFinder1D provides a C++-friendly interface to R’s 1D root finder (zeroin), and the
class ConstrainedMinimizer provides an interface to R’s L_BFGS_B constrained minimizer. We
only discuss RootFinder1D here.

Consider the trivial problem of solving for the root of f(x) = 2? — y, given y. The following

C++ code solves the problem, and since we can also do it by hand there is an easy way to check
the answer.

#include <cxxPack.hpp>
/*%
* Test C++ interface to R's root finder.
*/
RcppExport SEXP testRootFinder (SEXP x) {
SEXP ret = R_NilValue;
BEGIN_RCPP
double ysqr = Rcpp::as<double>(x);
class PriceFunction : public cxxPack::FunctionlD {
double ysqr;
public:
PriceFunction(double ysqr_) : cxxPack::FunctionlD(), ysqr(ysqr_) {3}
double value(double y) { return y*y - ysqr; }
I

cxxPack: :RootFinderlD rootFinder;

15

PriceFunction pr(ysqr);

double root = rootFinder.solve(pr, 0, 100, 0.00001);
ret = Rcpp: :wrap(root);

END_RCPP

return ret;

Let’s test it by computing the square root of 2:

> library(cxxPack)

> compile=TRUE

> quiet=TRUE

> loadcppchunk('testRootFinder',compile=compile,quiet=quiet)
> .Call('testRootFinder', 2)

[1] 1.414212

The result looks good, so let me say a few words about the C++ code. The RootFinder1D
class has a method solve that expects an object of type FunctionlD as its first argument. The
other arguments specify bounds and error tolerance. The class Function1D has a (virtual) method
value (x) that is overridden in subclasses like PriceFunction, and the problem faced by solve is
to find the root of value(x) = 0. Either it is able to do this and return the root, or it throws an
exception.

In more realistic problems the class PriceFunction will have many other parameters besides
the single value y that appears in this simple example, and root finding becomes non-trivial.

4.6 Bank Account Example: Persistent C++ Objects

This section illustrates how to use R’s external pointers to implement persistent C++ objects, that
is, C++ objects that maintain their state between R function calls (each call made using the .Call
interface). Two implementations are presented, one that uses S4 classes, and a bare-bones version
that does not.

One way to implement persistence is to use function closures as in the classic bank account
example of [7]. This is now a well-known way to maintain state by attaching the defining environ-
ment to an R function. We will use a different approach based on external pointers following the
discussion in [3], with the help of external pointer proxies provided by the Rcpp package.

The C++ BankAccount class that will be manipulated from the R side is shown below. It
contains the name and id of the account holder along with this customer’s current balance. A
trivial destructor has been added to illustrate some aspects of R’s garbage collection.

class BankAccount {

public:
std::string name;
int id;

double balance;
BankAccount (std::string n, int i, double b)
: name(n), id(i), balance(b) {}
“BankAccount () {
Rprintf ("BankAccount destructor called\n");
}
};

The following C++ class and associated functions will be used from R to create objects of type
BankAccount and to manipulate these objects. There are methods to create a new BankAccount
object, to make a deposit, and to show the current balance. Obviously a real-world application
would include other methods.

The open account operation first creates a new BankAccount object, then uses its address to
create an R external pointer with the help of the proxy class Repp: : XPtr. The true flag supplied to

16

the Repp: : XPtr constructor tells it to register a call to the destructor for this class when R cleans
up this external pointer (when it goes out of scope, for example). Finally, the external pointer is
returned.

The operation of the deposit and show methods should be clear. They are passed the ex-
ternal pointer that was created by open, and through this pointer they access the fields of the
corresponding C++ object.

1 #include <cxxPack.hpp>

2 /%%

3 * Bank account class used to illustrate proxy pattern.
4 */

5 class BankAccount {

¢ public:

7 std::string name;

8 int id;

9 double balance;

10 BankAccount (std: :string n, int i, double b)

11 : name(n), id(i), balance(b) {}

12 “BankAccount () {

13 Rprintf ("BankAccount destructor called\n");
14 }

15 F;

16

17 [kx%

18 * BankAccount open account method.

19 */

¥

o RcppExport SEXP testBankOpen(SEXP name, SEXP id, SEXP balance) {
21 SEXP ret = R_NilValue;

22 BEGIN_RCPP

23 BankAccount *p = new BankAccount(Rcpp::as<std::string>(name),
24 Rcpp: :as<int>(id),
25 Rcpp: :as<double>(balance));
26 Rcpp: :XPtr<BankAccount> xp(p, true);

27 ret = Xxp;

28 END_RCPP

29 return ret;

30 }

31

32 [*%

33 * BankAccount deposit method.

34 */

35 RcppExport SEXP testBankDeposit(SEXP xp_, SEXP amt) {
36 SEXP ret = R_NilValue;

37 BEGIN_RCPP

38 Rcpp: : XPtr<BankAccount> xp(xp_);

39 double oldval = xp->balance;

40 xp->balance += Rcpp::as<double>(amt);

41 Rcpp::List rl;

42 rl["name"] = Rcpp::wrap(xp->name);

13 r1["oldbal"] = Rcpp::wrap(oldval);

1a rl["curbal"] = Rcpp::wrap(xp->balance);

45 ret = rl;

46 END_RCPP

47 return ret;

48 }

49

17

59

60

61

62

63

64

/%%
* BankAccount show balance method.
*/
RcppExport SEXP testBankShow (SEXP xp_) {
SEXP ret = R_NilValue;
BEGIN_RCPP
Rcpp: : XPtr<BankAccount> xp(xp_);
Rcpp::List rl;
rl["name"] = Rcpp::wrap(xp->name) ;
r1["id"] = Rcpp::wrap(xp->id);
rl["curbal"] = Rcpp::wrap(xp->balance);
ret = rl;
END_RCPP
return ret;

Here is the first version of the R side of the solution. It does not use S4 classes. First, two
accounts are created and the corresponding external pointers are stored in bob.ptr and mary.ptr,
resp. These pointers are then used to perform a few transactions (with the results shown below
each transaction).

To illustrate how R’s garbage collection can be used to automatically cleanup C++ objects that
are no longer used, we zero out bob.ptr. This causes R to cleanup the corresponding R object
that bob.ptr was pointing to the next time it does a garbage collection sweep.

To see what happens we force garbage collection using gc (). The first thing we see is that the
BankAccount destructor was called, which should not be surprising because we registered this call
when we created the external pointer above. The gc () call also dumps some technical information
about the status of R’s memory. Normally explicit calls to gc() are not necessary.

> library(cxxPack)

> compile=TRUE

> quiet=TRUE

> loadcppchunk('testBankAccount',compile=compile,quiet=quiet)
> bob.ptr <- .Call('testBankOpen', 'Bob Jomnes', 101, 0.0)

> mary.ptr <- .Call('testBankOpen', 'Mary Smith', 121, 0.0)
> .Call('testBankShow', bob.ptr)

$name
[1] "Bob Jones"

$id
[1] 101

$curbal
[11 o

> .Call('testBankShow', mary.ptr)

$name
[1] "Mary Smith"

$id
[1] 121

$curbal
[11 o

> .Call('testBankDeposit', mary.ptr, 120.50)

18

$name
[1] "Mary Smith"

$o0ldbal
[11 o

$curbal
[1] 120.5

> .Call('testBankDeposit', mary.ptr, 50.00)

$name
[1] "Mary Smith"

$o0ldbal
[1] 120.5

$curbal
[1] 170.5

> .Call('testBankShow', mary.ptr)

$name
[1] "Mary Smith"

$id
[1] 121
$curbal
[1] 170.5
> bob.ptr <- 0
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 223205 12.0 407500 21.8 350000 18.7
Vcells 220832 1.7 786432 6.0 786432 6.0

The second S4 version requires that we define an S4 class and associated methods. See [3] for
details about the S4 classes and generic methods.

> library(cxxPack)

> compile=TRUE

> quiet=TRUE

> setClass ("BankAccount",

+ representation(extptr = "externalptr"))

[1] "BankAccount"

> setMethod("initialize", "BankAccount", function(.Object, name, id) {
+ .Object@extptr = .Call('testBankOpen', name, id, 0)

+ .Object

+ 3

[1] "initialize"
> setGeneric("deposit",

+ function(object,amt) { standardGeneric("deposit") })

19

[1] "deposit"

> setMethod("deposit", "BankAccount",

+ function(object, amt) {
+ .Call('testBankDeposit', object@extptr, amt)
+ »

[1] "deposit"

> setMethod("show", "BankAccount',

+ function(object) {

+ .Call('testBankShow', object@extptr)
+ »

[1] "show"

Finally, here are some BankAccount transactions using the S4 class and methods just defined.
Obviously this R code is easier to read and is more type-safe. Basically what we have done here is
use S4 classes to implement the well-known proxy pattern.

> library(cxxPack)

> compile=TRUE

> quiet=TRUE

> bob.acct <- new("BankAccount", 'Bob Jones', 101)

> mary.acct <- new("BankAccount", 'Mary Smith', 121)
> show(bob.acct)

$name
[1] "Bob Jones"

$id
[1] 101

$curbal
(11 o

> show(mary.acct)

$name
[1] "Mary Smith"

$id
(1] 121

$curbal
(11 o

> deposit(mary.acct, 120.50)

$name
[1] "Mary Smith"

$o0ldbal
[1] O

$curbal
[1] 120.5

> deposit(mary.acct, 50.00)

20

$name
[1] "Mary Smith"

$o0ldbal
[1] 120.5

$curbal
[1] 170.5

> show(mary.acct)

$name
[1] "Mary Smith"

$id
[1] 121

$curbal
[1] 170.5

> bob.acct <- 0
> gc()

BankAccount destructor called

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 230405 12.4 467875 25 407500 21.8
Vcells 223421 1.8 786432 6 786432 6.0

5 Rcpp classes

5.1 Rcpp in a Nutshell

Since the focus of the cxxPack package is on the C++ application layer we do not need all of the
tools provided by the Repp package. The tools that we use are summarized in Figure 1.

The Repp: :as<T>() template function and Repp: :wrap() are used to map between R objects
(SEXP’s) and C++ objects, as in:

T d = Rcpp::as<T>(s};
SEXP s = Rcpp: :wrap(d);

In most cases Repp: :as<T>() has the same effect as an explicit construction, so the following
are equivalent:

T d(sexp);
T d = Rcpp::as<T>(sexpl};

The Rcpp: :List class is the workhorse that enables us to fetch parameters by name from an
input list (in a function call), or to build up a list of named results that can be returned to R.

Repp: :NumericVector is a proxy class for an R double vector. For example, if s is a SEXP
pointing to an R double vector, we can write to the R vector using:

Rcpp: :NumericVector nv(s);
nv(0) = 3.14;

To get a copy of the original R object (and not just a proxy/wrapper) use: Repp: :clone().

Note that the proxy class Rcpp: :CharacterVector is not a vector of std::string. Never-
theless, it provides convenience operators that enable the user to work with objects of this class
naturally like this:

51t is actually a typedef for Rcpp: : Vector<STRSXP>, a template class that is parametrized by the underlying R
data type.

21

Rcpp tool | Purpose
Repp::as<T>() | used to map SEXP to a C++ object (or proxy)
Repp: :wrap() | used to map C++ object to a SEXP
Repp: :List | proxy class for an R list (named entries, arb type)
Repp: :NumericVector | proxy class for R double vector
Recpp: : IntegerVector | proxy class for R integer vector
Rcpp: :ComplexVector | proxy class for R complex vector
Rcpp: :NumericMatrix | proxy class for R double matrix
Repp: : IntegerMatrix | proxy class for R integer matrix
Repp: :ComplexMatrix | proxy class for R complex matrix
Rcpp: :CharacterVector | proxy class for R character vector
Recpp: :Function | proxy class for an R function
Rcpp: :Environment | proxy class for an R environment
Recpp: :XPtr | proxy class for an R external pointer
Repp: :clone() | makes a copy of a proxy object
RcppDate | classic date class
RcppDatetime | classic datetime class
BEGIN_RCPP | macro marking the start of a C++ zone
END_RCPP | macro marking the end of a C++ zone

Figure 1: Selected Repp classes and functions

Rcpp: :CharacterVector cv(5);

cv(0) = "hello world";

cv(1l) = std::string("again");
if(std::string(cv(1)) == "again") return 1;

The Rcpp: :Function class can be used to make calls to R functions. For example, if s is a SEXP
pointing to an R function that takes two real arguments and returns a real result, the function can
be called from C++ using, for example:

Rcpp: :Function func(s);
double result = Rcpp::as<double>(func(3.5,8.9));

The return value is a SEXP pointing to the answer in R’s address space, so Rcpp: :as<double>()
is used to fetch the double value.

The Rcpp: :Environment class can be used to fetch a function from a particular R package. For
example:

Rcpp: :Environment stats("package:stats");
Rcpp: :Function fft = stats.get("fft");

The Recpp: : XPtr class provides a simplified interface to R external pointers. These pointers can
refer to memory that is managed by C/C++ classes that are external to R (part of an R package,
for example). The example in Section 4.6 illustrates how to use this class to implement persistent
C++ objects, that is, objects that maintain their state between R function calls.

The macros BEGIN_RCPP and END_RCPP are used to mark the beginning and end of C++ code
sections or zones where errors can only be signalled using C++ exceptions—R exceptions are not
allowed. We refer to all of the code braketed by these macros, including all of the code reachable
(by function calls) from this section a C++ zone. This makes exception handling possible in most
situations—see Section A.1.

Finally, the RcppDate and RcppDatetime classes model R’s Date and POSIXct (datetime) types,
respectively. They are part of what the authors call the “classic Repp APL.” This API is not part of
the Rcpp namespace and it is no longer being actively developed. For this reason a new date class
cxxPack: :FinDate was defined for use in the financial date library of cxxPack. For the user’s
convenience most of the classes of cxxPack include support for ReppDate and RcppDatetime date

types.

22

5.2 NumericVector copy semantics

Consider the following C++ code. The use of Rcpp: :List should be self-explanatory.

#include <cxxPack.hpp>
/%%
* NumericVector copy semantics.
*/
RcppExport SEXP testNumericVector (SEXP x) {
SEXP ret = R_NilValue;
BEGIN_RCPP
Rcpp: :NumericVector nv(x);
Rcpp: :NumericVector av = nv;
Rcpp: :NumericVector cv = Rcpp::clone(Rcpp: :NumericVector(x));
nv(0) = 5; av(l) = 6; cv(2) = 7;
Rcpp::List rl;
r1["nv"] = Rcpp::wrap(av);
rl["av"] = Rcpp::wrap(av);
r1["cv"] = Rcpp::wrap(cv);
ret = rl;
END_RCPP
return ret;

This function expects a numeric vector argument and proxies this argument using the Rcpp: : NumericVector

class in nv. Then av is set equal to nv, with the result that av and nv both reference the same
R memory (through a common SEXP). On the other hand, cv is a clone of the input vector, so it
references a copy.%

Let us call this function with a real (double) vector:

> library(cxxPack)

> compile=TRUE

> quiet=TRUE

> x <- as.double(1:5)

> loadcppchunk ('testNumericVector', compile=compile,quiet=quiet)
> .Call('testNumericVector', x)

$nv
[1] 56 345

$av
[1] 56 345

$cv
[11] 127 45

> X
[1] 56 345

Notice that the input vector x was modified by the changes made to nv and av, but it was not
affected by the change made to cv, as expected. On the other hand, consider what happens when
we pass an integer vector:

> library(cxxPack)
> compile=TRUE

6This is very similar to the way Java references and clone work. The author is grateful to Romain Frangois for
a helpful discussion on this.

23

> quiet=TRUE
> x <-1:5
> .Call('testNumericVector', x)

$nv
[1] 56345

$av
[11] 56 345

$cv
[1] 127 45

> X
[11 1 2345

Now the input vector is not changed. What happened is that to construct nv a cast had to
be performed, and the end result is the nv and av both reference a copy of x, and cv references
another copy.

Clearly there are situations where the behavior of Rcpp: :NumericVector can be convenient,
for example, direct access to R vectors can lead to faster computations. On the other hand, this
example illustrates that there is a risk of unintended side-effects and other surprises. To be safe
use Repp: :clone() to force copying when performance is not an issue.

6 cxxPack classes

6.1 CNumericVector class and copy-by-value

C++ classes that model R vectors and matrices (rather than proxy them) have been implemented
in cxxPack. The implementation makes use of the C++ class std: :vector that is part of the
Standard Template Library (STL). This provides some leverage since necessary copy constructors
are inherited from STL.

The classes are CNumericVector, CNumericMatrix, CDateVector, and CDatetimeVector. Here
is a C++ function that employs these classes.

#include <cxxPack.hpp>
/%%
* Test experimental CNumericVector, CNumericMatrix, CDateVector, etc.
*/
RcppExport SEXP testCNumericVector (SEXP vec_, SEXP mat_, SEXP dvec_, SEXP dtvec_) {
SEXP ret = R_NilValue;
BEGIN_RCPP
cxxPack: :CNumericVector cvl(vec_);
cxxPack: :CNumericMatrix cm(mat_);
cxxPack: :CDateVector dvec(dvec_);
cxxPack: :CDatetimeVector dtvec(dtvec_);
cxxPack: :CNumericVector cv2 = cvl; // uses STL copy constructors
cv1(0) = 98;
cm(1,2) = 99;
dvec(0) = cxxPack::FinDate(cxxPack: :Month(4), 15, 2010);
dtvec(0) = RcppDatetime(14714.25%60%60%24); // 4/15/2010, 6AM GMT.

Rcpp::List rl;

r1["cvi"] = Rcpp::wrap(cvl);
rl["cv2"] = Rcpp::wrap(cv2);
r1["cm"] = Rcpp::wrap(cm);

24

22

23

25

26

27

rl["dvec"] = Rcpp::wrap(dvec);
rl["dtvec"] = Rcpp::wrap(dtvec);
ret = rl;

END_RCPP

return ret;

}
Here is some R code that exercises this function...

> library(cxxPack)

> compile=TRUE

> quiet=TRUE

> vec <- as.double(1:5)

> mat <- matrix(as.double(1:12),3,4)

> dvec <- as.Date('2010-02-01') + 1:5

> dtvec <- Sys.time() + 1:5%24%60*60

> loadcppchunk ('testCNumericVector', compile=compile,quiet=quiet)
> .Call('testCNumericVector', vec, mat, dvec, dtvec)

$cvi
[1] 98 2 3 4 5

$cv2
[1] 1 2345

$cm

[,11 [,2]1 [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 99 11
[3,] 3 6 9 12

$dvec
[1] "2010-04-15" "2010-02-03" "2010-02-04" "2010-02-05" "2010-02-06"

$dtvec

[1] "2010-04-15 02:00:00 EDT" "2010-06-09 00:29:21 EDT"
[3] "2010-06-10 00:29:21 EDT" "2010-06-11 00:29:21 EDT"
[6] "2010-06-12 00:29:21 EDT"

The operation of the constructors should be clear. The line containing cv2 = cv1 relies on the
STL copy constructor to copy the underlying std: :vector. The fact that the change to cvl does
not affect cv2 shows that these classes follow R’s copy-by-value semantics.

We remark that the “classic API” class ReppVector<double> always made a copy, so it is a model
class rather than a proxy class. Unfortunately, it never reached maturity and is no longer being
actively developed by the Repp team (where the focus is more on proxy classes). Accordingly, we
have added Rcpp: :wrap() implementations for RcppVector<double> and RcppMatrix<double>
to cxxPack.

6.2 Financial Date Library

The “classic API” classes RcppDate and RcppDatetime are minimal wrapper classes intended for
use with R’s Date and Datetime (or POSIXct) classes. Currently the legacy class RcppResultSet
in Rcpp is used to pass objects of these types back to R. To eliminate the need for this we have
implemented Rcpp: :wrap() for both of these types.

To avoid conflicts with the legacy date functionality we have implemented a financial date
library in terms of a new date class named FinDate. The library supports all of the usual day

25

count conventions and has been used to implement a general purpose bond calculator (in another
package not yet released).

There are also utility functions that can be used to compute the serial number used by various
systems to represent a particular date (or datetime). The systems supported include R, Excel1900,
Excel1904, QuantLib, IsdaCds, and Julian (i.e., Julian day number). These utility functions can be
applied to objects of type FinDate, RcppDate, and RcppDatetime. There are C++ and R interfaces
to these utility functions, and there is a detailed R man page (see ?serialNumber.

The file cxxPack/inst/unitTests/runit.math.R defines unit tests for the function serialNumber ().

To run the tests use runcxxPackTests().

The C++ function below exercises most of the features advertised above. It constructs two
FinDate’s from input R Date’s. Then d3 is defined to be February 28th, same year as the one
associated with d1. Note the cast to the enumerated type cxxPack: :Month. This helps to prevent
confusion between m/d/y and d/m/y format because a month in the second spot will not be
accepted.

Then diff30360 is set equal to the number of days between the input dates using the ISDA
30/360 day count convention, and diffACT is set equal to the actual (calendar) number of days
between the dates. nthFriday is set equal to the n-th Friday of the month that contains date d1.
Finally, excelnum is set equal to the serial number used by Excel to represent date d1. There are
two possible Excel formats—see the R man page for serialNumber for more information.

#include <cxxPack.hpp>
/*x
* Exercises the financial date library.
*/

RcppExport SEXP testDate(SEXP di_, SEXP d2_) {
SEXP ret = R_NilValue;
BEGIN_RCPP
cxxPack: :FinDate d1(d1_), d2(d2_.);
cxxPack: :FinDate d3(cxxPack::Month(2), 28, dl.getYear());
int diff30360 = cxxPack::FinDate::diffDays(dl, d2,

cxxPack: :FinEnum: :DC303601I) ;

int diffACT = d2 - di;
cxxPack: :FinDate nthFriday = dl.nthWeekday(3, cxxPack::Fri);
double excelnum = cxxPack::serialNumber(dl, cxxPack::Excell1900);
Rcpp::List rl;
r1["d3"] = Rcpp::wrap(d3);
r1["diff30360"] = Rcpp::wrap(diff30360);
r1["diffACT"] = Rcpp::wrap(diffACT);
rl["excelnum"] = Rcpp::wrap(excelnum);
rl["nthFriday"] = Rcpp::wrap(nthFriday);
ret = rl;
END_RCPP
return ret;

}

Let’s test the function by supplying two dates and then checking that we get the same serial number
when we use the version of serialNumber that is exposed as an R function:”

> library(cxxPack)

> compile=TRUE

> quiet=TRUE

> d1 <- as.Date('2010-05-15")

> d2 <- as.Date('2010-06-15")

> loadcppchunk ('testDate',compile=compile,quiet=quiet)
> .Call('testDate',d1, d2)

"Pasting this serial number into an Excel cell and formatting as a date should reveal 5/15/2010, provided Excel
is used on a PC with default options.

26

$d3
[1] "2010-02-28"

$dif£30360
[1]1 30

$diffACT
[1] 31

$excelnum
[1] 40313

$nthFriday
[1] "2010-05-21"

> serialNumber(dl, 'Excell900')

[1] 40313

6.3 DataFrame class

The class DataFrame can be used to build a C++ representation for an R data frame. There is a
constructor that takes a SEXP and it does what you would expect: builds a C++ representation of
the R data frame that this SEXP points to.

Conversely, the DataFrame C++ object can be mapped to R’s address space and represented
by a SEXP through an operator SEXP() type cast. This means Rcpp: :wrap() can be applied to a
DataFrame object.

The following C++ code shows how a DataFrame object can be constructed from an input R
data frame, and it also shows how such an object can be created from native C++ data structures.
In the second case the DataFrame is first “dimensioned” by specifying the row names, column names,
and column types. Then the data is filled in. Note that this method does not permit column types
COLTYPE_LOGICAL and COLTYPE_FACTOR. If the DataFrame must have columns of these types then
the columns must be built separately and combined using a different constructor, as in the second
example of this section.

#include <cxxPack.hpp>
/%%
* DataFrame demo without constructing columns separately.
*/
RcppExport SEXP testDataFramel (SEXP dfin_) {
SEXP ret = R_NilValue;
BEGIN_RCPP
cxxPack: :DataFrame dfin(dfin_);
int ncols = 3;
int nrows = 2;
std::vector<std::string> colNames(ncols);
std: :vector<std::string> rowNames (nrows) ;
std: :vector<int> colTypes(ncols);
colNames[0] = "id"; colTypes[0] = cxxPack::FrameColumn: :COLTYPE_INT;
colNames[1] "amount"; colTypes[1] = cxxPack::FrameColumn::COLTYPE_DOUBLE;
colNames [2] "date"; colTypes[2] = cxxPack::FrameColumn: :COLTYPE_FINDATE;
rowNames [0] "ri"; rowNames[1] = "r2";
cxxPack: :DataFrame df (rowNames, colNames, colTypes);

8This required a hack—see the technical notes on Rcpp: :wrap().

27

20

21

22

23

24

25

26

27

28

29

30

31

32

33

// Fill in data (can also use df[0].getInt(i), etc.)
for(int i=0; i < nrows; ++i) {
df["id"].getInt (i) = i+100;
df ["amount"] .getDouble(i) = i+100.5;
df ["date"] .getFinDate(i) = cxxPack::FinDate(cxxPack::Month(4),15,2010)+i;

Rcpp::List rl;

r1["df"] = Rcpp::wrap(df);
r1["dfin"] = Rcpp::wrap(dfin);
ret = rl;

END_RCPP

return ret;

}
Here is the R code that exercises this function:

> library(cxxPack)

> compile=TRUE

> quiet=TRUE

> dfin <- data.frame(a=c(1,2,3), b=c('alpha', 'beta', 'gamma'))
> loadcppchunk ('testDataFramel', compile=compile,quiet=quiet)

> .Call('testDataFramel',dfin)

$af

id amount date
rl 100 100.5 2010-04-15
r2 101 101.5 2010-04-16

$dfin

a b
1 1 alpha
2 2 beta
3 3 gamma

For our second example, here is the C++ code for a function that builds a DataFrame with
columns of all possible types. The types include int, double, string, factor, bool, FinDate,
RcppDate, and RcppDatetime. In this case the user builds all of the columns separately, places
them in a vector, and passes this vector along with the row and column names to the DataFrame
constructor.

#include <cxxPack.hpp>
/%%
* DataFrame demo with separate construction of each column.
*/
RcppExport SEXP testDataFrame2() {
SEXP ret = R_NilValue;
BEGIN_RCPP

int ncols = 8; // use all possible column types.
int nrows = 3;

std::vector<std::string> colNames(ncols);
std: :vector<std::string> rowNames (nrows) ;

std: :vector<int> colInt(nrows);
std: :vector<double> colDouble(nrows);

28

17

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

3

std::vector<std::string> colString(nrows) ;
std::vector<std::string> factorobs(nrows) ;

std: :vector<bool> colBool (nrows);

std: :vector<cxxPack: :FinDate> colFinDate(nrows) ;
std: :vector<RcppDate> colRcppDate(nrows) ;

std: :vector<RcppDatetime> colRcppDatetime(nrows) ;
colNames[0] = "int";

colNames[1] = "dbl";

colNames[2] = "str";

colNames[3] = "fac";

colNames[4] = "bool";

colNames[5] = "findate";

colNames[6] = "rcppdate";

colNames[7] = "rcppdatetime";

RcppDatetime dtO0(14714.25%60%60%24); // 4/15/2010, 6AM GMT.

for(i
r
c
c
c
c
c

nt i=0; i < nrows; ++i) {

owNames[i] = cxxPack::to_string(i+1);
olInt[i] = i+1;

olDouble[i] = i+1.5;

0lString[i] = "test"+cxxPack::to_string(i+1l);

0lBool[i] = i%2 == 0;

olFinDate[i] = cxxPack::FinDate(cxxPack::Month(4),15,2010) + i;

colRcppDate[i] = RcppDate(cxxPack: :Month(4),15,2010) + i;

c
£
}

cxxPa

std::
cols
cols
cols
cols
cols
cols
cols
cols

olRcppDatetime[i] = dtO+(.25+1i)*60%60%24;
actorobs[i] = "a"+cxxPack::to_string(i+l);

ck::Factor factor(factorobs);

vector<cxxPack: :FrameColumn> cols(0);

.push_back (cxxPack: :FrameColumn(colInt));
.push_back(cxxPack: :FrameColumn (colDouble)) ;
.push_back(cxxPack: :FrameColumn(colString)) ;
.push_back(cxxPack: :FrameColumn(factor)) ;
.push_back (cxxPack: :FrameColumn (colBool)) ;
.push_back(cxxPack: :FrameColumn(colFinDate)) ;
.push_back (cxxPack: :FrameColumn (colRcppDate)) ;
.push_back(cxxPack: :FrameColumn(colRcppDatetime)) ;

cxxPack: :DataFrame df (rowNames, colNames, cols);

ret =

df;

END_RCPP

retur

n ret;

Here is some R code that exercises this function:

> library(cxxPack)
> compile=TRUE

> quiet=TRUE
loadcppchunk ('testDataFrame2', compile=compile,quiet=quiet)
> .Call('testDataFrame2')

>

int dbl
11.5

str fac bool findate rcppdate

rcppdatetime

testl al TRUE 2010-04-15 2010-04-15 2010-04-15 08:00:00

29

2 2 2.5 test2 a2 FALSE 2010-04-16 2010-04-16 2010-04-16 08:00:00
3 3 3.

5
5 test3 a3 TRUE 2010-04-17 2010-04-17 2010-04-17 08:00:00

6.4 Factor class

An R factor is modeled using the Factor class. Here is a C++ function that constructs an object
of this class from an input R factor, and also from native C++ data structures.

#include <cxxPack.hpp>
/**
* Construct a Factor from input object and from native data structures.
*/
RcppExport SEXP testFactor (SEXP factorin_) {
SEXP ret = R_NilValue;
BEGIN_RCPP
cxxPack: :Factor factorin(factorin_); // From R factor

int nobs = 8;
std: :vector<std::string> obs(nobs);
for(int i=0; i < nobs; ++i)
obs[i] = "Level"+cxxPack::to_string((i+1)%3+1);
cxxPack: :Factor fac(obs); // Native constructor.

Rcpp::List rl;

rl["factorin"] = Rcpp::wrap(factorin);
rl["fac"] = Rcpp::wrap(fac);

ret = rl;

END_RCPP

return ret;

}
Here is an R chunk to test the function. The logic should be clear.

> library(cxxPack)

> compile=TRUE

> quiet=TRUE

> f <- as.factor(c('good', 'good', 'bad', 'good'))

> loadcppchunk ('testFactor', compile=compile,quiet=quiet)
> .Call('testFactor',f)

$factorin
[1] good good bad good
Levels: bad good

$fac
[1] Level2 Level3 Levell Level2 Level3 Levell Level2 Level3
Levels: Levell Level2 Level3

6.5 ZooSeries class

The ZooSeries class models an R zoo time series. Since most of the other R time series types (ts,
xts, timeSeries, etc.) can be converted to and from the zoo type (using as.zoo, as.xts, etc.) it
is possible to work with these at the C++ level using the zoo representation.

A zoo time series is assumed to be sorted on the index, but the timeSeries type does not
make this assumption, for example. Ultimately the raw data for a time series is a sequence of (not

30

20

21

22

23

24

25

26

necessarily ordered) index values and associated data observations. When each observation is a
single value, we have parallel index and data vectors. When each observation consists of several
values, the index vector refers to the rows of a matrix. The timeSeries type views a time series
in this raw fashion, and sorts as needed (for example, to convert to zoo type).

This is similar to the way the ZooSeries class has been implemented. When a ZooSeries
object is returned to R (via Rcpp: :wrap()) it is always sorted on the index, as the zoo package
expects. But the user is permitted to modify the ZooSeries representation, and this can result in
a ZooSeries representation that is not sorted on the index (until it is returned to R).

For our first example, here is a C++ function that constructs a ZooSeries object from an
input zoo object, and also constructs such an object from native C++ data structures. The index
here is of type FinDate. The acceptable index types are int, double, FinDate, RcppDate, and,
RcppDatetime.

#include <cxxPack.hpp>
VLS
* Test ZooSeries with scalar observations.
*/
RcppExport SEXP testZooSeriesl(SEXP zooin_) {
SEXP ret = R_NilValue;
BEGIN_RCPP

cxxPack: :ZooSeries zooin(zooin_);

int n = 3; // number of dates, one scalar observation per date.
std: :vector<cxxPack: :FinDate> obsdates(n); // the index.
std::vector<double> obs(n); // the observations.

for(int i=0; i < n; ++i) {
obsdates[i] = cxxPack::FinDate(cxxPack: :Month(4),15,2010) + i;
obs[i] = 100.5 + i;

}

cxxPack: :ZooSeries zoo(obs, obsdates);

Recpp::List rl;

rl["zooin"] = Rcpp::wrap(zooin);
rl["zoo"] = Rcpp: :wrap(zoo);

ret = rl;

END_RCPP

return ret;

}
Here is some R code to test this:

> library(cxxPack)

> compile=TRUE

> quiet=TRUE

> z <- zoo(rnorm(5), as.Date('2010-04-14')+1:5)

> loadcppchunk ('testZooSeriesl',compile=compile,quiet=quiet)
> .Call('testZooSeriesl',z)

$zooin
2010-04-15 2010-04-16 2010-04-17 2010-04-18 2010-04-19
1.3454871 0.9587794 -0.7095369 0.2942312 0.4985679

$zoo0

2010-04-15 2010-04-16 2010-04-17
100.5 101.5 102.5

31

For the next example we assume that three observations are made for each index value. We
also assume that the series is regular. Here is the C++ function.

#include <cxxPack.hpp>
/%%
* Test ZooSeries with vector observations.

*/

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

RcppExport SEXP testZooSeries2() {

}

SEXP ret = R_NilValue;
BEGIN_RCPP

// Three observations per date.

int n = 5; // number of dates.
3; // number of observations per date.

int m

std: :vector<cxxPack: :FinDate> obsdates(n);
std: :vector<std::vector<double> > obs(n);

int count = O;
for(int i=0; i < n; ++i) {
obsdates[i] = cxxPack::FinDate(cxxPack: :Month(4),15,2010) + i;
std: :vector<double> v(m);
for(int j=0; j < m; ++j)
v[j] = count++;
obs[i] = v;

}

cxxPack: :ZooSeries zoo(obs, obsdates);
zoo.setFrequency(1);

ret = zoo0;

END_RCPP
return ret;

Here is the test...

> library(cxxPack)

> compile=TRUE

> quiet=TRUE

> loadcppchunk('testZooSeries2',compile=compile,quiet=quiet)
> z <- .Call('testZooSeries2')

> class(z)

[1] "zooreg" "zoo"

> is.regular(z)

[1] TRUE

>z

2010-04-15 0 1 2
2010-04-16 3 4 5
2010-04-17 6 7 8
2010-04-18 9 10 11

2010-04-19 12 13 14

32

A Advanced Topics
A.1 Safer Hello World: Exceptions

It turns out that our implementation of testHello() in Section 2.2 above has a slight problem. If
the C++ function Repp: :wrap() were to throw an exception it is likely the R will crash (this is a
remote possibly here because Repp: :wrap() has been well-tested). To prevent this we can try to
use C++ exception handling like this:

#include <cxxPack.hpp>
RcppExport SEXP testHello2() {
SEXP ret = R_NilValue;
try {
ret = Rcpp: :wrap("hello world");
} catch(std::exception& ex) {
Rf_error(ex.what());
} catch(...) {
Rf_error ("Unknown exception");
}

return ret;

> library(cxxPack)

> compile=TRUE

> quiet=TRUE

> loadcppchunk ('testHello2')
> .Call('testHello2')

[1] "hello world"

Unfortunately, using R’s Rf _error () function amounts to throwing an R exception, and R
exceptions do not mix well with C++ exceptions. The author is grateful to Simon Urbanek for
pointing out this potential problem.

It is important to understand that this incompatibility between R and C++ exception handling
has no impact on code that works normally (does not throw exceptions). In practice it means that
if there is an exception it is generally not safe to assume that recovery is possible: the problem
that caused the exception needs to be fixed before reliable computations can resume. Of course, if
there is a serious runtime error R is likely to crash, and the problem needs to be researched and
fixed in the usual way.

Romain Francois has implemented work-arounds that make recovery from an exceptions possible
in most situations. For example, he has introduced macros BEGIN_RCPP and END_RCPP that can be
used to implement a safer version of testHello() as follows:

#include <cxxPack.hpp>
/%%
* Safer hello world.
*/
RcppExport SEXP testSaferHello() {
SEXP ret = R_NilValue;
BEGIN_RCPP
ret = Rcpp: :wrap("hello world");
if(ret != R_NilValue) // logical error
throw std::range_error("SaferHello: wrap failed");
END_RCPP
return ret;

33

We have deliberately introduced a logical error here to illustrate how the exception mechanism
works. Obviously the test should be ret == R_NilValue.

What happens here is that any C++ exception that occurs in the code bracketed between
BEGIN_RCPP and END_RCPP is transformed into an R exception and forwarded to R. Note that this
trick assumes that Rcpp: :wrap() will not throw an R exception—call Rf _error ()—which could
have the side effect of mixing R and C++ exceptions. If there are problems Rcpp: :wrap() should
throw C++ exceptions, it should not call Rf _error ().

The C++ function testSaferHello() can be called in exactly the same way that we called
testHello() above, but since it generates an exception (by design) Sweave would terminate while
processing this document (and you would not be reading this). To prevent this we need to call
testSaferHello() using R’s exception management framework as follows:

> library(cxxPack)

> compile=TRUE

> quiet=TRUE

> loadcppchunk('testSaferHello',compile=compile,quiet=quiet)

> handler <- function(str) { tmp=sub(".*): ", "", str); cat("C++ exception: ",tmp) }
> tryCatch(.Call('testSaferHello'), error = handler)

C++ exception: SaferHello: wrap failed

What happened is that the Repp framework caught the C++ exception that was thrown,
converted it to an R exception with a long text description, and forwarded this R exception to R.
On the R side the exception is caught using tryCatch(), and handled by the specified error handler.
In this case the handler simply strips off part of the long description added by Rcpp, leaving only
the text that was passed to the C++ exception framework, and the string "C++ exception: " is
prepended.

There is another potential problem that is taken care of automatically by the Rcpp framework.
If C++ code makes a call to an R function, that R function may throw an exception, which could
again improperly mix R and C++ exceptions. What the Rcpp framework does is catch such an R
exception and re-throw it as a C++ exception. Of course, this only works for function calls that
are made using the Rcpp framework.

The important message from this section is that all C++ code that is called from R should be
bracketed between BEGIN_RCPP and END_RCPP macros as in this example, and the enclosed C++
code should not call R’s Rf _error () function. In particular, this means that we should not return
objects that have an operator SEXP() directly; they should first be assigned to a SEXP variable
as in the example, and this variable should be returned.

A.2 Compatibility and Technical Notes

There a number of potential compatibility issues and OS-dependencies that the user of cxxPack
(and Repp) would be aware of. It is important that users at least browse through this list to avoid
wasting time on issues that are well-understood and for which work-arounds are available. The
author is grateful to Simon Urbanek for pointing out the potential exception handling and static
initializer issues.

P

Syntax When converting R code to C++ for improved performance don’t forget to map <=’ to ’=.
The R code ’x <- y’ happens to be valid C++ code, but it does not translate to 'x = y’ in
C++! To avoid this mistake use =" instead of <’ in R code (they are equivalent).

Exceptions R and C++ exception handling cannot be used at the same time. Be sure to enclose the main
block of C++ code that is called from R between the macros BEGIN_RCPP and END_RCPP.
The R Rf_error() function should not be called inside such a C++ block—throw a C++
exception if there is a problem. See the last section for more info.

main.c The R main module is currently compiled using the C compiler, not the C++ compiler. This
means static initializers in C++ code may not be called before main() is called as they should
be by the C++ standard. One work-around is to use explicit initialization only.

34

std::complex

Repp: :wrap()

check

unloadcppchunk

Linking

C++0x

Windows

It turns out that this problem does not occur in most situations because the shared library
loading mechanism makes sure that C++ static initializers associated with objects in the
library are called at the right time. If in the future R’s main() function is compiled using
C++ then this issue should disappear. Another possible solution would be to adopt CXXR
as the standard, a C++ version of R that is currently under development—see [10].

In cxxPack/inst/staticInitTest the user will find a simple test program. Here a C main
program calls a C++ function (in a dynamically linked library) that uses two statically ini-
tialized objects. The author knows of now environments where the static initializers are not
called. Unfortunately, this test depends on the GNU g-++ compiler!

Fast (unchecked) operations on a vector of R’s Rcomplex type can be performed by using
std: : complex<double> as a “proxy.” For example, if rptr is a pointer to Rcomplex, then we
can set

std: :complex<double> *cptr = reinterpret_cast<std::complex<double>*>(rptr);

See the implementation of cgamma in cxxPack, for an example. It is easy to see that the
same idea can be applied to types std: :vector<double> and double*, when the maximum
possible performance is desired.

When a C++ class has the type conversion operator SEXP() defined Rcpp: :wrap() should
use it. Currently this requires a type cast, as in Rcpp: :wrap ((SEXP)df). This creates an
asymmetry in the way Rcpp: :wrap() is used, sometimes the cast is needed, and other times
it cannot be present, and the user would need detailed knowledge of the class to know which
case applies. We have implemented a work-around for the classes of cxxPack so that the
cast to SEXP is never needed.

Normally R CMD check is run on package archives that include processed vignettes, that is,
the PDF files have already been generated. The vignettes are processed during R CMD build.
But it can happen that a package archive with vignettes is missing the PDF files. In this
case check will try to generate the missing PDF files by running pdflatex. This will not
work with Sweave++ because \srcinclude uses a relative path to find package source files
in src, and this relative path is invalid at check time. Thus be sure to run R CMD build
before R CMD check for packages that use Sweave++.

If for any reason it is necessary to delete one of the shared libraries that are created during
Sweave processing before it completes the library will need to be unloaded first. The function
unloadcppchunk () can be used for this purpose (see man page). All loaded libraries are
automatically unloaded when the Sweave processing completes, so unloadcppchunk() is
not needed in most situations.

It turns out that a package library is not always a shared library in the sense that this is
true under Linux, and portability problems can arise. Accordingly, for maximum portabil-
ity cxxPack (and Rcpp) create static client libraries in most environments (Linux is an
exception).

The Rcpp package employs many of the latest innovations in C++ including the features
documented in the C++ Technical Reference 1 (namespace std::trl), template metapro-
gramming (embedding program logic in templates), and other features scheduled to be part
of the new C+-+0x standard late in 2011. Note that some of these features may not be
supported by all compilers. The Rcpp package checks what features are supported by a
particular compiler before using them internally.

Under Windows Vista it sometimes happens that a PDF file that is created by the build
process is not accessible by the person who just created it! This tends to happen when
the Rtools shell (sh) is used as part of the build process. For example, the PDF file that
is created from the vignette may not be accessible from the command window (previously
called the “DOS Window”). The work-around is to use Windows file explorer instead.

35

When copying script files from Windows to Linux a common problem is the extra line termi-
nation characters used under Windows. Linux/UNIX terminates lines with a newline, \n’,
whereas Windows terminates lines with '\r\n’. Some Linux programs will be confused by
the extra ’\r’ characters. To see if they are present use:

$ od -c in.sh
To strip them use:

$ tr -d "\r" < in.sh > out.sh

References

[1] J. B. Buckheit and D. L. Donoho. Wavelab and reproducible research. In Wavelets and
Statistics, pages 55-81. Springer-Verlag, 1995.

[2] M. Burger, K. Juenemann, and T. Koenig. RUnit: R Unit test framework, 2009. R package
version 0.4.25.

[3] J. M. Chambers. Software for Data Analysis: Programming with R. Springer-Verlag, New
York, 2008.

[4] D. Donoho, A. Maleki, I. Rahman, M. Shahram, and V. Stodden. 15 years of reproducible
research in computational harmonic analysis. Computing in Science and Engineering, 11(1):8—
18, January 2009.

[5] D. Eddelbuettel and R. Francois. Repp: Repp R/C++ interface package, 2010. R package
version 0.8.0.

[6] R. Gentleman and D. Temple Lang. Statistical analyses and reproducible research. Journal
of Computational and Graphical Statistics, 16(1):1-23, March 2007.

[7] R. Thaka and R. Gentleman. R: A language for data analysis and graphics. Journal of
Computational and Graphical Statistics, 5(3):299-314, 1996.

[8] F. Leisch. Sweave: Dynamic generation of statistical reports using literate data analysis. In
W. Hirdle and B. Ronz, editors, Compstat 2002 — Proceedings in Computational Statistics,
pages 575-580. Physica Verlag, Heidelberg, 2002. ISBN 3-7908-1517-9.

[9] A. Rossini and F. Leisch. Literate statistical practice. UW Biostatistics Working Paper Series,
Paper 194, March 2003.

[10] A. R. Runnalls. Aspects of CXXR internals. University of Kent working paper, 2009.
[11] A. Zeileis and G. Grothendieck. zoo: S3 infrastructure for regular and irregular time series.

Journal of Statistical Software, 14(6):1-27, 2005.

36

