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1 Preamble

The R package dlnm offers some facilities to run distributed lag non-linear models (DLNM’s), a mod-
elling framework to describe simultaneously non-linear and delayed effects between predictors and an
outcome in time-series data.

The aim of this document is to provide an overview of the capabilities of the package, together with
extensive examples of application with real data. Some information on installation procedures and on
the data included in the package are given in Section 2. The theory underlying the DLNM methodology
is briefly illustrated in Section 3, while the functions included in the package are described in Section 4.
Some examples of applications are provided in Section 5: users mainly interested in the application
can skip the previous Sections and and start with these examples. Finally, Section 6 offers some
conclusions.

The DLNM’s methodology has been previously described in Gasparrini et al. (2010), together with a
detailed algebraical development. This framework was originally conceived and proposed to investigate
the health effect of temperature by Armstrong (2006).

Type citation("dlnm") in R to cite the dlnm package after installation (see Section 2). A list of
changes included in the current and previous versions can be found typing file.show(system.file("ChangeLog",
package = "dlnm")) .

Please send comments or suggestions and report bugs to antonio.gasparrini@lshtm.ac.uk.

2 Installation and data

2.1 Installing the package dlnm

The dlnm package is installed in the standard way for CRAN packages from version 2.9.0 onwards,
for example typing install.packages("dlnm") or directly through the menu in R, clicking on Pack-
ages and then on Install package(s).... The package can be alternatively installed using the .zip file
containing the binaries, via Packages and then Install package(s) from local zip files....

The functionalities of dlnm depend on other packages whose commands are called to specify the dlnm
functions. This hierarchy is ruled by the field Imports of the file description included in the package.
The functions are imported from the packages splines (functions ns() and bs()) and tsModel (function
Lag()). While splines is present in the basic installation of R, the package tsModel is automatically
downloaded if dlnm is installed through R using the CRAN, but must be independently installed if a
.zip file is used.

2.2 Data

Until the version 0.4.1, the package dlnm did not contain any data, and used the datasets stored in the
package NMMAPSlite.

In this version the package contains its own dataset chicagoNMMAPS, with daily mortality (all causes,
CVD, respiratory), weather (temperature, dew point temperature, relative humidity) and pollution
data (PM10 and ozone) for Chicago in the period 1987-2000. The data were assembled from pub-
licly available data sources as part of the National Morbidity, Mortality, and Air Pollution Study
(NMMAPS) sponsored by the Health Effects Institute (Samet et al., 2000a,b). They are download-
able from the Internet-based Health and Air Pollution Surveillance System (iHAPSS) website (http:
//www.ihapss.jhsph.edu) or through the packages NMMAPSdata or NMMAPSlite. See ?chicagoN-

MMAPS for additional information on the variables included.
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3 Distributed lag non-linear models (DLNM’s)

The aim of this Section is to provide a methodological summary of the DLNM framework. A de-
tailed description of this methodology and the algebraical development have been published elsewhere
(Armstrong, 2006; Gasparrini et al., 2010).

3.1 The issue

The main purpose of a statistical regression model is to define the relationship between a predictor and
an outcome, and then to estimate the related effect. A further complexity arises when the dependency
shows some delayed effects: in this case, a specific occurrence of the predictor (let us call it an exposure
event) affects the outcome for a certain period in the future. This step requires the definition of more
complex models to characterize the association, specifying the temporal structure of the dependency.
The main feature of DLNM’s is their bi-dimensional structure: the model describes simultaneously the
potentially non-linear relationship in the space of the predictor and along the new temporal dimension.

3.2 The concept of basis

Several different methods have been adopted to specify non-linear effects in a regression models. A
simple solution is to generate strata variables, applying specific cut-off points along the range of the
predictor in order to define specific intervals, and then specifying new variables through a dummy
parameterization.

Other types of manipulations of the original variable are applied when there are specific assumptions
on the shape of the relationship, for example when the effect is likely to exist and be linear only above
or below a specific threshold (hockey-stick model). An extension of this model assumes two distinct
linear effects below a first threshold and above a second threshold, with a null effect in between them.

An alternative to the strata or threshold approaches is to include in the model some terms allowing a
true non-linear relationship, describing a smooth curve between the predictor and the outcome. The
traditional methods include a quadratic term or higher degree polynomials. Recently, spline functions
have been favoured, especially through a natural cubic parameterization.

A generalization may be provided assuming that all the approaches above imply the choice of a basis,
defined as a space of functions used to define the relationship (Wood, 2006). The choice of the
basis defines the related basis functions, completely known transformations of the original predictor
generating a new set of transformed variables, defined basis variables. Independently from the basis
chosen, the final result will be a matrix of transformed variables which can be included in the design
matrix of a model in order to estimate the related parameters. The choice of different bases leads to
the specification of different matrices, but the mechanism is common.

3.3 Delayed effect: DLM’s

In the specific context of time series analysis, given the ordered series of the predictor values, a delayed
(or lagged) effect is present when the outcome in a specific time is influenced by the level of the
predictor in previous times, up to a maximum lag. Therefore, the presence of delayed effects requires
to take into account the time dimension of the relationship, specifying the additional virtual dimension
of the lags.

A very simple model to deal with delayed effects considers the moving average of the predictor up to
a certain lag, specifying a transformed predictor which is the average of the values in that specific lag
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period. Although simple, this model is limited if the purpose is to assess the temporal structure of the
effects.

These limitations have been addressed using a more elegant approach based on distributed lag models
(DLM’s). The main advantage of this method is the possibility to depict a detailed description of the
time-course of the relationship. Originally developed in econometrics (Almon, 1965), this method has
recently been used to quantify the health effect in studies on environmental factors (Braga et al., 2001;
Schwartz, 2001; Welty and Zeger, 2005; Zanobetti et al., 2000).

In the basic formulation, a DLM is fitted by the inclusion of a parameter for each lagged predictor
occurrence. An estimate of the overall effect is given by the sum of the single lag effects upon the
whole lag period considered (Hajat et al., 2005; Schwartz, 2000).

This unconstrained version of DLM does not require any assumption on the shape of the effect along
lags, and consequently on the relationship between parameters. In order to define a more parsimonious
model, it is possible to specify some assumptions on the shape of the distributed effect, applying some
constraint. The simplest solution is to group the lags in different strata (Pattenden et al., 2003; Welty
and Zeger, 2005), while a more complex option is to force the curve along lags to follow a specific
smooth function, for example polynomials (Baccini et al., 2008; Schwartz et al., 2004; Zanobetti and
Schwartz, 2008) or splines (Zanobetti et al., 2000).

Following the general approach used in Section 3.2, it may be shown that all the different DLM’s above
can be described by the same equation, where different models are specified through different basis
functions to be applied to the vector of lags, building a new basis matrix (see Gasparrini et al., 2010,
Eq. 4). Again, the choice of different bases generates different matrices, but the mechanism is general.

3.4 The extension to DLNM’s

A general approach to specify non-linear but un-lagged effects has been introduced in Section 3.2,
while the methods to define distributed lag functions for simple linear effects have been presented in
Section 3.3. An obvious extensions is to combine these approaches to define distributed lag non-linear
models (DLNM’s), a family of models which can deal at the same time with non-linear and delayed
effects.

The different issues of non-linearity and delayed effects share a common feature: in both cases the
solution is to choose a basis to describe the shape of the relationship in the relative dimension. This
step leads to the concept of cross-basis: following the idea of basis in 3.2, a cross-basis can be imagined
as a bi-dimensional space of functions describing on the same time the shape of the relationship and
the distributed lag effects. The algebraic notation to define the cross-basis and then the DLNM can
be quite complex, involving tensor products of 3-dimensional arrays, and has been presented elsewhere
(Gasparrini et al., 2010, Section 4.2). Nonetheless, the basic concept is straightforward: choosing a
cross-basis amounts to choosing two independent set of basis functions, which will be combined to
generate the specific cross-basis functions. The DLM’s described in 3.3 can be considered as special
cases of DLNM’s with a simple linear function in the dimension of the predictor.

The result of a DLNM can be interpreted building a grid of predictions for each lag and for suitable
values of the predictor, using three dimensional plots to provide an overall picture of the effects varying
along the two dimensions. In addition, it is possible to compute the effects for single predictor levels or
lags, simply cutting a ”slice” of the grid along specific values of predictor or lags, respectively. Finally,
an estimate of the overall effect can be computed by summing all the contributions at different lags.
The effects are usually reported versus a reference value of the predictor, centering the basis functions
for this space to their corresponding transformed values (Cao et al., 2006).

The choice of the two set of basis functions for each space is perfectly independent, and should be
based on a-priori assumptions or on a compromise between complexity and generalizability. Linear,
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threshold, strata, polynomial or splines functions can be used to define the relationship along the space
of predictor, while unconstrained, strata, polynomial or splines functions can be applied to specify the
shape along lags.

4 The functions in the package dlnm

This section describes the main functions included in the package dlnm. Here we provide a description
of all the stages involved in the definition, estimation and interpretation of DLNMs, summarizing the
conceptual and analytical steps. In addition, we illustrate the structure of the functions and discuss
specific issues about their usage. Examples of applications to real time series data are described in
Section 5.

4.1 Internal functions: mkbasis() and mklagbasis()

These functions build the basis matrices for the dimension of the predictor and lags, respectively. In
concrete terms, they apply a transformation to the vector of predictor and to the vector of lags, and
store the transformed variables and information about the chosen basis in list objects. These functions
are called by crossbasis() (see Section 4.2) and are not expected to be directly run by the user
in order to specify DLNMs. Their first arguments are x and maxlag, respectively, representing the
original predictor and the maximum lag. The latter is used by mklagbasis() to generate the lag
vector 0:maxlag.

Different types of basis may be chosen through the argument type: the possible options are natural cu-
bic or simple B-splines (type="ns" or "bs"), strata through dummy variables ("strata"), polynomials
("poly"), threshold-type functions such as low, high or double threshold or piecewise parameterization
("lthr"-"hthr"-"dthr"), strata variables for each integer values ("integer", used in unconstrained
DLMs) and simply linear ("lin").

The argument "df" defines the dimension of the basis (the number of its columns, basically the
number of transformed variables), which, in completely parametric models, corresponds to the number
of degrees of freedom spent to define the relationship in the regression model including the basis. This
value may depend on the argument knots (which overcomes df), specifying the position of the internal
knots for "ns" and "bs" (with boundary knots specified in bound), the cut-off points for "strata"

(defining right-open intervals) and the thresholds/cut-off points for "lthr", "hthr" and "dthr". The
argument degree select the degree of polynomial for "bs" and "poly".

The arguments cen and cenvalue state if the basis must be centered and the centering value to be
used. The presence of an intercept in the basis matrix is determined by the argument int. Actually, the
concept of intercept is different between bases: types "ns" and "bs" apply a complex parameterization
where the intercept is implicitly built within the basis variables (see the related help pages typing ?ns

and ?bs); in type "strata" the intercept corresponds to the dummy variable for the baseline stratum
(the first one by default), which is excluded if int=F; the intercept is the usual vector of 1’s in the
other types. See Section 4.2 for additional information.

The value returned by mkbasis() and mklagbasis() is a list object, whose first component basis

is the matrix created by the application of the chosen basis functions to x or 0:maxlag, respectively.
Additional values corresponding to the arguments above are returned in the other components of the
list object.
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4.2 The function crossbasis()

This is the main function in the package dlnm. It calls the internal functions mkbasis() and mklagba-

sis() and combines the two basis matrices through a tensor product in order to create the cross-basis,
which specifies the dependency simultaneously in the two dimensions. See Gasparrini et al. (2010,
Section 4.1 - 4.2) for details. Its first argument is x, assumed to represent an equally-spaced, complete
and ordered series of observations, in order for the function to be coherently applied.

The function uses arguments df-knots-bound-degree-int-cen-cenvalue-maxlag, with specific (op-
tional) prefix var- or lag- to pass them to mkbasis() or mklagbasis(), respectively (see Section 4.1,
and type ?crossbasis for a complete list of the arguments). The additional argument group defines
groups of observations to be considered as individual unrelated series, and may be useful for example
in seasonal analyses (see Section 5.3).

The function returns an object of class ”crossbasis”, together with attributes defining the choices for the
two basis functions. The arguments are set to some default values, and can be automatically changed
for nonsensical combinations, or set to null if not required. Meaningless combinations of arguments (for
example knots defined outside the predictor range) could lead to collinear variables, with identifiability
problems in the model. The function applies some coherence checks and fix some specific problem (for
example discarding strata intervals where no observation lies), but other problem may arise. The user
is advised to test the result with the function summary.crossbasis(), which provides a summary of
the choices made for the two bases and the final cross-basis.

The values in x are expected to be equally-spaced (with the interval defining the lag unit) and ordered
in time. The series must be complete. Each value in the series of transformed variables is computed
also using previous observations included in the lag period considered: therefore, the first maxlag

observations in the transformed variables are set to NA. Missing values in x are allowed, but, for the
same reason, the same and the next maxlag transformed values will be set to NA. Although correct, this
could generate computational problems for DLNMs with long lag periods in the presence of scattered
missing observations.

The basis variables for the space of the predictor are centered by default for continuous functions
(types "ns", "bs", "poly" and "lin"). The default centering point is the predictor mean, if not
set with cenvalue. This value will represent the reference for predicted effects from a DLNM (see
Section 4.3). The choice of the reference value does not affect the fit of the model, and should be based
on interpretational issues. The reference in non-continuous functions is automatically set to the first
interval in strata and integer, or to the flat region in lthr-hthr-dthr.

An intercept is included by default only in the basis defining the lag dimension. It is strongly recom-
mended to avoid the inclusion of an intercept in the basis for x, otherwise a rank-deficient cross-basis
matrix will be specified, causing some of the cross-variables to be excluded in the regression model.

4.3 The function crosspred()

The cross-basis matrix produced by crossbasis() need to be included in a regression model formula
in order to run a DLNM. The interpretation of the estimated related parameters, specifying a bi-
dimensional relationship, is virtually impossible in complex DLNMs. The association is summarized
through the function crosspred(), which predicts the effects for a set of values of the original predictor,
and return the results for each combination of predictor values and lags. The function creates the same
cross-basis functions for the chosen predictor values, based on the attributes of the original cross-basis
matrix, and generates estimated effects and standard errors by extracting the related parameters
estimated in the model (see Gasparrini et al. (2010, Section 4.3) for details).

The first two arguments of the function are basis (the matrix object of class ”crossbasis”) and model
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(the regression model object which includes basis). The function extracts the information about the
cross-basis from the attributes of the former, and links each cross-basis variables with the estimated
parameters in the latter through their names. Multiple cross-basis matrices associated with different
predictors may be included in model: in this case, the user must specify different names for the
cross-basis objects.

One of the main advantages of the dlnm package is that the user can perform DLNMs with stan-
dard regression functions, simply including the cross-basis matrix in the model formula. The current
implementation only works with time series data, basically involving an equally-spaced and ordered
predictor series, and its use is straightforward with the functions lm(), glm() or gam() (package mgcv).
However, the user can apply different regression functions, compatibly with the time series structure
of the data. Alternative use beyond time series analysis, such as in case-control or cohort designs, is
in development. The function crosspred() exploits coef() and vcov() methods to extract the co-
efficients and related (co)variance matrix from model, respectively: for classes of regression functions
without these methods, the user needs to manually extract the parameters and include them in the
arguments coef and vcov. In this case, their dimensions and order must match the variables included
in basis.

The predictor values used for prediction are selected with the argument at, or alternatively with from-
to-by. If specified by at, the values are automatically ordered and made unique. If at and by are not
provided, approximately 50 equally-spaced rounded values are returned using pretty().

The function returns an object of class ”crosspred”, simply a list of components including the vector of
prediction values, matrices of lag-specific effects and standard errors for combinations of each prediction
value and lag, plus vectors of overall effects (summed up along lags) and standard errors. Matrices of
cumulative effects and standard errors are included for cumul=T (default to FALSE), which represent
the sum of the lag-specific effects at each lag. Exponentiated effects are added if the link of the
regression model is equal to log or logit, together with confidence intervals computed using a normal
approximation and a confidence level selected by ci.level. The model link is automatically selected
from model for classes "lm", "glm", "gam" (package mgcv) and "clogit" and "coxph" (package
survival), but needs to be provided for different classes or if arguments coef-vcov are used to input
the parameters.

4.4 Plotting functions

Interpretation of the bi-dimensional predicted effects are aided by graphical representation. High
and low-level plotting functions are provided through the methods plot(), lines() and points().
The method plot() calls high-level functions plot.default(), persp() and filled.contour() to
produce scatter plots, 3-D and contour plots of overall and lag-specific effects. These methods have
replaced the old function crossplot() since version 1.3.0, providing the user to specify the whole
range or arguments of the plotting functions above, allowing complete flexibility in the choices of
colours, axes, labels and other graphical parameters. See the help of the original high-level functions
for additional details and a complete list of the arguments. Methods lines() and points() may be
used as low-level plotting functions to add lines or points to an existing plot.

The first argument of the functions is x, a list object of class ”crosspred”. The argument ptype specifies
the type of plot, choosing among "3d", "contour", "overall" and "slices", the latter selecting effects
along lags at specific predictor values and effects along the predictor at specific lags. These are chosen
through the additional arguments var-lag, respectively. Cumulative effects along lags are reported if
cumul=TRUE: in this case, the same option must have been set to obtain the prediction saved in x (see
Section 4.3).

All the effects are reported versus a reference value. For continuous functions, this is specified by
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the centering point defined in the crossbasis object (see Section 4.2). Exponentiated effects are
automatically returned if the component model.link of x is equal to log or logit, or forced with the
argument exp=TRUE.

5 Some examples

This Section provides some examples of the use of the functions included in the dlnm package, described
in Section 4. In spite of the specific application on the health effects of air pollution and temperature,
these examples are easily generalized to different topics. The results included in this Section are
not meant to represent scientific findings, but are reported with the only purpose to illustrate the
capabilities of the dlnm package.

First, some simple examples of the internal functions are showed in Section 5.1. Then, 3 different
examples of the application of DLNM’s are illustrated in the Sections 5.2 - 5.4, using the NMMAPS
dataset for the city of Chicago in the period 1987-2000 included in the package, which has been
described in Section 2.2. These different cases cover most of the functionalities of the package, providing
a detailed overview of its capabilities and a basis to perform analyses on this dataset or on other data
sources.

The package is assumed to be present in the R library (see Section 2.1) and loaded in the session,
typing:

> library(dlnm)

5.1 Examples for internal functions

As a first step, we provide an example of the use of the function mkbasis(). We build different basis
matrices applying the selected basis functions to the vector of integers going form 1 to 5. In the first
example we leave many of the arguments at their default values, apart from the selection of the degrees
of freedom df:

> basis.var <- mkbasis(1:5, knots=3)

> basis.var

$basis

b1 b2

[1,] -0.56626284 0.21084190

[2,] -0.20921622 -0.00635585

[3,] 0.00000000 0.00000000

[4,] -0.03716777 0.37894518

[5,] -0.22216593 0.98144395

$type

[1] "ns"

$df

[1] 2

$knots

[1] 3
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$bound

[1] 1 5

$int

[1] FALSE

$cen

[1] TRUE

$cenvalue

[1] 3

The result is list object with the basis matrix and other components returning the chosen arguments.
Here the basis is a natural cubic B-splines (default type="ns") with 1 knot and df=2 (df is equal to
length(knots)+1+int for type="ns"). Apart from the fact that the basis variables are centered at
cenvalue=3 (the mean of the predictor values, the default for this argument), the same results could
be obtained by the command ns(1:5, knots=3) .

Alternative choices may be specified through the following code (results not shown, the user can try
to run the commands):

> mkbasis(1:5, type="bs", df=4, degree=2)

> mkbasis(1:5, type="lin", cenvalue=4)

In the first case the result is a quadratic spline where the number and location of knots are chose
automatically, and fixed to 2 (df is length(knots)+degree+int for this type) and at equally spaced
quantiles, respectively. The second line returns a simple linear function, where the only transformation
is the centering at the value of 4.

The function mklagbasis() calls mkbasis() to create a basis matrix for the space of the lag. The basis
functions are applied to the vector 0:maxlag expressly created by the function. This is an example of
application:

> mklagbasis(maxlag=5, type="poly", degree=3)

$basis

b1 b2 b3 b4

lag0 1 0 0 0

lag1 1 1 1 1

lag2 1 2 4 8

lag3 1 3 9 27

lag4 1 4 16 64

lag5 1 5 25 125

$type

[1] "poly"

$df

[1] 4

$degree
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[1] 3

$int

[1] TRUE

$maxlag

[1] 5

The statement specifies a 3rd degree polynomial. Differently from the bases for the space of the
predictor build above, this matrix contains an intercept (int=TRUE by default), in this case a vector of
1’s (see Section 4.2), and is never centered. df is equal to degree+1 when an intercept is included. In
this case, for a polynomial basis, the argument knots is not included.

Other examples (results not shown):

> mklagbasis(maxlag=5, type="integer")

> mkbasis(1:5, type="dthr", knots=c(2,3))

In the first line, the function applies a specific transformation in the space of lags in order to define
unconstrained distributed lag effects (see Section 3.3), simply returning an identity matrix. The second
choice returns a double threshold basis which can be applied to describe linear effects below 2 and
above 3, with a null effect in between them.

A basis matrix of type="strata" with and without intercept is created by (results not shown):

> mklagbasis(maxlag=10, type="strata", knots=c(4,7))

> mklagbasis(maxlag=10, type="strata", knots=c(4,7), int=F)

In this case, the intercept is represented by the dummy variable for the first stratum (see Section 4.2).
The values in knots specify the cut-off point for the strata, and represent the lower boundaries for the
right-open intervals.

The effect of centering is illustrated below (results not shown):

> mkbasis(0:10, type="poly", degree=3)

> mkbasis(0:10, type="poly", degree=3, cen=F)

Each basis function is centered on the relative transformation of cenvalue, which is placed at the
mean of the predictor values by default, or defined by the user.

5.2 Example 1: a simple DLM

In this first example, we specify a simple DLM, assessing the effect of PM10 on overall mortality, while
adjusting for the effect of temperature. In order to do so, we first build two cross-basis matrices for the
two predictors, and then include them in a model formula of a regression function. The effect of PM10

is assumed linear in the dimension of the predictor, so, from this point of view, we can define this as
a simple DLM even if it estimates also the distributed lag function for temperature, which is included
as a non-linear term. As highlighted above, the data are assumed to be composed by equally-spaced,
complete and ordered series.

First, we run crossbasis() to build the two cross-basis matrices, saving them in two objects. The
names of the two objects must be different in order to predict the effects separately for each of them
(see Section 4.3). This is the code:
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> basis.pm <- crossbasis(chicagoNMMAPS$pm10, vartype="lin", lagtype="poly",

lagdegree=4, cen=F, maxlag=15)

> basis.temp <- crossbasis(chicagoNMMAPS$temp, vardf=5, lagtype="strata",

lagknots=1, cenvalue=21, maxlag=3)

In this case, we assume that the effect of PM10 is linear (vartype="lin"), while we model the rela-
tionship with temperature through a natural cubic spline with 5 degrees of freedom (vartype="ns",
chosen by default). In this space, the internal knots (if not provided) are placed by default at equally
spaced quantiles, while the boundary knots are located at the range of the observed values, so we need
to specify only vardf. We did not center PM10, in order to compute the predicted effects versus a
reference value of 0 µgr/m3 (the same results could be obtained setting cen=TRUE and cenvalue=0).
The reference value for temperature is set to 21◦C.

The basis for the space of the lags is chosen through the same arguments but with prefix lag-. We
specify the lagged effect of PM10 up to 15 days of lag with a 4th degree polynomial function (setting
lagdegree=4). The delayed effect of temperature are defined by two lag strata (0 and 1-3), assuming
the effects as constant within each stratum. The argument varknots=1 defines the lower boundary of
the second interval.

An overview of the specifications for the cross-basis (and the related bases in the two dimensions) is
provided by the function summary.crossbasis, which calls the attributes of the crossbasis object:

> summary(basis.pm)

CROSSBASIS FUNCTIONS

observations: 5114

range: -3.049835 , 356.1768

total df: 5

maxlag: 15

BASIS FOR VAR:

type: lin

df: 1

BASIS FOR LAG:

type: poly with degree 4

df: 5

with intercept

Now the two crossbasis objects can be included in a model formula in order to fit the DLM. In this
case we model the effect assuming an overdispersed Poisson distribution, including a smooth function
of time with 7 df/year (in order to correct for seasonality and long time trend) and day of the week as
factor:

> model <- glm(death ~ basis.pm + basis.temp + ns(time, 7*14) + dow,

family=quasipoisson(), chicagoNMMAPS)

The effects of specific levels of PM10 on overall mortality, predicted by the model above, can be
computed by the function crosspred() and saved in an object with the same class:

> pred.pm <- crosspred(basis.pm, model, at=0:20, cumul=T)

11



Figure 1
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The functions include the basis.pm and model objects used to estimate the parameters as the first
two arguments, while at=0:20 states that the prediction must be computed for each integer value from
0 to 20 µgr/m3. The argument cumul (default to FALSE) indicates that also cumulative effects along
lags must be included. Now that the predicted effects have been stored in pred.pm, they can be plot
by the methods functions described in Section 4.4. For example:

> plot(pred.pm, "slices", var=10, col=3, ylab="RR",

main="Effects of a 10-unit increase in PM10 along lags")

> plot(pred.pm, "slices", var=10, cumul=TRUE, ylab="Cumulative RR",

main="Cumulative effects of a 10-unit increase in PM10 along lags")

The function includes the pred.pm object with the stored results, and the argument "slices" defines
that we want to graph the relationship at specific values of the two dimensions (predictor and lag).
With var=10 we specify this relationship along lags for a specific value of PM10, i.e. 10 µgr/m3.
This effect is compared to the reference value of 0 µgr/m3, giving the lag-specific effects for a 10-unit
increase. We also chose a different colour for the first plot. The argument cumul indicates if cumulative
effect, previously saved in pred.pm, must be plotted. The results are shown in Figures 1a-1b. The
interpretation is twofold: the curve represents the increase in risk in each future day following an
increase of 10 µgr/m3 in PM10 in a specific day (forward interpretation), or otherwise the contributions
of each past day with the same PM10 increase to the risk in a specific day (backward interpretation).
The plots in Figures 1a-1b suggest that the initial increase in risk of PM10 is reversed at longer lags.
The overall effect for a 10-unit increase in PM10 over 15 days of lag (i.e. summing all the effects
up to the maximum lag), together with its 95% confidence intervals can be extracted by the objects
allRRfit, allRRhigh and allRRlow included in pred.pm, typing:

> pred.pm$allRRfit["10"]

12



10

0.9997563

> cbind(pred.pm$allRRlow, pred.pm$allRRhigh)["10",]

[1] 0.9916871 1.0078911

5.3 Example 2: seasonal analysis

The purpose of the second example is to illustrate an analysis where the data are restricted to a specific
season. The main feature of these analysis is that the data are assumed to be composed by multiple
equally-spaced and ordered series of the same season for each year, and do not represent a single
continuous series. In this case, we assess the effect of ozone and temperature on overall mortality up
to 5 and 10 days of lag, respectively, using the same steps already seen in Section 5.2.

First, we create the new data restricting to the summer period (June-September) the dataframe
chicagoNMMAPS:

> chicagoNMMAPSseas <- subset(chicagoNMMAPS, month %in% 6:9)

Again, we first create the cross-basis matrices:

> basis.o3 <- crossbasis(chicagoNMMAPSseas$o3, group=chicagoNMMAPSseas$year,

vartype="hthr", varknots=40.3, lagtype="integer", maxlag=5)

> basis.temp <- crossbasis(chicagoNMMAPSseas$temp, group=chicagoNMMAPSseas$year,

vartype="dthr", varknots=c(15,25), lagtype="strata", lagknots=c(2,6),

maxlag=10)

The argument group indicates the variable which defines multiple series: the function then breaks
the series at the end of each group and replaces the first maxlag rows of the cross-basis matrix in
the following series with NA. Here we make the assumption that the effect of O3 is null up to 40.3
µgr/m3 and then linear, applying an high threshold parameterization. For temperature, we use a
double threshold with the assumption that the effect is linear below 10◦C and above 25◦C, and null
in between. Regarding the lag dimension, we specify an unconstrained function for O3, applying one
parameter for each lag (lagtype="integer") up to a 5 days. For temperature, we define 3 strata
intervals at lag 0-1, 2-5, 6-10. A summary of the choices made for the cross-bases can be shown by the
function summary.crossbasis().

The regression model includes a natural spline for day of the year (with 4 df) in order to describe the
seasonal effect within each year. Apart from that, the estimates and predictions are carried out in the
same way as in Section 5.2. The code is:

> model <- glm(death ~ basis.o3 + basis.temp + ns(doy, 4) + dow,

family=quasipoisson(), chicagoNMMAPSseas)

> pred.o3 <- crosspred(basis.o3, model, at=c(0:65,40.3,50.3))

The values for which the prediction must be computed are specified in at: here we define the integers
from 0 to 65 µgr/m3 (approximately the range of ozone distribution), plus the threshold and the value
50.3 µgr/m3 corresponding to a 10-unit increase above the threshold, which is automatically set as the
reference point for type="hthr" (see Section 4.2). The vector is automatically ordered. We can plot
the lag-specific effects, similarly to Section 5.2, and also the overall effect of a 10-unit increase in O3

with 95% confidence intervals. The related code is (results in Figures 2a-2b):
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Figure 2

(a)

●

●

●

●

●

●

0 1 2 3 4 5

0.
98

1.
00

1.
02

1.
04

Effects of 10−unit increase above the threshold (80%CI)

Lag

E
ffe

ct

(b)

0 10 20 30 40 50 60

0.
9

1.
0

1.
1

1.
2

1.
3

Overall effect over 5 days of lag (80%CI)

Ozone

E
ffe

ct

> plot(pred.o3, "slices", var=50.3, ci="bars", type="p", pch=19, ci.level=0.80,

main="Effects of 10-unit increase above the threshold (80%CI)")

> plot(pred.o3,"overall",xlab="Ozone", ci="lines", ylim=c(0.9,1.3), lwd=2,

ci.level=0.80, main="Overall effect over 5 days of lag (80%CI)")

In the first statement, the argument ci="bars" states that, differently from the default "area"

seen in Figures 1a-1b, the confidence intervals are represented by bars. In addition, the argument
ci.level=0.80 states that 80% confidence intervals must be plotted. Finally, we chose points, instead
of the default line, with specific symbol, by the arguments type and pch. In the second statement,
the argument type="overall" indicates that the overall effects (summed upon lags) must be plotted,
with confidence intervals as dashed lines, ylim defining the range of the y-axis, lwd the thickness of
the line.

Similarly to the previous example, we can extract from pred.o3 the estimated overall effect for a
10-unit increase in ozone above the threshold (50.3 − 40.3 µgr/m3), together with its 95% confidence
intervals:

> pred.o3$allRRfit["50.3"]

50.3

1.069768

> cbind(pred.o3$allRRlow, pred.o3$allRRhigh)["50.3",]

[1] 1.026563 1.114791

The same plots and computation can be applied to the cold and heat effects of temperatures. For
example, we can describe the increase in risk for 1◦C beyond the low or high thresholds. The user can
perform this analysis repeating the steps above.
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5.4 Example 3: a complex DLNM

In the previous examples, the effects of air pollution (PM10 and O3, respectively) were assumed com-
pletely linear or linear above a threshold. This assumption facilitates both the interpretation and
the representation of the association: the dimension of the predictor is never considered, and the lag-
specific or overall effects for a 10-unit increase are easily plotted. In contrast, when considering the
non-linear effects of temperature, we need to adopt a bi-dimensional perspective in order to represent
effects which vary non-linearly along the space of the predictor and lags.

In this last example we specify a more complex DLNM, where the effects are estimated using smooth
non-linear functions for both dimensions. Despite the higher complexity of the relationship, we will
see how the steps required to specify and fit the model and predict the results are exactly the same as
for the simpler models see before in Sections 5.2-5.3, only requiring different plotting choices. The user
can apply the same steps to investigate the effects of temperature in previous examples, and extend
the plots for PM10 and O3. In this case we run a DLNM to investigate the effects of temperature and
PM10 on overall mortality up to lag 30 and 1, respectively.

These are the cross-basis matrices:

> basis.pm <- crossbasis(chicagoNMMAPS$pm10,vartype="lin", lagtype="strata",

cen=F, maxlag=1)

> basis.temp <- crossbasis(chicagoNMMAPS$temp, vartype="bs", vardf=5, vardegree=2,

lagdf=5, cenvalue=21, maxlag=30)

The chosen basis functions for the space of the predictor are a linear function for the effect of PM10

and a quadratic B-spline (vartype="bs") with 5 degrees of freedom for temperature (with varknots

placed by default at equally spaced quantiles in the space of the predictor). The basis for temperature
is centered at 21◦C, which will represent the reference point for the predicted effects. Regarding the
space of lags, we assume a simple lag 0-1 parameterization for PM10 (i.e. a single strata up to lag
1, keeping the default values of lagdf=1), while we define another cubic spline, this time with the
natural constraint (lagtype="ns" by default) for the lag dimension of temperature. For this space,
lagknots are located by default at equally spaced values in the log scale of lags, while the boundary
knots are set to 0 and maxlag. The estimation, prediction and plotting of the effects of temperature
are performed by:

> model <- glm(death ~ basis.pm + basis.temp + ns(time, 7*14) + dow,

family=quasipoisson(), chicagoNMMAPS)

> pred.temp <- crosspred(basis.temp, model, by=1)

> plot(pred.temp, xlab="Temperature",zlab="RR", theta=200, phi=40, lphi=30,

main="3D graph of temperature effect")

> plot(pred.temp, "contour", xlab="Temperature", key.title=title("RR"),

plot.title=title("Contour plot",xlab="Temperature",ylab="Lag"))

Note that prediction values are chosen only with the argument by=1 in crosspred(), defining all the
integer values within the predictor range. The first plotting expression produces a 3-D plot illustrated
in Figure 3a, with non-default choices for perspective and lightning obtained through the arguments
theta-phi-lphi. The second plotting expression specifies the contour plot in Figure 3b with titles and
axis labels chosen by arguments plot.title and key.title. The user can find additional information
and a complete list of arguments in the help pages of the original high-level plotting functions (typing
?persp and ?filled.contour). The plot of the overall effects can be obtained by (result not shown):

> plot(pred.temp, "overall", xlab="Temperature", ylim=c(0.8,1.7),

main="Overall effect of temperature over 30 days of lag")
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Figure 3
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Plots in Figures 3a - 3b offer a comprehensive summary of the bi-dimensional relationship, but are
limited in their ability to inform on effects at specific values of predictor or lags. In addition, they are
also limited for inferential purposes, as the uncertainty of the estimated effects is not reported in 3-D
and contour plots. A more detailed analysis is provided by plotting ”slices” of the effect surface for
specific predictor and lag values. The code is:

> plot(pred.temp, "slices", var=-20, ci="n", col=1, ylim=c(0.95,1.15), lwd=1.5,

main="Lag-specific effects at different temperature, ref. 21C")

> for(i in 1:3) lines(pred.temp, "slices", var=c(0,27,33)[i], col=i+1, lwd=1.5)

> legend("topright",paste("Temperature =",c(-20,0,27,33)), col=1:4, lwd=1.5)

> plot(pred.temp, "slices", var=c(-20,33), lag=c(0,5), col=4)

The results are reported in Figures 4a - 4b. Figure 4a illustrates lag-specific effects for mild and extreme
cold and hot temperatures of -20◦C, 0◦C, 27◦C, and 33◦C (with reference at 21◦C). Figures 4b depicts
both effects along the predictor range at lag 0 and 5 (left column), and effects along lags at temperatures
-20◦C and 33◦C (right column). The arguments var and lag define the ”slices” to be cut in the effect
surface in Figure 3a - 3b. The argument ci="n" in the first expression states that confidence intervals
must not be plotted. The preliminary interpretation suggests that cold temperatures are associated
with longer mortality risk than heat, but not immediate, showing a ”protective” effect at lag 0. This
analytical proficiency would be hardly achieved with simpler models, probably losing important details
of the association.

6 Conclusions

This document illustrates the functionalities of the dlnm package, providing a detailed overview of the
process to specify and run a DLNM and then to predict and plot its results. The main advantage of
this family of models is to unify many of the previous methods to deal with delayed effects in a unique
framework, also providing more flexible alternatives regarding the shape of the relationships. Section 3
provides a brief summary of the theory underpinning DLNM’s: a more detailed overview has been
published elsewhere (Armstrong, 2006; Gasparrini et al., 2010), together with a complete specification
of the algebra (Gasparrini et al., 2010).

The flexibility is kept when this framework is implemented in the dlnm package: several different
models with an increasing level of complexity can be performed using a simple and general procedure,
as showed in the examples in Section 5. As already explained, this method is not limited to the
examples on the effect of air pollution and temperature on mortality, but can be applied to investigate
the relationship between any predictor and outcomes in time-series data.

The choice of keeping separated the two steps of cross-basis specification and parameters estimation
offers several advantages. First, as illustrated in the example, more than one variable showing delayed
effects can be transformed through cross-basis functions and included in the model. Second, standard
regression commands can be used for estimation, with the default set of diagnostic tools and related
functions. More importantly, this implementation provides an open platform where additional models
specified with different regression commands can be included as well, aiding the development of these
methodology in other contexts or study designs.

The DLNM’s framework introduced here is developed for time series design. The general expression
of the model in allows this methodology to be applied for any family distribution and link function
within generalized linear models (GLM), with extensions to GAM or models based on generalized
estimating equations (GEE). Anyway, the current implementation of of DLNM’s requires single series
of equally-spaced and ordered data. Preliminary tests on the application of the functions included in
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the package dlnm in case-control, cohort and longitudinal data are promising. Further development
may lead to a general framework to describe delayed effects, which spans different study designs.
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