
1 dse1 Guide

In R, the functions in this package are made available with

> library("dse1")

Several data sets are included with this library and will be used in
examples in this guide. In S these are available when the library is
attached. In R they are made available by

> data(package = "dse1")

> data(eg1.DSE.data, package = "dse1")

> data(egJofF.1dec93.data, package = "dse1")

1.1 Defining a TSdata Structure

This section describes how to construct a TSdata structure if you
have other data you would like to use. Section 10 discusses adding
new kinds of TSdata classes. Some installations may have an online
database and it may be possible to connect directly to this data. See
the padi and dsepadi packages as on one possibility for doing this.

For many people the situation will be that the data is in some ASCII
file. This can be loaded into session variables with a number of stan-
dard S/R functions, the most useful of which are probably scan() and
read.table(). Following is an example which reads data from an ASCII
file called ”eg1.dat” and puts it in the variable called eg1.DSE.data
(which is also one of the available data sets). The file has five columns
of numbers and 364 rows. The first column just enumerates the rows
and is discarded.

This matrix can be used to form a TSdata object by

The matrix and the resulting TSdata object do not have a good time
scale associated with points. A better time scale can be added by

> eg1.DSE.data <- tframed(eg1.DSE.data, list(start = c(1961, 3),

frequency = 12))

There are several different possibilities for representing time in S/R
objects. The most common is the ts matrix object, which is used in
the above default tframed method. (ts is a class in R. In S it is not
a class of object, but the default representation of time series which
existed before classes were introduced.) The above tframed method
and ts can also be used directly on the matrix before the TSdata ob-
ject is formed. However, [,] in Splus results in the time scale being

1

lost, so it would need to be reassigned to the input and output matri-
ces of the TSdata object. The methods from the tframe library are
used extensively in the DSE library because they provide a common
way to proceed in Splus and R, extend to other time representations
in addition to ts, and provide a mechanism for extending methods to
other objects like TSdata and TSmodels.

Names can be given to the series with

> seriesNamesInput(eg1.DSE.data) <- "R90"

> seriesNamesOutput(eg1.DSE.data) <- c("M1", "GDPl2", "CPI")

Setting the series names is not necessary but many functions can use
the names if they are available. (This overlaps somewhat with S/R
dimnames, but is the preferred method in this library as it extends to
data which is not a matrix.) The TSdata object with elements input
and output is the structure which the functions in this library expect.
More details on this structure are available in the help for TSdata.
The input and output elements can be defined in a number of different
ways and new representations can be fairly easily added. For example,
when the data is on a remote database as used by TSPADI, the S/R
object is just a description of where to get the data, rather than the
data itself. In this case the freeze() function is used automatically by
many functions in the DSE library in order to get a copy of the data
when calculations are to be performed.

Once data is available a model can be estimated:

> model1 <- est.VARX.ls(eg1.DSE.data)

> model2 <- est.SS.Mittnik(eg1.DSE.data, n = 4)

(Note: these models are not the same as those reported in Gilbert,1993.
In that paper a variant of est.VARX.ar was used.) The scale of the
series in eg1.DSE.data are very different, with the result that the
covariance matrix of the residuals from the estimation is nearly sin-
gular. This is detected during the calculation of residual statistics.
Statistics are then calculated using only the non-degenerate subspace
and a warning message is printed. A better model might be obtained
if the data were scaled differently.

Information about the estimated models can be displayed, for exam-
ple:

> summary(model1)

> summary(model2)

> model1

2

> model2

> stability(model1)

> stability(model2)

> information.tests(model1, model2)

Typing the name of an object in S/R results in the object being
printed. To display plots it is first necessary to open a graphics win-
dow:

> x11()

Once a graphics display is active then plots can be viewed:

> tfplot(model1)

> tfplot(model2)

> tfplot(eg1.DSE.data)

> check.residuals(model1)

> check.residuals(model2)

The function tfplot produces separate graphs for each series. The first

tfplot command produces this graphic

1960 1965 1970 1975 1980 1985 1990

0
20

00
0

M
1

One step ahead predictions (dotted) and actual data (solid)

1960 1965 1970 1975 1980 1985 1990

0e
+

00
3e

+
05

G
D

P
l2

1960 1965 1970 1975 1980 1985 1990

0
40

80

C
P

I

Note that initial conditions have been set to zero, but the effect of
this dies out quickly. (Also note that the graph labels may be slightly

3

different depending on which version DSE and of R or S you are
using.)

1.2 ARMA and State Space TSmodels

Specifying ARMA and SS models is described below, but first their
definition is outlined. The linear time-invariant ARMA representa-
tion is

A(L)yt = B(L)et + C(L)ut (1)

where yt is a p dimensional vector of observed output variables, ut

is an m dimensional vector of input variables, et is a p dimensional
unobserved disturbance vector process and A, B and C are matrices
of the appropriate dimension in the lag (back shift) operator L. VAR
models can be thought of as a special case of ARMA models with
B(L)=I. ARIMA models are also a special case of ARMA models.

Note that the time convention here implies that the input variable
ut can influence the output variable yt in the same time period. This
convention is not always used in time-series models but is important
for economics data, especially at annual frequencies.

A linear time-invariant state space representation in innovations form
is given by

zt = Fzt−1 + Gut + Ket−1 (2)
yt = Hzt + et

where zt is the unobserved underlying n dimensional state vector, F
is the state transition matrix, G, the input matrix, H, the output
matrix, and K, the Kalman gain. The library also has some limited
capabilities to work with the more general non-innovations form

zt = Fzt−1 + Gut + Qnt (3)
yt = Hzt + Ret

where nt is the system noise, Q, the system noise matrix, and R the
output (measurement) noise matrix.

Models are specified by setting up the arrays that define the model
and grouping them into a TSmodel object. Here is an example
ARMA model with two series, a second order AR polynomial, a first
order MA polynomial and no exogenous variable:

4

> AR <- array(c(1, 0.5, 0.3, 0, 0.2, 0.1, 0, 0.2, 0.05, 1, 0.5, 0.3), c(3, 2,

2))

> MA <- array(c(1, 0.2, 0, 0.1, 0, 0, 1, 0.3), c(2, 2, 2))

> arma <- ARMA(A = AR, B = MA, C = NULL)

> rm(AR, MA)

> arma

> stability(arma)

> data.arma.sim <- simulate(arma)

> arma <- l(arma, data.arma.sim)

> summary(arma)

> tfplot(data.arma.sim)

> tfplot(arma)

Note that arrays are filled in the order of their dimensions, which may
not be what you expect. The internal representation of TSmodels
may be described in the help for the specific model constructors, but
in general it should be considered ”opaque” and an understanding
of the internal data structure should not be necessary to use the
models. The function l() evaluates the model with the simulated
data. Functions generally use default values for some arguments. For
example, the length of the simulation and the covariance of the noise
can be specified. The above example uses the default values. See
the help on simulate for more details. In the example above, arma is
initially assigned an object of class TSmodel, but it is then re-assigned
the value returned by l(), which is an object of class TSestModel.
Also, many functions work with different classes of objects, and do
different things depending on the class of the argument. The function
tfplot() works with objects of class TSdata and TSestModel.

Here is an example of a state space model:

> f <- array(c(0.5, 0.3, 0.2, 0.4), c(2, 2))

> h <- array(c(1, 0, 0, 1), c(2, 2))

> k <- array(c(0.5, 0.3, 0.2, 0.4), c(2, 2))

> ss <- SS(F = f, H = h, K = k)

> print(ss)

> stability(ss)

> data.ss.sim <- simulate(ss)

> ss <- l(ss, data.ss.sim)

> summary(ss)

> tfplot(ss)

Data which has been generated with simulate is a TSdata object and
can be used with estimation routines. This provides a convenient
way to generate data for estimation algorithms, but remember that
estimation will not necessarily get back to the model you start with,

5

since there are equivalent representations (see Gilbert, 1993). How-
ever, a good estimate will get close to the likelihood and predictions
of the original model.

Here is an example of changing between state space and ARMA rep-
resentations using the models defined in the previous example:

> ss.from.arma <- l(to.SS(arma), data.arma.sim)

> arma.from.ss <- l(to.ARMA(ss), data.ss.sim)

> summary(ss.from.arma)

> summary(arma)

> summary(arma.from.ss)

> summary(ss)

> stability(arma)

> stability(ss.from.arma)

The function roots() is used by stability() and can be used by itself to
return the roots but not evaluate their magnitude footnoteBy default
the roots of an ARMA model are calculated by converting the model
to state space form, for reasons explained in Gilbert (2000). By
specifying by.poly=T the method can be changed to use an expansion
of the polynomial determinant.. When their arguments are TSmodels
the functions to.SS() and to.ARMA() return objects of class TSmodel
which are not assigned to a variable in the above example, but used
in the evaluation of l(). The models are returned as part of the
TSestModel returned by l().

1.3 Model Estimation

The example data eg1.DSE.data and egJofF.1dec93.data are available
with the DSE library and are used in examples in this section.

To estimate an AR model with the default number of lags:

> model.eg1.ls <- est.VARX.ls(trim.na(eg1.DSE.data))

In this example trim.na removes NA padding from the ends of the
data, since the estimation method cannot handle missing values. This
padding may not be present, depending on how the data was re-
trieved. This data is highly correlated and highly parameterized mod-
els result in a degenerate covariance matrix. When this happens a
warning is produced in this and other examples.

It is also possible to select a subsample of the data:

> subsample.data <- tfwindow(eg1.DSE.data, start = c(1972, 1), end = c(1992, 12))

6

This creates a new variable with data starting in January 1972 and
ending in December 1992. The S/R function window also usually
works, however the function tfwindow is typically used in the DSE
library and this guide because it has occasionally been necessary to
correct some problems with window. Various functions can be applied
to the estimation result

> summary(model.eg1.ls)

> print(model.eg1.ls)

> tfplot(model.eg1.ls)

> check.residuals(model.eg1.ls)

Other estimation techniques are available

> model.eg1.ar <- est.VARX.ar(trim.na(eg1.DSE.data))

> model.eg1.ss <- est.SS.from.VARX(trim.na(eg1.DSE.data))

> model.eg1.bft <- bft(trim.na(eg1.DSE.data))

> model.eg1.mle <- est.max.like(est.VARX.ls(trim.na(eg1.DSE.data), max.lag = 1))

tfplot can put multiple similar objects on a plot

> tfplot(model.eg1.ls, model.eg1.ar)

> tfplot(model.eg1.ls, model.eg1.ar, start. = c(1990, 1))

Because of this, the argument start. requires a period at the end so
it is not confused with an object to be plotted.

Most of the estimation techniques have several optional parameters
which control the estimation. Consult the help for the individual
functions. est.max.like extracts data from a TSestModel and uses
the model structure and initial parameter values for the estimation.
(Note: Maximum likelihood estimation can be very slow and may not
converge in the default number of iterations. It also tends to over fit
unless used with care, so that out-of-sample performance is not good.
I do not generally recommend it, although it does offer possibilities
for constraining the structure in specific ways (e.g. fixing some model
matrix entries to zero or one). You might consider comparing mle to
other estimation techniques using functions discussed in the following
sections.) In the above est.max.like example a smaller (one lag) model
is used. Be prepared for the estimation to take some time when
models have a large number of parameters.

An important point to note is that the one-step-ahead predictions
and related statistics returned by these estimation techniques are
calculated by evaluating l(model, data) as the final step after the
model has been estimated. This can give different results than might

7

be expected using the estimation residuals, particularly with respect
to initial condition effects. (For stable models initial condition effects
should not be too important. If they are an important factor check
the documentation for specific models regarding the specification of
initial conditions.)

Also remember when estimating a model that, if you want to predict
future values of a variable, it will need to be an output in the TSdata
object.

For the next example a four variable subset of the data in egJofF.1dec93.data
will be used. This subset is extracted by

> eg4.DSE.data <- egJofF.1dec93.data

> output.data(eg4.DSE.data) <- output.data(eg4.DSE.data, series = c(1, 2, 6, 7))

which selects the 1st, 2nd, 6th, and 7th series of the output data.
The following uses the currently preferred automatic estimation pro-
cedure:

> model.eg4.bb <- est.black.box(trim.na(eg4.DSE.data), max.lag = 3)

An optional argument verbose=F will make the function print much
less detail about the steps of the procedure. The optional argument,
max.lag=3, specifies the maximum lag which should be considered.
The default max.lag=12 may take a very long time for models with
several variables. est.black.box currently uses est.black.box4, also
known as bft(..., standardize=T) which is called the brute force tech-
nique in Gilbert (1995).

The traditional model information criteria tests can be performed to
compare models:

> information.tests(model.eg1.ar, model.eg1.ss)

An arbitrary number of models can be supplied. The generated table
lists several information criteria. For state space models the calcu-
lations are done with both the number of parameters (the number
of unfixed entries in the model arrays) and the theoretical parame-
ter space dimension. See Gilbert (1993, 1995) for a more extensive
discussion of this subject.

Note that converting among representations produces input-output
equivalent models, so that predictions, prediction errors, and any
statistics calculated from these, will be the same for the models. How-
ever, different estimation techniques produce different models with

8

different predictions. So, est.VARX.ls(data) and to.SS(est.VARX.ls(data))
will produce equivalent models and est.SS.Mittnik(data) and to.ARMA(est.SS.Mittnik(data))
will produce equivalent models, but the first two will not be equiva-
lent to the second two.

9

