Brief User’s Guide: Dynamic Systems Estimation
Library

Paul Gilbert
February 10, 2003

Copyright 1993-2003, Bank of Canada.

The user of this software has the right to use, reproduce and distribute
it. The Bank of Canada makes no warranties with respect to the
software or its fitness for any particular purpose. The software is
distributed by the Bank of Canada solely on an as is” basis. By
using the software, user agrees to accept the entire risk of using this
software.

The software documented in this guide is available on the the Com-
prehensive R Archive Network (CRAN) <http://cran.r-project.org>
or at <http://www.bank-banque-canada.ca/pgilbert>. Please check
for new versions.

This draft of the Guide reflects many changes but should be consid-
ered a work in progress at this time. It is being converted to use the
R Sweave utilities (see F. Leisch, R News v2/3, Dec. 2002, p 28-31),
but there is still work left to do in that conversion. The graphics,
section numbering, and table of contents all need improvement, but
in particular, the formatting of examples may have resulted in some
line truncation. For each package, the text and examples in this guide
are included in the distributed package subdirectory inst/doc/*.Stex.
Please check that file if there is any doubt about the example text.

I regularly test the code with R on Solaris and Linux and sometimes
with Splus 3.3 on Solaris. There are known problems with Splus 5.
Please report errors you find.

Caveat: This software is the by-product of ongoing research. It is not
a commercial product. Limited effort is put into maintaining the doc-
umentation. There may be references to functions which do not yet
work and/or have not been distributed, and the documentation may

not correspond to the current capabilities of the functions. While the
software does many standard time-series things, it is really intended
for doing some non-standard things. The main difference between
this library and many widely available packages is that the library is
designed for working with multivariate time series and for studying
estimation techniques and forecasting models.

Constructive suggestions and comments are welcomed. 1 can be
reached at <pgilbert@ bank-banque-canada. ca> or at <PaulGilbert@
Ottawa. com> or by phone at (613) 782-7346.

The Users Guide is (being) divided into sections corresponding to the
packages in the dse and dseplus bundles. A copy of the section for
each package is also included with the package.

Preamble

1 Introduction to DSE
2 Getting Started with S/R
3 General Outline of DSE Objects and Methods

DSE Bundle Contents

4 dsel Guide

4.1 Defining a TSdata Structure
4.2 ARMA and State-Space TSmodels
4.3 Model Estimation

5 dse2 Guide

5.1 Forecasting

5.2 Evaluation of Forecasting Models
5.3 [Evaluating Estimation Methods
5.4 Adding New TSdata Classes

5.5 Adding New TSmodel Classes

6 tframe Guide
6.1 tframe Functions
7 setRNG Guide
7.1 setRNG Functions

8 Mini-Reference

DSEplus Bundle Contents (not
included in DSE guide)

9 juice Guide

9.1 Juice Functions

10 curve Guide

10.1 Curvature Calculations

11 monitor Guide

11.1 Cookbook for Monitoring Models
12 dsepadi Guide

12.1 TS PADI Data Retrieval

13 syskern Guide

13.1 syskern Functions

Other Related Package Contents
(not included in DSE guide)

14 padi Guide

14.1 PADI Data Retrieval
15 CDNmoney Data
16 dfa Guide

16.1 dfa Functions

Preamble

1 Introduction to DSE

This library was originally designed with linear, time-invariant auto-
regressive moving-average (ARMA) models and state-space (SS) mod-
els in mind. These remain the most well developed models in the
library and provide the basis for most of the examples in this guide.
However, the library implements object oriented methods for study-
ing new estimation techniques and other kinds of time series models.
Methods are implemented for studying Troll (Intex Solutions, Inc.)
models (currently broken) and some neural net architectures are be-
ing explored. These provide examples for implementing new model
objects and estimation methods. Users are encouraged to consider
specific representations used in this guide as examples in the context
of the library’s broader objectives.

In order to provide examples the library also implements some es-
timation techniques and methods for converting among various rep-
resentations of time series models. Many functions for the usual di-
agnostics which are preformed with time series data and models are
included as well. Additional information on specific functions is avail-
able through the help facility. For details of some of the underlying
theory of ARMA and SS model equivalence and examples of some
of the capabilities of the library see Gilbert (1993). For examples of
using the library to evaluate estimation methods see Gilbert (1995).
Examples of the use of several functions are illustrated in the files in
the demo subdirectories. (In R see demo())

2 Getting Started with S/R

This library works with the Splus 3.3 (MathSoft <http:www.insightful
version of the S language and recent versions of the R language (Ihaka
and Gentleman, 1996) <http://cran.r-project.org>. The notation
S/R will be used to indicate both languages and S or R will be used
when a remark is specific to one or the other. Splus will be indicated
when a remark may be specific to Splus but not to S in general. Ital-
ics will be used to indicate examples as well as functions and objects,
and () will frequently be added to function names to help distinguish
them as such. Anything entered after a # is a comment in S/R.

This guide explains certain aspects of S/R in order to make the li-
brary accessible to users unfamiliar with S/R. Knowledge of the S/R

.com>)

language is extremely useful. Users are referred to Becker, Cham-
bers and Wilks (1988, commonly known as The Blue Book), Venables
and Ripley (various editions), Ripley (1994), Burns(...), Krause and
Olson(...), or to the user manuals for their implementation. Users
already familiar with S/R should ignore the simplified explanations
given in this section and skip directly to the next section.

An important point is that S/R functions take arguments in brackets
(...), even when there are no argument. So, for example, the function
to get out of S/R and back to the operating system is q(). Values
are assigned to S/R variables with the two character symbol ”<-”.
Also, it is important to be aware that upper and lower case letters
are different. Most examples in this guide show only the user input,
not the computer output.

If DSE is not installed on your system, please use the usual R package
installation procedures or see installation.txt in the source distribu-
tion. Once S/R is started the DSE library must be made available. In
S this is done with library(”DSE”, first=T) and load.DSE.fortran()
or in R by either library() or require() for each package. For example,
to use the dsel package:

library(”dsel”)

Other required packages will be automatically attached. You should
consider putting these lines in your .First function, which is automat-
ically executed each time you start. (This is especially advisable in
Splus as some of the more computationaly intensive functions in this
library spawn separate Splus sessions to speed calculations.)

Descriptions of functions and objects are available in the help system.

This is integrated with the R help system (started with help.start()).

HTML help is also available in S and can be viewed with a web

browser. From an S session this can be started with the function

help.start. DSE(), which tries to start Netscape by default, but any

browser can be specified with help.start. DSE (browser= "my.browser”).
The string passed as browser should be a system command for start-

ing a web browser.

3 General Outline of DSE Objects and Methods

The library implements three main classes of objects: TSdata, TSmodel,
and TSestModel. These are respectively, representations of data,
models, and models with data and estimation information.

TSdata is an object which contains a (multivariate) time series ob-
ject called output and optionally another called input. Methods for
defining the general version of this class of object are described in the
next section and more details are provided in the help for TSdata.
Input and output correspond to what are often labelled x and y in
econometrics and time series discussions of ARMA models. These are
sometimes called exogenous and endogenous variables, though those
terms are often not correct for these models. Statistically, output
is the variable which is modelled and input is the conditioning data.
From a practical and computational point of view, the model forecasts
output data and input data must always be supplied. In particular,
to forecasts multiple periods into the future requires supplying input
data for the future so that the model can calculate outputs. The
terms input and output are commonly used in the engineering litera-
ture, and often correspond to a control variable and the output from
a physical system. However, the causal interpretation in this context
is not always appropriate for other uses of time series models. In
addition, even when a causal direction is known or assumed, it is not
always desirable to define the exogenous variable as an input. If the
model is to give forecasts into the future then it may be better to de-
fine exogenous variables as outputs and let the model forecast them,
unless better forecasts of the exogenous variables are available from
other sources. One context in which an input variable is important is
to examine policy scenarios. In this context the policy variable is de-
fined as the input and forecasts are produced conditioned on different
assumptions about the policy.

TSmodel objects are models which are arranged to use TSdata. These
objects always have another specific class indicating the type of model.
The ARMA and SS constructor methods for ARMA TSmodels and
state-space TSmodels are described in a section below. Other specific
classes of TSmodels can be defined and many of the methods in this
library will work with these new models, as long as they use TSdata
and have a few important methods implemented. More details on
defining other classes of models are given in another section of this
guide. Details on the representation of models are provided in the
help for TSmodel and the help for specific model constructors.

TSestModel objects are objects which contain TSdata, a TSmodel,
and some statistical information generated by I(model, data). The [()
method originally meant likelihood, but the method returns the one-
step-ahead predictions and other information based on those predic-
tions. Methods for studying one-step-ahead model forecasts extract
the predictions from these objects. Other methods treat T'SestModel
objects as a simple way to group together a model and data. For

example, methods for studying multi-step forecasts need to generate
the forecasts, so they do not use the predictions in the TSestModel
object. More detail about T'SestModel objects is available in the help
system.

The default method for T'Sdata() constructs a T'Sdata object, as will
be described in the next section. The generic methods T'Smodel()
and TSdata() can also be used to extract the TSmodel or TSdata
object from another object (such as a T'SestModel).

The functions in this library can be used by starting with data and
estimating a model, or by starting with a model and producing sim-
ulated data. The section on T'Sdata starts with data, but it would be
equally possible to start with models as described in the sections on
ARMA and State-Space TSmodels.

dse Bundle

4 dsel Guide

In R, the functions in this package are made available with

> library("dsel")

Several data sets are included with this library and will be used in
examples in this guide. In S these are available when the library is
attached. In R they are made available by

> data(package = "dsel")
> data(egl.DSE.data, package = "dsel")
> data(egJofF.1dec93.data, package = "dsel")

4.1 Defining a TSdata Structure

This section describes how to construct a TSdata structure if you
have other data you would like to use. Section 10 discusses adding
new kinds of T'Sdata classes. Some installations may have an online
database and it may be possible to connect directly to this data. See
the padi and dsepadi packages as on one possibility for doing this.

For many people the situation will be that the data is in some ASCII
file. This can be loaded into session variables with a number of stan-
dard S/R functions, the most useful of which are probably scan() and
read.table(). Following is an example which reads data from an ASCII

file called “egl.dat” and puts it in the variable called eg1.DSE.data
(which is also one of the available data sets). The file has five columns
of numbers and 364 rows. The first column just enumerates the rows
and is discarded.

This matrix can be used to form a T'Sdata object by

The matrix and the resulting T'Sdata object do not have a good time
scale associated with points. A better time scale can be added by

> egl.DSE.data <- tframed(egl.DSE.data, list(start = c(1961, 3),
frequency = 12))

There are several different possibilities for representing time in S/R
objects. The most common is the ts matrix object, which is used in
the above default tframed method. (ts is a class in R. In S it is not
a class of object, but the default representation of time series which
existed before classes were introduced.) The above tframed method
and ts can also be used directly on the matrix before the TSdata ob-
ject is formed. However, [,] in Splus results in the time scale being
lost, so it would need to be reassigned to the input and output matri-
ces of the TSdata object. The methods from the tframe library are
used extensively in the DSE library because they provide a common
way to proceed in Splus and R, extend to other time representations
in addition to ts, and provide a mechanism for extending methods to
other objects like TSdata and TSmodels.

Names can be given to the series with

> seriesNamesInput (egl.DSE.data) <- "R90"
> seriesNamesOutput (egl.DSE.data) <- c("M1", "GDP12", "CPI")

Setting the series names is not necessary but many functions can use
the names if they are available. (This overlaps somewhat with S/R
dimnames, but is the preferred method in this library as it extends to
data which is not a matrix.) The T'Sdata object with elements input
and output is the structure which the functions in this library expect.
More details on this structure are available in the help for TSdata.
The input and output elements can be defined in a number of different
ways and new representations can be fairly easily added. For example,
when the data is on a remote database as used by TSPADI, the S/R
object is just a description of where to get the data, rather than the
data itself. In this case the freeze() function is used automatically by
many functions in the DSE library in order to get a copy of the data
when calculations are to be performed.

Once data is available a model can be estimated:

> modell <- est.VARX.1ls(egl.DSE.data)
> model2 <- est.SS.Mittnik(egl.DSE.data, n = 4)

(Note: these models are not the same as those reported in Gilbert,1993.
In that paper a variant of est. VARX.ar was used.) The scale of the
series in egl.DSE.data are very different, with the result that the
covariance matrix of the residuals from the estimation is nearly sin-
gular. This is detected during the calculation of residual statistics.
Statistics are then calculated using only the non-degenerate subspace
and a warning message is printed. A better model might be obtained
if the data were scaled differently.

Information about the estimated models can be displayed, for exam-
ple:

> summary (modell)

> summary (model2)

> modell

> model2

> stability(modell)

> stability(model2)

> information.tests(modell, model2)

Typing the name of an object in S/R results in the object being
printed. To display plots it is first necessary to open a graphics win-
dow:

> x11()

Once a graphics display is active then plots can be viewed:

tfplot (modell)

tfplot (model2)

tfplot (egl.DSE.data)
check.residuals (modell)
check.residuals (model2)

V VvV Vv VvV

10

The function tfplot produces separate graphs for each series. The first

One step ahead predictions (dotted) and actual data (solid)

0

M1
20000
T I |

GDPI2

0e+00 3e+05

CPI
0 40 80

|

1960 1965 1970 1975

tfplot command produces this graphic:

Note that initial conditions have been set to zero, but the effect of
this dies out quickly. (Also note that the graph labels may be slightly
different depending on which version DSE and of R or S you are
using.)

4.2 ARMA and State Space TSmodels

Specifying ARMA and SS models is described below, but first their
definition is outlined. The linear time-invariant ARMA representa-
tion is

A(L)y: = B(L)ey + C(L)uy (1)

where y; is a p dimensional vector of observed output variables, u,
is an m dimensional vector of input variables, e; is a p dimensional
unobserved disturbance vector process and A, B and C are matrices
of the appropriate dimension in the lag (back shift) operator L. VAR
models can be thought of as a special case of ARMA models with
B(L)=I. ARIMA models are also a special case of ARMA models.

11

1980 1985 1990

Note that the time convention here implies that the input variable
u; can influence the output variable y; in the same time period. This
convention is not always used in time-series models but is important
for economics data, especially at annual frequencies.

A linear time-invariant state space representation in innovations form
is given by

Zt = FZt_l —+ Gut + Ket_l (2)
Yy = Hzy + e

where z; is the unobserved underlying n dimensional state vector, F
is the state transition matrix, G, the input matrix, H, the output
matrix, and K, the Kalman gain. The library also has some limited
capabilities to work with the more general non-innovations form

2t = Fthl + G’ut + Q?’Lt (3)
yr = Hzy + Rey

where n; is the system noise, Q, the system noise matrix, and R the
output (measurement) noise matrix.

Models are specified by setting up the arrays that define the model
and grouping them into a TSmodel object. Here is an example
ARMA model with two series, a second order AR polynomial, a first
order MA polynomial and no exogenous variable:

> AR <- array(c(1, .5, .3, 0, .2, .1, 0, .2, .05, 1, .5, .3),
c(3, 2, 2))

> MA <- array(c(1, 0.2, 0, 0.1, 0, 0, 1, 0.3), c(2, 2, 2))
> arma <- ARMA(A = AR, B = MA, C = NULL)

> rm(AR, MA)

> arma

> stability(arma)

> data.arma.sim <- simulate(arma)

> arma <- 1(arma, data.arma.sim)

> summary (arma)

> tfplot(data.arma.sim)

> tfplot (arma)

Note that arrays are filled in the order of their dimensions, which may
not be what you expect. The internal representation of TSmodels
may be described in the help for the specific model constructors, but
in general it should be considered ”opaque” and an understanding
of the internal data structure should not be necessary to use the

12

models. The function l() evaluates the model with the simulated
data. Functions generally use default values for some arguments. For
example, the length of the simulation and the covariance of the noise
can be specified. The above example uses the default values. See
the help on simulate for more details. In the example above, arma is
initially assigned an object of class TSmodel, but it is then re-assigned
the value returned by [(), which is an object of class TSestModel.
Also, many functions work with different classes of objects, and do
different things depending on the class of the argument. The function
tfplot() works with objects of class T'Sdata and TSestModel.

Here is an example of a state space model:

> f <- array(c(0.5, 0.3, 0.2, 0.4), c(2, 2))
> h <- array(c(1, 0, 0, 1), c(2, 2))

> k <- array(c(0.5, 0.3, 0.2, 0.4), c(2, 2))
> ss <- SS(F =f, H=h, K = k)

> print(ss)

> stability(ss)

> data.ss.sim <- simulate(ss)

> ss <- 1(ss, data.ss.sim)

> summary(ss)

> tfplot(ss)

Data which has been generated with simulate is a TSdata object and
can be used with estimation routines. This provides a convenient
way to generate data for estimation algorithms, but remember that
estimation will not necessarily get back to the model you start with,
since there are equivalent representations (see Gilbert, 1993). How-
ever, a good estimate will get close to the likelihood and predictions
of the original model.

Here is an example of changing between state space and ARMA rep-
resentations using the models defined in the previous example:

ss.from.arma <- 1(to.SS(arma), data.arma.sim)
arma.from.ss <- 1(to.ARMA(ss), data.ss.sim)
summary (ss.from.arma)

summary (arma)

summary (arma.from.ss)

summary (ss)

stability(arma)

stability(ss.from.arma)

vV VVVVYVVYV

The function roots() is used by stability() and can be used by itself to
return the roots but not evaluate their magnitude footnoteBy default

13

the roots of an ARMA model are calculated by converting the model
to state space form, for reasons explained in Gilbert (2000). By
specifying by.poly=T the method can be changed to use an expansion
of the polynomial determinant.. When their arguments are T'Smodels
the functions t0.5S() and to.ARMA () return objects of class TSmodel
which are not assigned to a variable in the above example, but used
in the evaluation of I(). The models are returned as part of the
TSestModel returned by ().

4.3 Model Estimation

The example data eg1.DSE.data and egJofF.1dec93.data are available
with the DSE library and are used in examples in this section.

To estimate an AR model with the default number of lags:

> model.egl.ls <- est.VARX.ls(trim.na(egl.DSE.data))

In this example trim.na removes NA padding from the ends of the
data, since the estimation method cannot handle missing values. This
padding may not be present, depending on how the data was re-
trieved. This data is highly correlated and highly parameterized mod-
els result in a degenerate covariance matrix. When this happens a
warning is produced in this and other examples.

It is also possible to select a subsample of the data:

c(1972, 1),
c(1992, 12))

> subsample.data <- tfwindow(egl.DSE.data, start
end

This creates a new variable with data starting in January 1972 and
ending in December 1992. The S/R function window also usually
works, however the function tfwindow is typically used in the DSE
library and this guide because it has occasionally been necessary to
correct some problems with window. Various functions can be applied
to the estimation result

> summary(model.egl.1ls)

> print (model.egl.ls)

> tfplot(model.egl.1ls)

> check.residuals(model.egl.1s)

Other estimation techniques are available

> model.egl.ar <- est.VARX.ar(trim.na(egl.DSE.data))
> model.egl.ss <- est.SS.from.VARX(trim.na(egl.DSE.data))

14

> model.egl.bft <- bft(trim.na(egl.DSE.data))
> model.egl.mle <- est.max.like(est.VARX.1ls(trim.na(egl.DSE.data),
max.lag = 1))

tfplot can put multiple similar objects on a plot

> tfplot(model.egl.ls, model.egl.ar)
> tfplot(model.egl.ls, model.egl.ar, start. = c(1990, 1))

Because of this, the argument start. requires a period at the end so
it is not confused with an object to be plotted.

Most of the estimation techniques have several optional parameters
which control the estimation. Consult the help for the individual
functions. est.max.like extracts data from a TSestModel and uses
the model structure and initial parameter values for the estimation.
(Note: Maximum likelihood estimation can be very slow and may not
converge in the default number of iterations. It also tends to over fit
unless used with care, so that out-of-sample performance is not good.
I do not generally recommend it, although it does offer possibilities
for constraining the structure in specific ways (e.g. fixing some model
matrix entries to zero or one). You might consider comparing mle to
other estimation techniques using functions discussed in the following
sections.) In the above est.mazx.like example a smaller (one lag) model
is used. Be prepared for the estimation to take some time when
models have a large number of parameters.

An important point to note is that the one-step-ahead predictions
and related statistics returned by these estimation techniques are
calculated by evaluating 1(model, data) as the final step after the
model has been estimated. This can give different results than might
be expected using the estimation residuals, particularly with respect
to initial condition effects. (For stable models initial condition effects
should not be too important. If they are an important factor check
the documentation for specific models regarding the specification of
initial conditions.)

Also remember when estimating a model that, if you want to predict
future values of a variable, it will need to be an output in the TSdata
object.

For the next example a four variable subset of the data in egJofF.1dec93.data
will be used. This subset is extracted by

15

> eg4.DSE.data <- egJofF.1dec93.data
> output.data(eg4.DSE.data) <- output.data(eg4.DSE.data,
series = c(1, 2, 6, 7))

which selects the 1st, 2nd, 6th, and 7th series of the output data.
The following uses the currently preferred automatic estimation pro-
cedure:

> model.eg4.bb <- est.black.box(trim.na(eg4.DSE.data), max.lag = 3)

An optional argument verbose=F will make the function print much
less detail about the steps of the procedure. The optional argument,
mazx.lag=3, specifies the maximum lag which should be considered.
The default maxz.lag=12 may take a very long time for models with
several variables. est.black.box currently uses est.black.box4, also
known as bft(..., standardize=T) which is called the brute force tech-
nique in Gilbert (1995).

The traditional model information criteria tests can be performed to
compare models:

> information.tests (model.egl.ar, model.egl.ss)

An arbitrary number of models can be supplied. The generated table
lists several information criteria. For state space models the calcu-
lations are done with both the number of parameters (the number
of unfixed entries in the model arrays) and the theoretical parame-
ter space dimension. See Gilbert (1993, 1995) for a more extensive
discussion of this subject.

Note that converting among representations produces input-output

equivalent models, so that predictions, prediction errors, and any

statistics calculated from these, will be the same for the models. How-

ever, different estimation techniques produce different models with

different predictions. So, est. VARX.ls(data) and to.SS(est. VARX.ls(data))

will produce equivalent models, and est.SS. Mittnik(data) and to. ARMA (est.SS. Mittnik(data))
will produce equivalent models, but the first two will not be equiva-

lent to the second two.

5 dse2 Guide

In R, the functions in this package are made available with

> library("dse2")

16

The next code lines are here to initialize results from examples in
dsel that are used in dse2 examples.

data(egJofF.1dec93.data, package = "dsel")
eg4.DSE.data <- egJofF.1ldec93.data
eg4.DSE.model <- est.VARX.1ls(eg4.DSE.data)
output.data(eg4.DSE.data) <- output.data(eg4.DSE.data,
series = c(1, 2, 6, 7))
eg4.DSE.model <- est.VARX.l1s(eg4.DSE.data)
> new.data <- TSdata(
input = ts(rbind(input.data(eg4.DSE.data), matrix(0.1, 10, 1)),
start = start(eg4.DSE.data),
frequency = frequency(eg4.DSE.data)),
output = ts(rbind(output.data(eg4.DSE.data), matrix(0.3, 5, 4)),
start = start(eg4.DSE.data),
frequency = frequency(eg4.DSE.data)))
> if (require("padi") & require("dsepadi"))
eg4.DSE.data.names <- TSPADIdata(
input = "B14017", input.transforms = "diff", input.names = "R90",
output = c("P100000", "V2036138", "V2062811", "b3400"),
output.transforms = c("percent.change",

vV VvV Vv Vv

v

"percent.change", "percent.change", "percent.change"),
output.names = c("CPI", "GDP", "employment", "PFX"),
server = "ets")

5.1 Forecasting

The TSestModel object returned by estimation is a TSmodel with
TSdata and some estimation information. To use different data, the
new data needs to be in a variable which is a TSdata object. For
example, suppose a model is estimated by

> eg4.DSE.model <- est.VARX.ls(eg4.DSE.data)

and suppose new data becomes available. If you have direct database
access this might be done with something like

> if (require("padi") && checkPADIserver("ets"))
new.data <- freeze(eg4.DSE.data.names)

If database access is not available then, for example purposes, new.data
can be generated with

> new.data <- TSdata(
input = ts(rbind(input.data(eg4.DSE.data), matrix(0.1, 10, 1)),
start = start(eg4.DSE.data),
frequency = frequency(eg4.DSE.data)),

17

output = ts(rbind(output.data(eg4.DSE.data), matrix(0.3, 5, 4)),
start = start(eg4.DSE.data),
frequency = frequency(eg4.DSE.data)))

This simply appends ten observations of 0.1 onto the input and five
observations of 0.3 onto the outputs. The function ts assigns time
series attributes which are taken from eg4.DSE.data. The model can
be evaluated with the new data by

> z <- 1(TSmodel (eg4.DSE.model), trim.na(new.data))

Recall that TSmodel() extracts the TSmodel from the TSestModel.
If database access is available the above can be done in one step:

> if (require("padi") && checkPADIserver("ets"))
z <- 1(TSmodel (eg4.DSE.model), trim.na(freeze(eg4.DSE.data.names)))

trim.na on a TSdata object removes NAs from the ends and truncates
both input and output to the same sub-sample. [() does not easily
give forecasts beyond the period where all data is available. (Optional
arguments can be used to achieve this, but the function forecast is
more convenient.)

Forecasts are conditioned on input so it must be supplied for periods
for which forecasts are to be calculated. (That is, input is not forecast
by the model.) When more data is available for input than for output,
as in new.data generated above, then forecast() will use input data
and produce a forecast of output.

> z <- forecast (TSmodel (eg4.DSE.model), new.data)

The input data can also be specified as a separate argument. For
example, the same result will be achieved with

> z <- forecast(TSmodel (eg4.DSE.model), trim.na(new.data),
conditioning.inputs = input.data(new.data))

The conditioning.inputs override input in the TSdata supplied in the
second argument to the function.

To see plots of the forecasts use

> tfplot(z, start = c(1990, 6))

18

Sometimes a forecast for input data comes from another source, per-
haps another model. Rather than construct the conditioning.inputs
as described above, another way to combine this forecast with the his-
torical input data is to use the argument conditioning.inputs.forecasts:

> z <- forecast(eg4.DSE.model,
conditioning.inputs.forecasts = matrix(0.5, 6, 1))

This would use the input data from eg4.DSE.model and append 6
periods of 0.5 to it.

> if (require("padi") && checkPADIserver("ets"))
z <- forecast(TSmodel (eg4.DSE.model),
freeze(eg4.DSE.data.names),
conditioning.inputs.forecasts = matrix(0.5, 6, 1))

retrieves new data and appends 6 periods of 0.5 to the input series

Some generic functions which work with the structure returned by
forecast:

> summary(z)

> print(z)

> tfplot(z)

> tfplot(z, start = c(1990, 1))

If you actually want the numbers from the forecast they can be ex-
tracted with

> forecasts(z)[[1]]

The [[1]] indicates the first forecast (in this example there is only
one, but the same structures are used for other purposes discussed
below. To see a subset of the data use tfwindow:

> tfwindow(forecasts(z)[[1]], start = c(1994, 1))
This prints values starting in the first period of 1994.

The horizon for the forecast is determined by the available input
data (conditioning.inputs or conditioning.inputs.forecasts). If neither
of these are supplied then the argument horizon, which has a default
value of 36, is used to replicate the last period of data to the indicated
horizon. For models with no input variables the argument horizon
controls the length of the forecast.

5.2 Evaluating Forecasting Models

How well does the model do at forecasting? The first thing to check is
that model forecasts actually track the data more or less. The generic
function tfplot() works with results from the following functions. Re-
call that the function 1() applies a TSmodel to TSdata and returns a
TSestModel which includes one-step ahead forecasts. It can be used
with any TSmodel and TSdata of corresponding dimension. So

> z <- 1(TSmodel (eg4.DSE.model), new.data)

applies the previously estimated model to the new data, and

> tfplot(z)

would plot the one-step ahead forecasts. The function forecast dis-
cussed in the previous section calculates multi-step ahead forecasts
from the end of the data. For evaluating forecasting models it is more
useful to calculate forecasts within the sample of available data. This
is for two reasons. First, the forecast can be compared against the
actual outcome. Second, if the model has an input then the forecast

20

is conditioned on it. If data is available then the actual input data can
be used. (But beware that this is not a true test of the model’s ability
to forecast if the whole sample has been used to estimate the model.)
There are two methods to calculate multi-step ahead forecasts within
the data sample. featherForecasts produces multiple period ahead
forecasts beginning at specified periods. The name comes from the
fact that the graph sometimes looks like a feather (although it will
not if the forecasts are good).

> z <- featherForecasts (TSmodel (eg4.DSE.model), new.data)
> tfplot(z)

In the example above the forecasts begin by default every tenth pe-
riod. In the following example the forecasts begin at periods 20, 50,
60, 70 and 80 and forecast for 150 periods.

> z <- featherForecasts (TSmodel (eg4.DSE.model), new.data,
from.periods = c(20, 50, 60, 70, 80), horizon = 150)

The plot looks like this:

> tfplot(z)

21

The second method, horizonForecasts, produces forecasts from every
period for specified horizons.

> z <- horizonForecasts (TSmodel (eg4.DSE.model), new.data,
horizons = c(1, 3, 6))

produces forecasts 1, 3 and 6 steps ahead. The plot looks like this:

> tfplot(z)

The result is aligned so that the forecast for a particular period is
plotted against the actual outcome for that period. Thus, in the
last example, the plot will show the data for each period along with
the forecast produced from 1, 3, and 6 periods prior. This plot is
particularly useful for illustrating when models do well and when they
do not. A common experience with economic data is that models do
well during periods of expansion and contraction, but miss the turning
points. The forecast covariance, to be discussed next, averages over
all periods. It is quite possible that a model can indicate turning
points well but not do so well on average, and thus be overlooked if

22

only forecast covariance is considered. It is always useful to keep in
mind the intended use of the model.

The numbers which generate the above plot can be extracted from
the result of horizonForecasts with forecasts(). This gives an array
with the first dimension corresponding to the horizons and the time
frame aligned to correspond to the data. So forecasts(z)[2,30,] from
the above example will be the prediction made for the 30th period
from 3 periods previous (the second element indicated in horizons
is 3) and forecasts(z)[3,30,] will be the prediction made for the 30th
period from 6 periods previous (horizons[3] is 6). Remember that
these forecasts are conditioned on the supplied input data, which
means that the output variables here are forecast 1, 3 and 6 periods
ahead, but true, not forecasted, input data is used.

If the forecasts look reasonable then examine the forecast errors more
systematically. The following calculates the forecast covariances at
different horizons.

> fc <- forecastCov(TSmodel (eg4.DSE.model), data = eg4.DSE.data)

> tfplot(fc)

> tfplot (forecastCov(TSmodel (eg4.DSE.model), data = eg4.DSE.data,
horizons = 1:4))

The last example calculates for horizons from 1 to 4 rather than the
default 1 to 12. To see how the model forecasts relative to a zero
forecast and a trend forecast:

> fc <- forecastCov(TSmodel (eg4.DSE.model), data = eg4.DSE.data,
zero = T, trend = T)
> tfplot (fc)

This is a very useful check (and often very humbling).

You can also get out-of-sample forecast covariances. This will be
discussed in the next section.

There is not yet implemented in DSE any measure of forecast errors
which can be compared across models - inevitably the covariance of
the error is smaller for less variable series and is also affected by
scaling of the series. This may just mean that the series is easier to
predict or has a different scale, not that the forecast equation is more
brilliant. MAPE may be implemented sometime.

23

5.3 Evaluating Estimation Methods

One way to test estimation techniques is to specify a ”true” model
which is used to produce simulated data and then examine how well
an estimation technique finds the true model. This is not as general as
theoretical results, since it is really only valid at the ”true” parameter
values and for the sample size tested, however, it can be illustrative
and theoretical results for small samples are very difficult to obtain. It
also provides a very good cross check of the simulation and estimation
code. Also, equivalent representations may have effects which are not
yet fully appreciated in the literature. The following models from
Gilbert (1995) will be used to illustrate.

> modl <- ARMA(A = array(c(1, -0.25, -0.05), c(3, 1, 1)),
B = array(1, c(1, 1, 1)))
> mod2 <- ARMA(A = array(c(1, -0.8, -0.2), c(3, 1, 1)),
B = array(1, c(1, 1, 1)))
> mod3 <- ARMA(A = array(c(1, -0.06, 0.15, -0.03, 0, 0.02, 0.03,
-0.02, 0, -0.02, -0.03, -0.02, 0, -0.07, -0.05, 0.12, 1,
0.2, -0.03, -0.11, 0, -0.07, -0.03, 0.08, 0, -0.4, -0.05,
-0.66, 0, 0, 0.17, -0.18, 1, -0.11, -0.24, -0.09), c(4, 3,
3)),
B = array(diag(1, 3), c(1, 3, 3)))

mod2 has a unit root, as can be verified with roots(mod2) or stabil-
ity (mod2).

The function MonteCarloSimulations runs simulate repeatedly to give
many data samples.

> z <- MonteCarloSimulations(modl, simulation.args = list(sampleT = 100))
> tfplot(z)
> distribution(z)

Usually it is not necessary to use MonteCarloSimulations and actually
save all the simulations since the seed and other information about
the random number generator (RNG) can be used to reproduce the
samples. Thus functions for testing estimation methods can produce
the same samples when they are needed.

The function EstEval simulates and then estimates models:

> e.ls.modl <- EstEval(modl, replications = 100,
simulation.args = list(sampleT = 100, sd = 1),
estimation = "est.VARX.1s",
estimation.args = list(max.lag = 2),
criterion = "TSmodel",

24

rng = list(kind = "default", normal.kind = "default',
seed = c(13, 44, 1, 25, 56, 0, 6, 33, 22, 13, 13, 0)))

In this example simulation and estimation will be repeated 100 times
with samples of size 100 and the standard deviation of the model
noise will be set to 1. simulation.args are passed to the function sim-
ulate, which may take different arguments depending on the class of
the model. Estimation is done with the function est. VARX.ls and
estimation.args are passed to it. The argument criterion specifies
what should be returned from the estimation. In this case the model
is returned (An object of class TSmodel) but not additional infor-
mation as is usually returned in the object TSestModel. It is also
possible to specify coef or roots to return only that specific infor-
mation, but that information can be extracted from the TSmodel as
illustrated below. In general EstEval will work with any estimation
method which will take the results of simulate applied to the sup-
plied model and returns something that criterion can extract. That
is, if criterion(estimation(simulate(model))) returns something (with
criterion and estimation replaced by the functions you supply and
model replaced by the model you supply), then EstEval should work
with your functions. This does not mean that plots described below
will necessarily work or make sense.

The argument rng is optional here and in all the examples below. If
supplied, the RNG and seed will be set. This is useful if an experiment
is to be reproduced. Using Splus 3.2 and 3.3 the settings indicated in
this section will reproduce the results in Gilbert (1995). It is possible
to generate similar random experiments in S and in R, but not using
the Splus default generator. If the argument rng above is given as

"Wichmann-Hill", seed = c(979, 1479, 1542),
"Box-Muller")

> rng = list(kind
normal.kind

then the uniform RNG is set to Wichmann-Hill, the normal trans-
formation is set to Box-Muller, and the initial seed is set. With the
RNG set in this way both Splus and R will produce similar results.
These settings are reset to their previous values when the function
completes. They can be set so that they do not revert using the
function

> set.RNG(kind = "Wichmann-Hill", seed = c(979, 1479, 1542),

normal.kind = "Box-Muller")

The argument seed is optional (and other values can be supplied but
they should be consistent with the generator). An initial seed will be
generated if it is omitted.

25

The following uses mod2 as the true model.

> e.ls.mod2 <- EstEval(mod2, replications = 100,
simulation.args = list(sampleT = 100, sd = 1),
estimation = "est.VARX.ls", estimation.args = list(max.lag = 2),
criterion = "TSmodel")

To plot a line chart of the cumulative average of the estimated pa-
rameters use coef to extract the parameters (coefficients) from the
TSmodel:

> par(mfcol = c(2, 1))

> tfplot(coef(e.ls.mod1))

The plot from mod2 looks like this:
> tfplot(coef(e.ls.mod2))

The straight line indicates the true value. To plot a line chart of the
estimated parameters use coef to extract the parameters from the
TSmodel:

26

> par(mfcol = c(2, 1))
> tfplot(coef(e.1ls.modl), cum = F, bounds = F)

bounds controls whether or not estimated one standard deviation
bounds are plotted. The plot from mod2 looks like this:

> tfplot(coef(e.ls.mod2), cum = F, bounds = F)

U L bt g AL
IR AR

W\/ \/

L A AL
TR

To plot the distribution of estimates:

> distribution(coef(e.ls.mod1), bandwidth = 0.2)
The plot from mod2 looks like this:
> distribution(coef(e.ls.mod2), bandwidth = 0.2)

27

To plot the roots of the estimated model use roots to extract the
roots from the TSmodel:

> e.ls.modl.roots <- roots(e.ls.mod1)

> plot(e.ls.modl.roots)

> plot(e.ls.modl.roots, complex.plane = F)

> plot(roots(e.ls.mod2), complex.plane = F)

> distribution(e.ls.modl.roots, bandwidth = 0.2)

bandwidth is an argument passed to the kernel estimator used to
generate the plot. The plot from mod2 looks like this:

> distribution(roots(e.ls.mod2), bandwidth = 0.1)

donsiy(x= 1,1, bw = bandwdh)

Some attention to the equivalence of different model representations
is necessary when evaluating estimation methods. For example, if the
state space equivalent of a VAR model is used as the true model for
simulation and est. VAR X.Is is used for estimation then parameter es-
timates will be very different from those of the state space model (but
root estimates should still be similar). Many estimation techniques
may also do some model selection (such as est.black.box does), so the
returned models may have different numbers of parameters and/or
lags.

Evaluating models based on their forecast performance avoids some
of these difficulties. In any case, since forecasting is often the end
objective, it is useful to evaluate models directly on their forecasting
performance. The function forecastCovEstimators WRTtrue() evalu-
ates estimation methods using a given true model for simulation. It
calculates the covariance of forecast errors of the estimated models
relative to the output of the true model:

> pc <- forecastCovEstimatorsWRTtrue (mod3,
estimation.methods = list(est.VARX.ls = list(max.lag = 6)),

29

est.replications = 2,
pred.replications = 10,
rng = list(kind = "default", normal.kind = "default",
seed = c(53, 41, 26, 39, 10, 1, 19, 25, 56, 32, 28, 3)))

The names of the elements in the list estimation.methods specify the
estimation methods and their value is a list of the arguments to the
method. If no arguments are required then the value should be speci-
fied as NULL. The covariance for forecasts of zero and a simple trend
are also calculated. These are useful benchmarks. est.replications
controls the number of times a sample is generated and used for
estimating a model with each estimation method. pred.replications
controls how many times the forecasts from the estimated model are
compared with output from the true model. Thus the total number
of simulations is est.replications + est.replications * pred.replications,
so 22 in the above example.

A similar function is available which applies a model reduction pro-
cedure after the estimation:

> pc.rd <- forecastCovReductionsWRTtrue (mod3,
estimation.methods = list(est.VARX.ls = list(max.lag = 3)),
est.replications = 2,
pred.replications = 10,
rng = list(kind = "default", normal.kind = "default",
seed = c(29, 55, 47, 18, 33, 1, 15, 15, 34, 46, 13, 2)))

The reduction procedure used is reduced.models.Mittnik. An op-
tional argument criteria can be specified. This controls the model
selection criteria used by the reduction technique.

It is possible to compare different estimation techniques on the basis
of their out-of-sample forecasting error with respect to a data sample.
In the following example estimation.sample controls the portion of the
sample used for estimation. It can be a fraction indicating a portion
of the sample, or it can be an integer in which case it will be treated
as the number of periods to use for estimation.

> data(egl.DSE.data, package = "dsel")

> z <- out.of.sample.forecastCovEstimatorsWRTdata(trim.na(egl.DSE.data),
estimation.sample = 0.5,
estimation.methods = list(est.VARX.ar = NULL, est.VARX.1ls = NULL),
trend = T)

30

The plot looks like this:
> tfplot(z)

In the example below the number of lags is limited (the default is 12
for est.black.box4) and printing of intermediate results is suppressed.

> z <- out.of.sample.forecastCovEstimatorsWRTdata(trim.na(egl.DSE.data),
estimation.sample = 0.5,
estimation.methods = list(
est.black.box4 = list(max.lag = 3, verbose = F),
est.VARX.1ls = list(max.lag = 3)),
trend = T,
zero = T)
> tfplot(z)

The object returned by out.of.sample.forecastCovEstimatorsWRTdata()
contains the estimated models so it is possible to extract the models
and use 1, horizonForecasts and featherForecasts. In the above ex-
ample the model estimated with est.black.box4 is the first model and
that estimated with est. VARX.Is is the second, so

31

> zz <- horizonForecasts(TSmodel(z, select = 1), TSdata(z),
horizons = c(1, 3, 6))

would generate an object with the actual forecasts for the model esti-
mated with est.black.box4 (rather than the covariance of the forecast
errors) and forecasts(zz)[3,30,] will then be the prediction made for
the 30th period from 6 (the third element of horizons) periods pre-
vious. The generic function horizonForecasts() can also be applied
directly to z and the appropriate information will be extracted to
generate forecasts for all the estimated models.

5.4 Adding New TSdata Classes

Data used by functions in this library are objects of class TSdata. The
default methods assume that this is a list with an element output and
optionally an element input, each of which is a (multivariate) time
series object. New classes of time series can be defined and the DSE
library should work as long as the methods describe in the tframe
library are implemented for the new time series class. This usually
will not require any changes to TSdata methods (or anything else in
the DSE library). The time series class tfPADIdata defined in the
tframe library is an object which does not contain data, but only a
description of where to get the data. The generic function freeze()
calls freeze.tfPADIdata() which uses the location descriptor in order
to get a fixed copy of the data as a time series matrix.

More generally, it is possible to define new specific classes of TSdata.
The TSPADIdata object described in the appendix on database in-
terfaces is an object of class TSdata and specific class TSPADIdata.
The input and output for this class are time series location descriptors
of class tfPADIdata. Many functions in this library require matrices
for input and output in order to do calculations. In this case they
use the function freeze() before doing any calculations. The method
freeze. TSPADIdata() uses freeze.tfPADIdata() on each element.

5.5 Adding New TSmodel Classes

Models used in the library are of class ”TSmodel” with secondary
classes to indicate specific types of models. The original library sup-
ported subclass ’ARMA?” and ”SS”. The current version also support
subclass ”troll”. (*** The interface for running troll models is broken
at present. Another, more easily available example is under construc-
tion) To run models in this subclass requires the Troll software from
Intex Solutions, Inc. It also requires the TSPADI interface. The main
methods which will be necessary for a new class of models ”xxx” are

32

print.xxx, is.xxx, l.xxx, simulate.xxx, seriesNamesInput.xxx, series-
NamesOutput.xxx, check.consistent.dimensions.xxx, and MonteCar-
loSimulations.xxx. Also, the method to.xxx is useful for converting
models from existing classes to this new class where possible. Models
should inherit from TSmodel.

The troll class of models is fairly interesting from a programming
perspective, since the data is not native to S/R and the models are
not run within S/R. One reason for wanting to do this is to use all of
the other tools in the library to analyze models which have already
been built and are running in other environments. Troll has very good
algorithms for running ”forward looking models” which are currently
popular in economics. The tools in the DSE library (e.g. functions for
analyzing forecasting properties) can be used as if the troll models
were run directly in S/R, even though they are actually run with
completely separate software.

The troll TSmodels provide an example of how to implement addi-
tional classes of models.

6 tframe Functions
In R, the functions in this package are made available with

> library("tframe")

User Guide documentation for the tframe functions is not yet done.
See the help documention instead.

7 setRNG Functions

In R, the functions in this package are made available with

> library("setRNG")

User Guide documentation for the setRNG functions is not yet done.
See the help documention instead.

8 Appendix I: Mini-Reference
Following is a short list of some of the functions. The online help con-

tains more details on all functions, while the guides for each package
contain more complete descriptions.

33

OBJECTS
e ARMA - define an ARMA TSmodel
e SS - define a state-space TSmodel
e TSdata - an input/output time series data structure

o T'SestModel - a TSmodel estimated with TSdata

MODEL INFORMATION
e print - display model arrays
e summary - summary information about a model

e tfplot - plot data or model predictions.

MODEL PROPERTIES
e McMillan.degree - calculate the McMillan degree of a model
e roots - calculate the roots of a model

e stability - check stability of model

MODEL CONVERSION
e t0.5SS - convert to an equivalent state space innovations representation

e to.ARMA - convert to an ARMA representation

SIMULATION, ONE-STEP PREDICTIONS & RELATED STATIS-
TICS

e simulate - Simulate a model to generate artificial data.
e | - evaluate a TSmodel with TSdata and return a TSestModel object
e smoother - calculate smoothed state for a state space model.

e check.residuals - distribution, autocorrelation and partial autocorrelation
of residuals

e information.tests - print model selection criteria

34

MODEL ESTIMATION & REDUCTION
e est.VARX.Is - estimate VAR model with exogenous variable using OLS

e est.VARX.ar - estimate VAR model with exogenous variable using auto-
correlations

e est.SS.from.VARX - estimate a VARX model and convert to state space

e est.SS.Mittnik - estimate state space model using Mittnik’s markov pa-
rameter technique

e cst.max.like - Maximum likelihood estimation of models.
e est.black.box - estimate and find the best reduced model

e est.black.box4 - estimate and find the best reduced model by techniques
in Gilbert (1995), also referred to as bft

e reduction.Mittnik - nested-balanced state space model reduction by svd
of Hankel generated from a model

FORECAST AND FORECAST EVALUATION
e forecast - generate a forecast from given model and data.
e featherForecasts - forecast from specified periods
e horizonsForecasts - forecast specified periods ahead

e forecastCov - calculate covariance of multi-period ahead forecasts

ESTIMATION EVALUATION
e EstEval - evaluate specified estimation techniques using a given true model

e out.of.sample.forecastCovEstimatorsWRTdata - evaluate specified estima-
tion techniques using a given data set

35

