
dse2 Guide

In R, the functions in this package are made available with

> library("dse2")

The next code lines are here to initialize results from examples in
dse1 that are used in dse2 examples.

> data(egJofF.1dec93.data, package = "dse1")

> eg4.DSE.data <- egJofF.1dec93.data

> eg4.DSE.model <- est.VARX.ls(eg4.DSE.data)

> output.data(eg4.DSE.data) <- output.data(eg4.DSE.data, series = c(1,

2, 6, 7))

> eg4.DSE.model <- est.VARX.ls(eg4.DSE.data)

> new.data <- TSdata(input = ts(rbind(input.data(eg4.DSE.data),

matrix(0.1, 10, 1)), start = start(eg4.DSE.data), frequency = frequency(eg4.DSE.data)),

output = ts(rbind(output.data(eg4.DSE.data), matrix(0.3,

5, 4)), start = start(eg4.DSE.data), frequency = frequency(eg4.DSE.data)))

> if (require("padi") & require("dsepadi")) eg4.DSE.data.names <- TSPADIdata(input = "B14017",

input.transforms = "diff", input.names = "R90", output = c("P100000",

"V2036138", "V2062811", "b3400"), output.transforms = c("percent.change",

"percent.change", "percent.change", "percent.change"),

output.names = c("CPI", "GDP", "employment", "PFX"), server = "ets")

1 Forecasting

The TSestModel object returned by estimation is a TSmodel with
TSdata and some estimation information. To use different data, the
new data needs to be in a variable which is a TSdata object. For
example, suppose a model is estimated by

> eg4.DSE.model <- est.VARX.ls(eg4.DSE.data)

and suppose new data becomes available. If you have direct database
access this might be done with something like

> if (require("padi") && checkPADIserver("ets")) new.data <- freeze(eg4.DSE.data.names)

If database access is not available then, for example purposes, new.data
can be generated with

> new.data <- TSdata(input = ts(rbind(input.data(eg4.DSE.data),

matrix(0.1, 10, 1)), start = start(eg4.DSE.data), frequency = frequency(eg4.DSE.data)),

output = ts(rbind(output.data(eg4.DSE.data), matrix(0.3,

5, 4)), start = start(eg4.DSE.data), frequency = frequency(eg4.DSE.data)))

1

This simply appends ten observations of 0.1 onto the input and five
observations of 0.3 onto the outputs. The function ts assigns time
series attributes which are taken from eg4.DSE.data. The model can
be evaluated with the new data by

> z <- l(TSmodel(eg4.DSE.model), trim.na(new.data))

Recall that TSmodel() extracts the TSmodel from the TSestModel.
If database access is available the above can be done in one step:

> if (require("padi") && checkPADIserver("ets")) z <- l(TSmodel(eg4.DSE.model),

trim.na(freeze(eg4.DSE.data.names)))

trim.na on a TSdata object removes NAs from the ends and truncates
both input and output to the same sub-sample. l() does not easily
give forecasts beyond the period where all data is available. (Optional
arguments can be used to achieve this, but the function forecast is
more convenient.)

Forecasts are conditioned on input so it must be supplied for periods
for which forecasts are to be calculated. (That is, input is not forecast
by the model.) When more data is available for input than for output,
as in new.data generated above, then forecast() will use input data
and produce a forecast of output.

> z <- forecast(TSmodel(eg4.DSE.model), new.data)

The input data can also be specified as a separate argument. For
example, the same result will be achieved with

> z <- forecast(TSmodel(eg4.DSE.model), trim.na(new.data), conditioning.inputs = input.data(new.data))

The conditioning.inputs override input in the TSdata supplied in the
second argument to the function.

To see plots of the forecasts use

> tfplot(z, start = c(1990, 6))

2

1991 1992 1993 1994

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

C
P

I

Predictions (dotted) and actual data (solid)

1991 1992 1993 1994

−
1.

0
−

0.
5

0.
0

0.
5

G
D

P

1991 1992 1993 1994

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

em
pl

oy
m

en
t

1991 1992 1993 1994

−
1

0
1

2

P
F

X

Sometimes a forecast for input data comes from another source, per-
haps another model. Rather than construct the conditioning.inputs
as described above, another way to combine this forecast with the his-
torical input data is to use the argument conditioning.inputs.forecasts:

> z <- forecast(eg4.DSE.model, conditioning.inputs.forecasts = matrix(0.5,

6, 1))

This would use the input data from eg4.DSE.model and append 6
periods of 0.5 to it.

> if (require("padi") && checkPADIserver("ets")) z <- forecast(TSmodel(eg4.DSE.model),

freeze(eg4.DSE.data.names), conditioning.inputs.forecasts = matrix(0.5,

6, 1))

retrieves new data and appends 6 periods of 0.5 to the input series

Some generic functions which work with the structure returned by
forecast:

3

> summary(z)

> print(z)

> tfplot(z)

> tfplot(z, start = c(1990, 1))

If you actually want the numbers from the forecast they can be ex-
tracted with

> forecasts(z)[[1]]

The [[1]] indicates the first forecast (in this example there is only
one, but the same structures are used for other purposes discussed
below. To see a subset of the data use tfwindow :

> tfwindow(forecasts(z)[[1]], start = c(1994, 1))

This prints values starting in the first period of 1994.

The horizon for the forecast is determined by the available input
data (conditioning.inputs or conditioning.inputs.forecasts). If neither
of these are supplied then the argument horizon, which has a default
value of 36, is used to replicate the last period of data to the indicated
horizon. For models with no input variables the argument horizon
controls the length of the forecast.

2 Evaluating Forecasting Models

How well does the model do at forecasting? The first thing to check is
that model forecasts actually track the data more or less. The generic
function tfplot() works with results from the following functions. Re-
call that the function l() applies a TSmodel to TSdata and returns a
TSestModel which includes one-step ahead forecasts. It can be used
with any TSmodel and TSdata of corresponding dimension. So

> z <- l(TSmodel(eg4.DSE.model), new.data)

applies the previously estimated model to the new data, and

> tfplot(z)

would plot the one-step ahead forecasts. The function forecast dis-
cussed in the previous section calculates multi-step ahead forecasts
from the end of the data. For evaluating forecasting models it is more
useful to calculate forecasts within the sample of available data. This
is for two reasons. First, the forecast can be compared against the
actual outcome. Second, if the model has an input then the forecast

4

is conditioned on it. If data is available then the actual input data can
be used. (But beware that this is not a true test of the model’s ability
to forecast if the whole sample has been used to estimate the model.)
There are two methods to calculate multi-step ahead forecasts within
the data sample. featherForecasts produces multiple period ahead
forecasts beginning at specified periods. The name comes from the
fact that the graph sometimes looks like a feather (although it will
not if the forecasts are good).

> z <- featherForecasts(TSmodel(eg4.DSE.model), new.data)

> tfplot(z)

In the example above the forecasts begin by default every tenth pe-
riod. In the following example the forecasts begin at periods 20, 50,
60, 70 and 80 and forecast for 150 periods.

> z <- featherForecasts(TSmodel(eg4.DSE.model), new.data, from.periods = c(20,

50, 60, 70, 80), horizon = 150)

The plot looks like this:

> tfplot(z)

1975 1980 1985 1990

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

C
P

I

Predictions (dotted) and actual data (solid)

1975 1980 1985 1990

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

G
D

P

1975 1980 1985 1990

−
1.

0
−

0.
5

0.
0

0.
5

em
pl

oy
m

en
t

1975 1980 1985 1990

−
2

−
1

0
1

2
3

P
F

X

5

The second method, horizonForecasts, produces forecasts from every
period for specified horizons.

> z <- horizonForecasts(TSmodel(eg4.DSE.model), new.data, horizons = c(1,

3, 6))

produces forecasts 1, 3 and 6 steps ahead. The plot looks like this:

> tfplot(z)

1975 1980 1985 1990

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

C
P

I

Predictions (dotted) and actual data (solid)

1975 1980 1985 1990

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

G
D

P

1975 1980 1985 1990

−
1.

0
−

0.
5

0.
0

0.
5

em
pl

oy
m

en
t

1975 1980 1985 1990

−
2

−
1

0
1

2
3

P
F

X

The result is aligned so that the forecast for a particular period is
plotted against the actual outcome for that period. Thus, in the
last example, the plot will show the data for each period along with
the forecast produced from 1, 3, and 6 periods prior. This plot is
particularly useful for illustrating when models do well and when they
do not. A common experience with economic data is that models do
well during periods of expansion and contraction, but miss the turning
points. The forecast covariance, to be discussed next, averages over
all periods. It is quite possible that a model can indicate turning
points well but not do so well on average, and thus be overlooked if

6

only forecast covariance is considered. It is always useful to keep in
mind the intended use of the model.

The numbers which generate the above plot can be extracted from
the result of horizonForecasts with forecasts(). This gives an array
with the first dimension corresponding to the horizons and the time
frame aligned to correspond to the data. So forecasts(z)[2,30,] from
the above example will be the prediction made for the 30th period
from 3 periods previous (the second element indicated in horizons
is 3) and forecasts(z)[3,30,] will be the prediction made for the 30th
period from 6 periods previous (horizons[3] is 6). Remember that
these forecasts are conditioned on the supplied input data, which
means that the output variables here are forecast 1, 3 and 6 periods
ahead, but true, not forecasted, input data is used.

If the forecasts look reasonable then examine the forecast errors more
systematically. The following calculates the forecast covariances at
different horizons.

> fc <- forecastCov(TSmodel(eg4.DSE.model), data = eg4.DSE.data)

> tfplot(fc)

> tfplot(forecastCov(TSmodel(eg4.DSE.model), data = eg4.DSE.data,

horizons = 1:4))

The last example calculates for horizons from 1 to 4 rather than the
default 1 to 12. To see how the model forecasts relative to a zero
forecast and a trend forecast:

> fc <- forecastCov(TSmodel(eg4.DSE.model), data = eg4.DSE.data,

zero = T, trend = T)

> tfplot(fc)

This is a very useful check (and often very humbling).

You can also get out-of-sample forecast covariances. This will be
discussed in the next section.

There is not yet implemented in DSE any measure of forecast errors
which can be compared across models - inevitably the covariance of
the error is smaller for less variable series and is also affected by
scaling of the series. This may just mean that the series is easier to
predict or has a different scale, not that the forecast equation is more
brilliant. MAPE may be implemented sometime.

7

3 Evaluating Estimation Methods

One way to test estimation techniques is to specify a ”true” model
which is used to produce simulated data and then examine how well
an estimation technique finds the true model. This is not as general as
theoretical results, since it is really only valid at the ”true”parameter
values and for the sample size tested, however, it can be illustrative
and theoretical results for small samples are very difficult to obtain. It
also provides a very good cross check of the simulation and estimation
code. Also, equivalent representations may have effects which are not
yet fully appreciated in the literature. The following models from
Gilbert (1995) will be used to illustrate.

> mod1 <- ARMA(A = array(c(1, -0.25, -0.05), c(3, 1, 1)), B = array(1,

c(1, 1, 1)))

> mod2 <- ARMA(A = array(c(1, -0.8, -0.2), c(3, 1, 1)), B = array(1,

c(1, 1, 1)))

> mod3 <- ARMA(A = array(c(1, -0.06, 0.15, -0.03, 0, 0.02, 0.03,

-0.02, 0, -0.02, -0.03, -0.02, 0, -0.07, -0.05, 0.12, 1,

0.2, -0.03, -0.11, 0, -0.07, -0.03, 0.08, 0, -0.4, -0.05,

-0.66, 0, 0, 0.17, -0.18, 1, -0.11, -0.24, -0.09), c(4, 3,

3)), B = array(diag(1, 3), c(1, 3, 3)))

mod2 has a unit root, as can be verified with roots(mod2) or stabil-
ity(mod2).

The function MonteCarloSimulations runs simulate repeatedly to give
many data samples.

> z <- MonteCarloSimulations(mod1, simulation.args = list(sampleT = 100))

> tfplot(z)

> distribution(z)

Usually it is not necessary to use MonteCarloSimulations and actually
save all the simulations since the seed and other information about
the random number generator (RNG) can be used to reproduce the
samples. Thus functions for testing estimation methods can produce
the same samples when they are needed.

The function EstEval simulates and then estimates models:

> e.ls.mod1 <- EstEval(mod1, replications = 100, simulation.args = list(sampleT = 100,

sd = 1), estimation = "est.VARX.ls", estimation.args = list(max.lag = 2),

criterion = "TSmodel", rng = list(kind = "default", normal.kind = "default",

seed = c(13, 44, 1, 25, 56, 0, 6, 33, 22, 13, 13, 0)))

8

In this example simulation and estimation will be repeated 100 times
with samples of size 100 and the standard deviation of the model
noise will be set to 1. simulation.args are passed to the function sim-
ulate, which may take different arguments depending on the class of
the model. Estimation is done with the function est.VARX.ls and
estimation.args are passed to it. The argument criterion specifies
what should be returned from the estimation. In this case the model
is returned (An object of class TSmodel) but not additional infor-
mation as is usually returned in the object TSestModel. It is also
possible to specify coef or roots to return only that specific infor-
mation, but that information can be extracted from the TSmodel as
illustrated below. In general EstEval will work with any estimation
method which will take the results of simulate applied to the sup-
plied model and returns something that criterion can extract. That
is, if criterion(estimation(simulate(model))) returns something (with
criterion and estimation replaced by the functions you supply and
model replaced by the model you supply), then EstEval should work
with your functions. This does not mean that plots described below
will necessarily work or make sense.

The argument rng is optional here and in all the examples below. If
supplied, the RNG and seed will be set. This is useful if an experiment
is to be reproduced. Using Splus 3.2 and 3.3 the settings indicated in
this section will reproduce the results in Gilbert (1995). It is possible
to generate similar random experiments in S and in R, but not using
the Splus default generator. If the argument rng above is given as

> rng = list(kind = "Wichmann-Hill", seed = c(979, 1479, 1542),

normal.kind = "Box-Muller")

then the uniform RNG is set to Wichmann-Hill, the normal trans-
formation is set to Box-Muller, and the initial seed is set. With the
RNG set in this way both Splus and R will produce similar results.
These settings are reset to their previous values when the function
completes. They can be set so that they do not revert using the
function

> set.RNG(kind = "Wichmann-Hill", seed = c(979, 1479, 1542), normal.kind = "Box-Muller")

The argument seed is optional (and other values can be supplied but
they should be consistent with the generator). An initial seed will be
generated if it is omitted.

The following uses mod2 as the true model.

9

> e.ls.mod2 <- EstEval(mod2, replications = 100, simulation.args = list(sampleT = 100,

sd = 1), estimation = "est.VARX.ls", estimation.args = list(max.lag = 2),

criterion = "TSmodel")

To plot a line chart of the cumulative average of the estimated pa-
rameters use coef to extract the parameters (coefficients) from the
TSmodel:

> par(mfcol = c(2, 1))

> tfplot(coef(e.ls.mod1))

The plot from mod2 looks like this:

> tfplot(coef(e.ls.mod2))

0 20 40 60 80 100

−
0.

90
−

0.
85

−
0.

80
−

0.
75

−
0.

70

pa
rm

 1

0 20 40 60 80 100

−
0.

30
−

0.
25

−
0.

20
−

0.
15

−
0.

10

pa
rm

 2

The straight line indicates the true value. To plot a line chart of the
estimated parameters use coef to extract the parameters from the
TSmodel:

> par(mfcol = c(2, 1))

> tfplot(coef(e.ls.mod1), cum = F, bounds = F)

10

bounds controls whether or not estimated one standard deviation
bounds are plotted. The plot from mod2 looks like this:

> tfplot(coef(e.ls.mod2), cum = F, bounds = F)

0 20 40 60 80 100

−
1.

1
−

1.
0

−
0.

9
−

0.
8

−
0.

7
−

0.
6

pa
rm

 1

0 20 40 60 80 100

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

pa
rm

 2

To plot the distribution of estimates:

> distribution(coef(e.ls.mod1), bandwidth = 0.2)

The plot from mod2 looks like this:

> distribution(coef(e.ls.mod2), bandwidth = 0.2)

11

−1.5 −1.0 −0.5 0.0

0.
0

0.
5

1.
0

1.
5

parameter 1

de
ns

ity

−1.0 −0.5 0.0 0.5

0.
0

0.
5

1.
0

1.
5

parameter 2

de
ns

ity

To plot the roots of the estimated model use roots to extract the
roots from the TSmodel:

> e.ls.mod1.roots <- roots(e.ls.mod1)

> plot(e.ls.mod1.roots)

> plot(e.ls.mod1.roots, complex.plane = F)

> plot(roots(e.ls.mod2), complex.plane = F)

> distribution(e.ls.mod1.roots, bandwidth = 0.2)

bandwidth is an argument passed to the kernel estimator used to
generate the plot. The plot from mod2 looks like this:

> distribution(roots(e.ls.mod2), bandwidth = 0.1)

12

0.6 0.8 1.0 1.2

0
1

2
3

4

density(x = r[, i], bw = bandwidth)

Mod root 1

de
ns

ity

−0.2 0.0 0.2 0.4 0.6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

density(x = r[, i], bw = bandwidth)

Mod root 2

de
ns

ity

Some attention to the equivalence of different model representations
is necessary when evaluating estimation methods. For example, if the
state space equivalent of a VAR model is used as the true model for
simulation and est.VARX.ls is used for estimation then parameter es-
timates will be very different from those of the state space model (but
root estimates should still be similar). Many estimation techniques
may also do some model selection (such as est.black.box does), so the
returned models may have different numbers of parameters and/or
lags.

Evaluating models based on their forecast performance avoids some
of these difficulties. In any case, since forecasting is often the end
objective, it is useful to evaluate models directly on their forecasting
performance. The function forecastCovEstimatorsWRTtrue() evalu-
ates estimation methods using a given true model for simulation. It
calculates the covariance of forecast errors of the estimated models
relative to the output of the true model:

> pc <- forecastCovEstimatorsWRTtrue(mod3, estimation.methods = list(est.VARX.ls = list(max.lag = 6)),

est.replications = 2, pred.replications = 10, rng = list(kind = "default",

13

normal.kind = "default", seed = c(53, 41, 26, 39, 10,

1, 19, 25, 56, 32, 28, 3)))

The names of the elements in the list estimation.methods specify the
estimation methods and their value is a list of the arguments to the
method. If no arguments are required then the value should be speci-
fied as NULL. The covariance for forecasts of zero and a simple trend
are also calculated. These are useful benchmarks. est.replications
controls the number of times a sample is generated and used for
estimating a model with each estimation method. pred.replications
controls how many times the forecasts from the estimated model are
compared with output from the true model. Thus the total number
of simulations is est.replications + est.replications * pred.replications,
so 22 in the above example.

A similar function is available which applies a model reduction pro-
cedure after the estimation:

> pc.rd <- forecastCovReductionsWRTtrue(mod3, estimation.methods = list(est.VARX.ls = list(max.lag = 3)),

est.replications = 2, pred.replications = 10, rng = list(kind = "default",

normal.kind = "default", seed = c(29, 55, 47, 18, 33,

1, 15, 15, 34, 46, 13, 2)))

The reduction procedure used is reduced.models.Mittnik. An op-
tional argument criteria can be specified. This controls the model
selection criteria used by the reduction technique.

It is possible to compare different estimation techniques on the basis
of their out-of-sample forecasting error with respect to a data sample.
In the following example estimation.sample controls the portion of the
sample used for estimation. It can be a fraction indicating a portion
of the sample, or it can be an integer in which case it will be treated
as the number of periods to use for estimation.

> data(eg1.DSE.data, package = "dse1")

> z <- out.of.sample.forecastCovEstimatorsWRTdata(trim.na(eg1.DSE.data),

estimation.sample = 0.5, estimation.methods = list(est.VARX.ar = NULL,

est.VARX.ls = NULL), trend = T)

The plot looks like this:

> tfplot(z)

14

2 4 6 8 10 12

0.
0e

+
00

5.
0e

+
07

1.
0e

+
08

1.
5e

+
08

2.
0e

+
08

2.
5e

+
08

horizon

M
1

Prediction variance relative to given data.

2 4 6 8 10 12

0.
0e

+
00

5.
0e

+
09

1.
0e

+
10

1.
5e

+
10

2.
0e

+
10

2.
5e

+
10

horizon

G
D

P
l2

2 4 6 8 10 12

0
50

0
10

00
15

00

horizon

C
P

I

trend
est.VARX.ar NULL
est.VARX.ls NULL

In the example below the number of lags is limited (the default is 12
for est.black.box4) and printing of intermediate results is suppressed.

> z <- out.of.sample.forecastCovEstimatorsWRTdata(trim.na(eg1.DSE.data),

estimation.sample = 0.5, estimation.methods = list(est.black.box4 = list(max.lag = 3,

verbose = F), est.VARX.ls = list(max.lag = 3)), trend = T,

zero = T)

> tfplot(z)

The object returned by out.of.sample.forecastCovEstimatorsWRTdata()
contains the estimated models so it is possible to extract the models
and use l, horizonForecasts and featherForecasts. In the above ex-
ample the model estimated with est.black.box4 is the first model and
that estimated with est.VARX.ls is the second, so

> zz <- horizonForecasts(TSmodel(z, select = 1), TSdata(z), horizons = c(1,

3, 6))

would generate an object with the actual forecasts for the model esti-
mated with est.black.box4 (rather than the covariance of the forecast

15

errors) and forecasts(zz)[3,30,] will then be the prediction made for
the 30th period from 6 (the third element of horizons) periods pre-
vious. The generic function horizonForecasts() can also be applied
directly to z and the appropriate information will be extracted to
generate forecasts for all the estimated models.

4 Adding New TSdata Classes

Data used by functions in this library are objects of class TSdata. The
default methods assume that this is a list with an element output and
optionally an element input, each of which is a (multivariate) time
series object. New classes of time series can be defined and the DSE
library should work as long as the methods describe in the tframe
library are implemented for the new time series class. This usually
will not require any changes to TSdata methods (or anything else in
the DSE library). The time series class tfPADIdata defined in the
tframe library is an object which does not contain data, but only a
description of where to get the data. The generic function freeze()
calls freeze.tfPADIdata() which uses the location descriptor in order
to get a fixed copy of the data as a time series matrix.

More generally, it is possible to define new specific classes of TSdata.
The TSPADIdata object described in the appendix on database in-
terfaces is an object of class TSdata and specific class TSPADIdata.
The input and output for this class are time series location descriptors
of class tfPADIdata. Many functions in this library require matrices
for input and output in order to do calculations. In this case they
use the function freeze() before doing any calculations. The method
freeze.TSPADIdata() uses freeze.tfPADIdata() on each element.

5 Adding New TSmodel Classes

Models used in the library are of class ”TSmodel” with secondary
classes to indicate specific types of models. The original library sup-
ported subclass ”ARMA” and ”SS”. The current version also support
subclass ”troll”. (*** The interface for running troll models is broken
at present. Another, more easily available example is under construc-
tion) To run models in this subclass requires the Troll software from
Intex Solutions, Inc. It also requires the TSPADI interface. The main
methods which will be necessary for a new class of models ”xxx” are
print.xxx, is.xxx, l.xxx, simulate.xxx, seriesNamesInput.xxx, series-
NamesOutput.xxx, check.consistent.dimensions.xxx, and MonteCar-
loSimulations.xxx. Also, the method to.xxx is useful for converting

16

models from existing classes to this new class where possible. Models
should inherit from TSmodel.

The troll class of models is fairly interesting from a programming
perspective, since the data is not native to S/R and the models are
not run within S/R. One reason for wanting to do this is to use all of
the other tools in the library to analyze models which have already
been built and are running in other environments. Troll has very good
algorithms for running ”forward looking models” which are currently
popular in economics. The tools in the DSE library (e.g. functions for
analyzing forecasting properties) can be used as if the troll models
were run directly in S/R, even though they are actually run with
completely separate software.

The troll TSmodels provide an example of how to implement addi-
tional classes of models.

17

