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Abstract

A unified implementation of parametric proportional hazards (PH)
and accelerated failure time (AFT) models for right-censored and left-
truncated data is described.

1 Introduction

There is a need for software for analyzing parametric proportional hazards
(PH) and accelerated failure time (AFT) data, that are right censored and
left truncated.

2 The proportional hazards model

We define proportional hazards models in terms of an expansion of a given
survivor function Sy,

so(t:2z) = {So(g(t, 6))} P, (1)

where 0 is a parameter vector used in modeling the baseline distribution, 3
is the vector of regression parameters, and g is a positive function, which
helps defining a parametric family of baseline survivor functions through

S(t;0) = So(9(t.0)), t>0, 6€0O. (2)



With fy and hy defined as the density and hazard functions corresponding
to Sy, respectively, the density function corresponding to S is

(1:0) = —£.5(1,6)

0

=~ Su((t,0))

= g:(t,0) fo(9(t,9)),
where 5
9(t,6) = —-9(1.6).
Correspondingly, the hazard function is
/(£ 6)
5(t;0) (3)
= g:(t, 0)ho(g(t, 0)).
So, the proportional hazards model is
No(t;z) = h(t; 0) exp(z3)
= 9:(t, 0)ho(g(t,0)) exp(z),

h(t;0) =

corresponding to (1).

2.1 Data and the likelihood function

Given left truncated and right censored data (s;,t;,d;,2;), ¢ = 1,...,n and
the model (4), the likelihood function becomes

- . 9) ) @)
L((6,8);(s,t.d),Z) = .H{h(t“ 9) eXp(Ziﬂ>}di{ S(t;;0) } 5

Here, for i = 1,...,n, s; < t; are the left truncation and exit times, respec-
tively, d; indicates whether ¢; is an event time or not (if not, right censored),
and z; = (%1, .., Zip) is a vector of explanatory variables with corresponding

parameter vector 8 = (f31,...,06,),i=1,...,n.
From (5) we now get the log likelihood and the score vector in a straight-
forward manner.

(((0,8); (s,t,d),Z) = Z di{logh(t;;0) + z;3}
— Z eziﬁ{log S(si;0) —log S(t;; 9)}
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and (in the following we drop the long argument list to ¢), for the regression
parameters 3,

9 n

i=1

— Zzijeziﬁ{log S(Szv 0) - 108; S(tu 0)}, j=1,...p,
=1

and for the “baseline” parameters 6, in vector form,

90— ="' h(t;0)

- 7 Sg(Si; 0) Sg(tl'; 0)
—2 e B{ S(si:0)  S(t:;0) }

i=1

9, _ N~ holti,0)

Here, from (3),

he(t,0) = %h(t, 0) (6)
= gt9<t7 o)h'O(g(tv 0)) + gt<t7 0>g9<t7 0)h6<g(t7 0))7
and, from (2),
So(1:0) = “-5(1:0) = - 5i(o(1.0)) .

= —go(t,0) fo(9(t,0)).

For estimating standard errors, the observed information (the negative of
the hessian) is useful, so

0? -
— (= Zimzii€2P{log S(s;; 0) —log S(t;;0)},
55,90, Z s {log 5(s;10) — log 5(1::6) }

j?m:17"'7p7

and

0? & 5[ Se(s5;0)  Se(t;; 0) ,
_ — B Zz,G 0\, _ o\l —
aﬁjae“g Zz“e {S(Si;e) S(t,:0) } J Lowop,



and finally
— 02 — id h’OO’(tia 0) . h9<tz’, O)hgl(ti, 0)
0006" = "\ h(t;,0) 12(t,,0)

_ i@zlﬁ See’ 8270) B So(si,0)Se(si,0)
5.6) 2(5:,0)

_(599'(%9) Se(tl-,H)Sg/(ti,H))}.

=1

S(t:,0)  S%(t;,0)
Here we have, from (6),
0
80'h o(t,0)
= gioe (t,0)ho(g(t,0)) + gie(t, 0)ge (¢, 0)hg(g(t, 0))
+91(t.0)go(t, 0)go (¢, 0)ho(g(t,0))
+ 9:(t,0)goer (t, 0) (g (t, 0))
+ g0 (1.0)90(t, O) 1911, 6) )
= ho(g(t,0))3:ee (1, 0)
+ ho(g(t,0)){ g:(t,0)ge0 (L, 6)
+ gi0(t,0)ge (1, 0)
+ g (,0)go(t, 0) }
+ W(g(t, 0))u(t. )90 (1, 0) g (1, 0),

hee (t,0) =

and from (7),

0
599/ - 8015 (t 0)

= —{ 900 (t,0) fo(9(t,0)) + go(t,0)ge (t.0) fo(9(t,0)) }

(9)

3 The shape—scale families

From (1) we get a shape—scale family of distributions by choosing 6 = (p, A)
and AP

ot o) = (5) 0 20 pAso
However, for reasons of efficient numerical optimization and normality of
parameter estimates, we use the parametrisation p = exp(y) and A = exp(«),
thus redefining ¢ to

ot () = (

t
exp(a)

exp(7)
) , >0, —o0o<7y,a<00. (10)
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For the calculation of the score and hessian of the log likelihood function, we
need some partial derivatives of g. They are found in an appendix.

3.1 The Weibull family of distributions
The Weibull family of distributions is obtained by
So(t) = exp(—t), t>0,

leading to
fo(t) =exp(—t), t>0,

and
ho(t) =1, t>0.

We need some first and second order derivatives of f and h, and they are
particularly simple in this case, for h they are both zero, and for f we get

fo(t) = —exp(=t), t=0.

3.2 The EV family of distributions
The EV (Extreme Value) family of distributions is obtained by setting

ho(t) = exp(t), t >0,

leading to
So(t) = exp{—(exp(t) = 1)}, >0,

The rest of the necessary functions are easily derived from this.

3.3 The Gompertz family of distributions

The Gompertz family of distributions is given by
h(t) = Texp(t/A), t>0; 7,A>0.

This family is not directly possible to generate from the described shape-
scale models, but by including the parameter log(7) = « as a constant term
(intercept) in the regression part, we get the proportional hazards model

h(t; (a, \B)) = exp(t/N) exp(a+2z08), t>0; X>0.

This is of the required type, with the shape parameter fixed to unity.



3.4 Other families of distributions
Included in the eha package are the lognormal and the loglogistic distribu-

tions as well.
4 The accelerated failure time model

In the description of this family of models, we generate a scape-scale family
of distributions as defined by the equations (2) and (10). We get

S(t; (v, @) = So(g(t, (v, 0)))
= SO({ t }expm), t>0, —oo<vy,a<o0. (1

exp(a)
Given a vector z = (21,...,2,) of explanatory variables and a vector of
corresponding regression coefficients 8 = (4, ..., 3,), the AFT regression

model is defined by
S(t; (v, @, B)) = So(g(texp(2B), (v, a)))

(
}Eﬁ”}) N

+ exp(7)
exp(a — Zﬁ)} )
= So(g(t, (v,a —2zPB))), t>0.

So, by defining 8 = (v, « — z(3), we are back in the framework of Section 2.
We get

f(t;0) = g:(t.6) fo(g(t,0))
and
h(t; 0) - gt(tae)ho(g(tae))v (13)

defining the AFT model generated by the survivor function Sy and corre-
sponding density fy and hazard hy.

4.1 Data and the likelihood function

Given left truncated and right censored data (s;,t;,d;,2;), ¢ = 1,...,n and
the model (13), the likelihood function becomes

L((7, 0, B): (s, t,d), H{h t:0,)} {ggz))} (14)
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Here, for i = 1,...,n, s; < t; are the left truncation and exit times, respec-
tively, d; indicates whether ¢; is an event time or not (if not, right censored),
0, = (v,a —z,3), and z; = (21, ..., 2;) is a vector of explanatory variables
with corresponding parameter vector 8 = (f1,...,05,), i =1,...,n.

From (14) we now get the log likelihood and the score vector in a straight-
forward manner.

E((fy,a,ﬁ) (s,t,d),Z Zd log h(t;; 6;)

i=1
- Z{log S(si;8;) —log S(t;;0:) }
i=1

and (in the following we drop the long argument list to ¢), for the regression
parameters 3,

o, [ S;(s5;0:)  S;(t:;6:)
65/ zd Z{ S(5:0,)  5(0:6))
_ ZU ti,0:) <~ —2iS(550:)  —z;Sa(li; 0:)
Zd tzae) ;{ S(si; 0:) S(ti; 0;)
o tmo ) a Sa(si; 02) Sa<t27 0@)
Z i z” h(t:, 0;) lem{ S(si;0:)  S(t::6:) )
j = 17 A '7p7

and for the “baseline” parameters v and «,

tz, 0 - SA/<SZ‘; 01) S’y<ti; 01)
;d h(ti, 6:) ;{ S(si;0;)  S(ti;0;) |

and

tmo & Sa<52702> SO{(tZ)HZ)
= d - - .
Here, from (3),

hy(t,0;) = %h(t,@i)
= giy(t,0:)ho(g(t,0;)) + g:(t,0;:)g,(t,0;)ho(g(t, 6;)),
hO,(t, 02) - %h(t, 01>

= gia(t,0:)ho(g(t, 0:)) + g:(t,0:)9a(t, 0:)ho(g(t, 6:)),
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and

0 0 0
51000 = bl 6) 55

= _ZUha(ta 01)7 ] = ]-7 - D

h;(t,0;) = (a —z3)

Similarly, from (2) we get

&mngfmwzgﬁwmm)
= —g,(t,0:) fo(9(t. 6,)),
5u(:0) = 5010 = 25 (s(1,6,)
= —0a(t,6:) fo(g(t,0:)).
and
5(1:0) = 5750400 = 3-50(a(1.00) 5o~ 8)

= _ZUSOz(tael)a ] = 17 sy D

For estimating standard errors, the observed information (the negative of
the hessian) is useful, so

Zd%zzm{ Paa(ti, 0;) ha(ti,Oi)ha(ti,Oi)}

aﬁ]aﬁm i—1 t270 ) h2(t2701)
aa 52701) Sa(siaei)sa(siaei)
*Z%m{sw»_ (s, 0,)
Saa(tzu 02) Sa(tia Hi)Sa(tia 02) .
— — =1,...
< S(tl’ez) S2<t2702) ) .]7m ) 7p7
and

~9p;0r h(t:, 6;) h2(t;, 6;)
Z { aTt 527 z) Sa(8i70i)ST<Si70i)

62 a hom’ (t27 01) h’a (tlu 0@>h’7 (tu 02)

—1 827 Z) Sz(siaei)

NS ik il

T:aaf}/; j:17"'7p7



and finally

82 - h’TT/ (tu 02) hT (tu Hi)hT/ (tu 02)

- STT’<8i7 0@) ST(‘Si? 0i>ST/ <Si’ 07‘)
+;{ S(Sl,ez) 52<32701>
B STT/(ti,Oi) _ ST(tiaei)ST’(tiaei)
S(ti, 0;) S2(t:,6:) ’

(7,7) = (v,7), (7, @), (@, 7), (@, @).

The second order partial derivatives h.,, are the same as in (8), and S, can

be found in (9).

A Some partial derivatives

The function (see (10))

" exp(7)
) t>0; —oo<7v,a<o00. (15)

ot () = (o

has the following partial derivatives:

Gt (tv (77 O‘)) = n
gy (t, (v, ) = g(t, (7, @) log{g(t, (v, a)) }
Ja (ta (77 a)) = - exp(y g(t7 (’7 a))
g1 () = (6, () + 2 g (1, (,0), 220
Jta (tu (77 O‘)) - - eXp(f}/)gt (t7 (77 Oé)), t>0
g2 (t, (v, @) = gy (. (v, @) {1 + log g (¢, (v, @)) }
Gra(t, (1. 0)) = ga(t, (v, @) {1 +1og g(t, (7. a)) }
a2 (tv (77 O‘)) == eXp(f}/)ga (t7 (77 OJ))
gz (1, (1 @) = g1y (8, (7, @)
+ eXI;W)g,Y (t, (7, a)) {2 + logg(t, (7, a))}
Gira(t, (1, @) = —exp(N{ge(t, (v, ) + gir (¢, (7. 0)) }
a2 (t, (7, @) = —exp(7)gta (t, (7, @)



The formulas will be easier to read if we remove all function arguments,
e, (4, (7,0)

ex
gt = I;(/Y)ga t>0
gy =glogg
Jo = —exp(7)g
exp(7)

gm:gt+ ; G, t>0

Jia = —exp(7)g:, t>0
92 = g,{1 +logg}

Gya = ga{l + logg}

g2 = — €xp(7)ga

e
XptW)gy{Z +logg}, t>0

Jtya = —exp(”y){gt +gt7}, t>0
Gta2 = = €Xp(Y)gta, >0

Giy2 = Gty +
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