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Summary

The two-sided Fisher’s exact test is one of the most common tests for test-
ing independence in a 2 by 2 table, or equivalently, of testing that the odds
ratio is different from one. We desire a confidence interval on the odds ratio
that contains the null odds ratio if and only if the test fails to reject the
null. Unfortunately, the confidence set created by inverting the family of
two-sided Fisher’s exact tests may consist of more than one interval. Even
if we create the smallest interval that contains this confidence set, the re-
sulting “matching” interval is not the usual confidence interval reported for
odds ratios conditional on the marginals of the table. This usual interval
matches with a different implementation of Fisher’s exact test, the typically
less powerful but more directionally balanced test that rejects if the min-
imum of two one-sided Fisher’s exact tests reject at one half the nominal
significance level. We discuss these two exact two-sided tests and a third
one suggested by Blaker (2000, Canadian Journal of Statistics, 783-798),
and study the matching confidence intervals for each test. The R package
exact2x2 is provided to calculate all three tests and their matching intervals.

1 Introduction

For comparing two groups when the response is binary, one of the most com-
mon ways of testing for a difference between the groups is Fisher’s exact test.
When the two-sided version of that test is applied to the 2× 2 table given
by Example 1 of Table 1 the p-value is 0.0437 which denotes significance
at the conventional 0.05 level. Statistical significance only signifies that the
observed data is extreme under the null hypothesis of independence and tells
little about the magnitude of the actual effect, so it is recommended (see
e.g., the CONSORT statement: Moher, Schultz, Altman, et al, 2001, item
17) to report effect size and confidence intervals along with p-values.

One might think that since Fisher’s exact test has such a long history
and that it continues to be used frequently, it would be obvious what are
the appropriate confidence intervals to be used with the test; however, it
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is not at all clear from the literature and available software. In R (version
2.9.1) the fisher.test function applied to the table above gives the conditional
maximum likelihood estimate of the odds ratio (OR) 0.219 along with the
95% confidence interval (CI) of (0.039, 1.06). We call this interval the ex-
act conditional tail interval (ECTI) (see equation 4 below). The ECTI is
not consistent with the two-sided Fisher’s exact test, since it implies non-
significance at the 0.05 level. What we want is an interval that is strongly
consistent with the two-sided Fisher’s exact test, where a strongly consistent
100(1− α)% confidence interval contains the null value of the parameter if
and only if the corresponding test fails to reject at the α level. The problem
is not with the R software, since the only exact confidence interval for the
odds ratio offered by SAS (version 9.1) and StatXact (StatXact 8 Procs) is
the ECTI. Although there are confidence intervals that more often match
the inferences from Fisher’s exact test, we show here that there is not a
method that will always produce a strongly consistent confidence interval.

There are two problems. First, the 100(1 − α)% ECTI is strongly con-
sistent with a different two-sided Fisher’s exact test (see Section 3.2 below).
The second problem is that if we invert the usual two-sided Fisher’s exact
test, it is not guaranteed that the resulting confidence set will be an inter-
val (i.e., there may be a “hole” in the set). This problem with inversion of
tests not being intervals has been extensively studied for the single binomial
parameter (see e.g., Casella and Berger, 2002, p. 431, or Blaker, 2000).

Blaker (2000) and Agresti and Min (2001) both give excellent discussions
of the formation and properties of two-sided confidence intervals for all kinds
of discrete data in many more situations than the 2 × 2 table, but neither
paper explicitly examines the confidence set that is an inversion of Fisher’s
two-sided exact test. We do that in this paper. Additionally, we apply
a general method of Blaker (2000) to create an exact test with confidence
intervals for the 2× 2 table.

2 Outline of the Problem

For the 2 × 2 table, we use the model with X = [X0, X1], where Xi ∼
Binomial(ni, πi) and are independent of each other and the ni are fixed
and known. There are other models for the 2 × 2 table but for most it is
reasonable to condition on the marginals so that inferences can be calculated
from Fisher’s noncentral hypergeometric distribution as we do here (see e.g.,
Lehmann and Romano, 2005, or Yates, 1984). Unconditional tests are not
discussed in this paper, and for a comparison of the two types of tests see
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Agresti (2001) and the references cited there. For this paper the parameter
of interest is the odds ratio, β = π1(1−π0)

π0(1−π1) , and the nuisance parameter is
ψ = π0+π1. The distribution of X is completely described by the parameter
vector θ = [β, ψ].

We are interested in confidence intervals about β, so we consider the
family of two-sided hypothesis tests indexed by β0 where the hypotheses
are:

H0 : β = β0, 0 < ψ < 1
H1 : β 6= β0, 0 < ψ < 1.

The usual application only considers the case where β0 = 1. In Section 3 we
discuss three families of tests associated with these hypotheses. For any of
these three families, let pβ0(x) be the two-sided p-value associated the null
H0 : β = β0, where we reject when pβ0(x) ≤ α. A conceptually simple way
to create confidence sets from any family is to invert the tests, so that the
100(1− α)% confidence set is (see e.g., Casella and Berger, 2002):

C(x, 1− α) = {β : pβ(x) > α}. (1)

The confidence set given by equation 1 is said to be strongly consistent with
the family of tests, since the 100(1−α)% confidence interval does not contain
β0 if and only if the α-level test corresponding to H0 : β = β0 rejects. We call
this confidence set the inversion of the family of tests. Since this inversion is
not guaranteed to be an interval (see Blaker, 2000 or Section 4.1), following
Blaker (2000) we use the smallest interval which contains all of the parameter
values of the inversion (i.e., it fills in the holes of the inversion if they exist).
We call this interval the matching confidence interval to the family of tests
(or to one member of that family).

The major point of this paper is that when confidence intervals are used
to supplement information from a test, the matching confidence interval
should be used since this interval will avoid (as much as is possible) the
problem of rejecting the null at the α-level but including the null parameter
in the 100(1− α)% confidence interval.

3 Three Two-Sided Exact Conditional Tests for
2× 2 Tables

3.1 Preliminaries

Each of the null hypotheses in the family of hypotheses described by equa-
tion 1 is a point hypothesis in terms of β. If we condition on X0 + X1, the
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sufficient statistic for ψ, then we obtain a likelihood without ψ terms:

Pr[X1 = x; β] = fβ(x) =

(
n1

x

) (
n0

k − x

)
βx

∑xmax
i=xmin

(
n1

i

) (
n0

k − i

)
βx

, for x ∈ [xmin, xmax],

where k = x0 + x1, xmin = max(0, n0− k) and xmax = min(k, n1). This dis-
tribution is Fisher’s non-central hypergeometric distribution (see e.g., Fog,
2008).

Once we condition on the marginals, the table is completely described
by x1, and smaller values of x1 suggest smaller odds ratios. Since we are
only considering non-randomized tests, there is only one commonly used
exact one-sided test, the one-sided Fisher’s exact test, and it is based on
the ordering of x1. The exact versions of other non-randomized historical
one-sided tests are constructed this way and are all equivalent (see Davis,
1986 or StatXact 8 Procs Manual).

3.2 Central Fisher’s Exact Test

The one-sided Fisher’s exact tests have p-values of either

p
(lte)
β (x) =

∑

i:i≤x1

fβ(i)

or (2)

p
(gte)
β (x) =

∑

i:i≥x1

fβ(i),

and we can create a two-sided test with p-value equal to

pβ(x) = min
{
1, 2 ∗min

(
p
(lte)
β (x), p(gte)

β (x)
)}

(3)

This doubling of the one-sided p-value is a common and simple method for
defining the two-sided p-value (Gibbons and Pratt, 1975).

The inversion of this test is an interval because the one-sided p-values
given in equations 2 are unimodal in β. Unimodality follows from the
monotonicity in β of each side (see the Appendix of Mehta, Patel, and
Gray, 1985) and equation 3. The matching interval is the exact conditional
tail interval (ECTI) mentioned previously. Specifically, let the ECTI be
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C(x, 1−α) = [L(x1, 1−α), U(x1, 1−α)] which are the solutions to (see e.g.,
StatXact 8 Procs Manual):

L(x1, 1− α) =

{
0 if x1 is xmin

{β :
∑

i:i≥x1
fβ(i) = α/2} otherwise

(4)

U(x1, 1− α) =

{
∞ if x1 is xmax

{β :
∑

i:i≤x1
fβ(i) = α/2} otherwise

This is a central interval meaning that we can bound the probability that
the true β is less than the lower interval by α/2 and similarly for the upper
interval. Because of this property we call the test associated with the pβ(x)
of equation 3 the central Fisher’s exact test. The test is also known as twice
the one-sided Fisher’s exact test.

3.3 Two-sided Fisher’s Exact Test

The usual p-value associated with the two-sided Fisher’s exact test is not
the central one mentioned in the previous section but,

pβ(x) =
∑

i:fβ(i)≤fβ(x1)

fβ(i) (5)

This p-value uses the “principal of minimum likelihood”, which has little
formal motivation and can lead to absurd inferences in some situations (Gib-
bons and Pratt, 1975). However, in the case of the conditional test on the
2 × 2 table, the principle of minimum likelihood gives reasonable answers
because for fixed β the non-central hypergeometric distribution is unimodal
in the x1 values so that the values of x1 in which we fail to reject will always
be a set of consecutive integers (see e.g., Liao and Rosen, 2001).

Based on common current usage (see R help for fisher.test, SAS help
for Proc Freq, and StatXact manual), we will call this test the two-sided
Fisher’s exact test, despite the fact that Fisher himself appeared to prefer
the central Fisher’s exact test (Yates, 1984, p. 444).

The inversion of this test may not be an interval as will be shown in
Section 4.1. Consequently, because of the p-value function of equation 5 is
not unimodal in β, one cannot simply find two values of β where pβ(x) = α,
since there may be more than two. Calculation of the matching interval is
discussed in Section 4. These matching two-sided Fisher’s exact intervals
have been suggested by Baptista and Pike (1977), although they did not
mention the cases when the confidence set is not an interval (see also Table
2 of Agresti and Min, 2001).
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3.4 Blaker’s Exact Test

An alternative method for creating a two-sided p-value is to add to the one-
sided p-value “an attainable probability in the other tail which is as close as
possible to the one tailed P-value obtained” (Gibbons and Pratt, 1975). To
maximize power, we follow the recommendation of Blaker (2000) and use the
largest tail probability in the opposite tail which is less than or equal to the
observed tail. See Appendix A for an explicit representation of that p-value.
We call the resulting test, Blaker’s exact test. From first principles, this is
as reasonable if not more reasonable (see Gibbons and Pratt, 1975) as using
the principle of minimum likelihood as is done Fisher’s two-sided exact test.
In the 2×2 table case the two-sided Fisher exact p-values will for many null
hypotheses in the family coincide with the Blaker p-values. When the two
p-values do not coincide, and when the principle of minimum likelihood may
lead the two-sided Fisher to add more probability in the opposite tail than
the observed one, and it is hard to see how this is desired over the smaller
p-values of Blaker. We know of no commonly used statistical property for
which the two-sided Fisher’s exact test performs better than Blaker’s exact
test, and the greatest reason for using the former test may be tradition and
ease of explanation.

Blaker (2000, see also Blaker and Spjøtvoll, 2000) showed that the p-
value described above can be written in the following way. Let Fβ(x) =
Pr[X1 ≤ x | β], F̄β(x) = Pr[X1 ≥ x | β], and γ(x, β) = min{Fβ(x), F̄β(x)},
then the p-value (also called the acceptability function) of Blaker (2000) is

pβ(x) = Pr [γ(X1, β) ≤ γ(x1, β)] . (6)

As with the two-sided Fisher’s exact test the inversion of the test is a con-
fidence set which may not be an interval since pβ(x) of equation 6 is not
necessarily unimodal in β. For applications we use the matching confidence
interval which fills in the holes in the inversion and the calculation has the
same problems as for the matching intervals to the two-sided Fisher’s exact
test which will be described in the next section.

4 Calculation of Intervals for Non-Unimodal P-
value Functions

We begin by noting the non-unimodality in β of the p-value function for the
two-sided Fisher’s exact test and Blaker’s exact test, which points out the
difficulty of the calculating the matching intervals. Similar observations have
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been made previously (see Blaker, 2000, Vos and Hudson, 2008). Then we
give a method for calculating the confidence interval, and what we can say
about the bound on its accuracy. The examples in this section are chosen
not because they are typical, but because they are atypically difficult to
calculate.

4.1 The Strongly Consistent Confidence Set is not Guaran-
teed to be an Interval

Ideally, we would want to use the inversion of the two-sided Fisher’s exact
test for our confidence intervals; however, the resulting confidence set is not
guaranteed to be an interval. In Example 2 of Table 1 (chosen to highlight
this point) the confidence set created by inverting the family of Fisher’s
exact tests is not a confidence interval: the resulting 95% confidence set is
{β : β ∈ (0.178, 0.998) or β ∈ (1.010, 1.018)}. In Figure 1 we plot pβ0(x)
from the three tests. We see that for β0 = 1 for the two-sided Fisher’s exact
test the p-value is significant at the 0.05 level, p1(x) = 0.04999, but for
slightly larger or smaller β0 the p-value is not significant, p1.015(x) = 0.05008
and p0.99(x) = 0.05015. Blaker’s exact test can also have this problem,
although in this case p1.015(x) = 0.0354 for Blaker’s test. The problem is
the non-unimodality of the p-value function and this motivates the matching
confidence intervals defined previously. The central Fisher’s exact test is
continuous and unimodal and avoids many of these problems.

4.2 An Algorithm for Calculating Confidence Intervals on
Non-monotonic P-value Functions

Blaker (2000) gave a simple algorithm for the calculation of the confidence
interval for the single binomial parameter using his acceptability function.
We describe a similar algorithm pictorially applied to a two-sided 2×2 table
example. Figure 2 shows an example where the p-value is calculated only a
certain points (specifically at 1± j ∗ 0.002, j = 0, 1, 2, . . .). The solid points
are the ones above α. Other p-values measured to the right of the last open
circle are below the range of the vertical axis, so that the largest calculated
odds ratio that gives p-values greater than α is 0.986. The actual upper
value of the matching confidence interval is 1.01375 since that is the largest
β0 such that pβ0(x) > α. Thus, although the p-values are measured every
0.002 the error in the upper limit calculated this way is over ten times larger
than 0.002 since 1.01375 − 0.98600 = 0.02775. (The example is purely for
illustration. It is Table 2 except subtracting 2 non-events in Group B and
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Figure 1: P-values from the three two-sided exact tests for testing β = β0

for different values of β0. Solid gray dots are two-sided Fisher’s exact test,
black open dots are Blaker’s exact test, black line is central Fisher’s exact,
gray line is the reference line at 0.05. Figure b) is a blow-up of a portion of
Figure a).
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Figure 2: Figure to show difficulty with Blaker’s algorithm. P-values evalu-
ated at the points, 1± j ∗ 0.002, j = 0, 1, . . ..

using α = 0.0501.)
In Appendix A we describe an algorithm for calculating the matching

confidence interval for either the two-sided Fisher’s exact test or Blaker’s
exact test. This algorithm allows calculation of the matching confidence
limits either within a pre-specified tolerance level, or gives precision on the
limits if the p-value function is very flat when it is very close to α. The
algorithm is implemented in an R package called exact2x2. The package
gives matching confidence intervals for all three tests described in Section 3.

5 Comparison of the Three Tests

First, consider the tables where n0 = n1. In these cases the noncentral
hypergeometric distribution is symmetric, and since we know it is unimodal
in the x1 (see e.g., Liao and Rosen, 2001), the two-sided Fisher’s exact test
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and Blaker’s exact test give equivalent p-values and confidence intervals.
For completeness, we list some important properties that all three tests

share. All three tests are exact tests, meaning that the p-values are valid,
and the only conservativeness of the tests is due to the discrete nature of
the data. All three tests are nested, meaning that if a test fails to reject
at the α1 level then it must also fail to reject for all α > α1. The match-
ing confidence intervals are similarly nested (see Blaker, 2000). Because of
the discrete nature of the data, none of the tests are unbiased. Although a
randomized version of the one-side exact test is uniformly most powerful un-
biased (Tocher, 1950), as is typically done in applications, we only consider
non-randomized tests.

Whenever the central Fisher’s exact test rejects, then Blaker’s exact test
also rejects, but not vise versa. Thus, Blaker’s exact test is always more
powerful than the central Fisher’s exact test (see Figure 1). Blaker showed
this result except with more generality (see Blaker, 2000, Corollary 1). This
property does not hold for the two-sided Fisher’s exact test. Although most
of the time p-values from the central Fisher’s exact test are larger than those
of the two-sided Fisher’s exact test, this is not always true (see Figure 1b).

For the central tests and matching intervals, besides the interpretational
advantage of being central intervals, additionally the p-value function of the
central test is continuous and unimodal in β0. So the calculation of the
confidence interval is easier and all matching confidence sets are intervals.
Vos and Hudson (2008) emphasized a different point for other discrete test,
which we would like to emphasize for these tests. It is possible that small
changes in the data in the direction away from the null can lead to less
significant tests. Suppose 2 more individuals were observed with no events
in Group A, giving Example 3 of Table 1. Example 3 is clearly further away
from the null than Example 2, since group A, which had the lower event rate
in the original example, has an even lower one when those two individuals
are added. The two-sided Fisher’s exact p-value moves from significance for
the original example (p1(x) = 0.04999) to non-significance with the 2 added
individuals (p1(x) = 0.05001). In these two examples as is often the case
Blaker’s exact p-values exactly equal those of the two-sided Fisher’s exact
test. In contrast the p-values from the central Fisher’s exact test properly
show the ordering, giving a larger p-value for Example 2 (p=0.0532) than
Example 3 (p=0.0506).
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6 The Extent of the Non-Matching Problem

The examples of the previous sections were chosen to highlight specific atypi-
cal problems that may arise. Here we return to the motivating problem and
explore how often we get differing significance inferences between the p-
value and the confidence interval especially when using the p-value from the
two-sided Fisher’s exact test with the ECTI.

Suppose we are testing H0 : β0 = 1 at the 0.05 level, let Ip be the an
indicator of whether the p-value from a test is less than or equal to 0.05, and
let IC be an indicator of whether the confidence interval does not contain
1 (i.e., implies rejection of H0). Define a mismatch as any table which has
IP 6= IC . Consider a set of 2× 2 tables where n0 and n1 are fixed. Within
the possible tables of each of these sets, we check and see if there are any
mismatches, if so we say that the set has a mismatch problem.

First, we consider the situation where for Ip the p-value comes from the
two-sided Fisher’s exact test, and for IC the confidence interval comes from
the ECTI. Although this situation is not recommended, we study it because
it appears to be the state of the current readily available software. We
consider the 256 sets where n0 and n1 are each in {5, 6, . . . , 20}. Of these
sets, 234/256 or 91.4 percent have a mismatch problem. Thus, this problem
is not a rare one.

Now consider the situation where each of the three tests uses its match-
ing confidence interval. For the central Fisher’s exact test, there will theo-
retically be no mismatches because the matching confidence interval is the
inversion. For the two-sided Fisher’s exact and Blaker’s exact tests and the
associated matching confidence intervals, we check the 256 sets of tables
mentioned above and through exhaustive search. We find no mismatches in
any of the 256 sets for either of those two test/matching confidence interval
pairs. Thus, although mismatches between p-values and confidence inter-
vals are possible when using the matching confidence intervals (see Table 1,
Example 2), they are not necessarily common. We repeat that the examples
of Table 1 were chosen to highlight specific points, not because they were
typical.

7 Discussion

We recommend that whenever when confidence intervals for odds ratios are
given together with p-values from a test, that the matching confidence in-
tervals to the family of tests be presented. Because of the non-unimodality
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of both Blaker’s exact test and the two-sided Fisher’s exact test, we cannot
create strongly consistent confidence intervals, and there is a small possibil-
ity of rejecting the null that the odds ratio is one but including the value
of 1 in the matching confidence interval. To avoid this problem the central
Fisher’s exact test (i.e., the other two-sided Fisher’s exact test that uses
twice the one-sided p-value) could be used. Although this central test is not
as powerful as Blaker’s exact test (nor is it likely to be as powerful as the
usual two-sided Fisher’s exact test), the resulting confidence intervals are
central which allow more natural interpretation than the other two inter-
vals. Finally, although the results of the hypothesis test are formally binary
(reject or fail to reject), often it makes sense to examine the p-values which
give a more nuanced view, allowing us to see that a pair of tables with p-
values of p = 0.04999 and p = 0.0501 are much closer in terms of significance
than the pair with p = 0.04999 and p = 0.00001.

References

Agresti, A. (2001). “Exact inference for categorical data: recent advances
and continuing controversies” Statistics in Medicine. 20: 2709-2722.

Agresti, A. and Min, Y. (2001). “On Small-sample Confidence Intervals
for Parameters in Discrete Distributions,” Biometrics, 57: 963-971.

Baptista, J. and Pike, M.C. (1977). “Exact two-sided confidence limits
for the odds ratio in a 2 × 2 table.” Journal of the Royal Statistical
Society, Series C 26 214-220.

Blaker, H. (2000). “Confidence curves and improved exact confidence in-
tervals for discrete distributions” Canadian Journal of Statistics 28:
783-798.

Blaker, H. and Spjøtvoll, E. (2000). “Paradoxes and improvements in
interval estimation.” American Statistician 54: 242-247.

Casella, G. and Berger, R.L. (2002). Statistical Inference, second edition.
Duxbury: Pacific Grove, CA.

Davis, L.J. (1986). “Exact Tests for 2× 2 Contingency Tables.” American
Statistician 40: 139-141.

Dupont, W.D. (1986). “Sensitivity of Fisher’s exact test to minor pertuba-
tions in 2× 2 contingency tables.” Statistics in Medicine 5: 629-635.

12



Fog, A. (2008). “Sampling methods for Wallenius’ and Fisher’s Noncen-
tral Hypergeometric Distributions.” Communications in Statistics-
Simulation and Computation 37: 241-257.

Gibbons, J.D. and Pratt, J.W. (1975). “P-values: Interpretation and
Methodology American Statistician 29: 20-25.

Lehmann, E.L., and Romano, J.P. (2005). Testing Statistical Hypotheses,
third edition Springer: New York.

Liao, J.G., and Rosen, O. (2001). “Fast and stable algorithms for comput-
ing and sampling from the noncentral hypergeometric distribution.”
American Statistician 55: 366-369.

Mehta, C.R., Patel, N.R., and Gray, R. (1985). “Computing an exact con-
fidence interval for the common odds ratio in several 2×2 contingency
tables.” Journal of the American Statistical Association 80: 969-973.

Moher, D., Schultz, K.F., and Altman, D.G. (2001). “The CONSORT
statment: revised recommendations for improving the quality of re-
ports of parallel group randomized trials.” BMC Medical Research
Methodology 1: 2.

StatXact 8 Procs User Manual (2007). Cytel Software Corporation: Cam-
bridge MA.

Tocher, K.D. (1950). “Extension of the Neyman-Pearson Theory of Tests
to Discontinuous Variates” Biometrika 37: 130-144.

Vos, P.W., and Hudson, S. (2008). “Problems with binomial two-sided tests
and the associated confidence intervals” Australian and New Zealand
Journal of Statistics 50: 81-89.

Yates, F. (1984). “Test of significance for 2× 2 contingency tables. (with
discussion)” Journal of the Royal Statistical Society, Series A 147:
426-463.

Appendix A

We first consider the Blaker confidence interval. Note that Fβ(x) =
∑x

i=xmin
fβ(i)

and F̄β(x) =
∑xmax

i=x fβ(i). We let

b(xa, xb) = {β : Fβ(xa) = F̄β(xb)}
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Let b(x1, xmax + 1) = ∞ and b(xmin − 1, x1) = 0, and let Fβ(x) = 0 when
x < xmin and F̄β(x) = 0 when x > xmax. Then the another form of the
Blaker p-value is

pb(x) =





Fb(x1) + F̄b(x1 + j + 1) for b(x1, x1 + j) < b ≤ b(x1, x1 + j + 1); j = 1, 2, . . . , x0

1 for b(x1 − 1, x1) ≤ b ≤ b(x1, x1 + 1)
F̄b(x1) + Fb(x1 − j − 1) for b(x1 − j − 1) ≤ b < b(x1 − j, x1); j = 1, 2, . . . , x1

Figure 3 helps to explain the Blaker p-value.
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interval b(7, 8) < b ≤ b(7, 9) the p-value is the sum of the Fb(7) (the dotted
line in that interval) and F̄b(9) (the solid black line segment in that interval).
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Table 1: Hypothetical 2× 2 Data Examples

Example 1
Event No Event two-sided Fisher p=0.04371 CI=(0.0435,0.9170)

Group A 6 12 central Fisher p=0.06059 CI=(0.0389,1.0565)
Group B 12 5 Blaker’s exact p=0.04371 CI=(0.0422,0.9170)

Example 2
Event No Event two-sided Fisher p=0.04999 CI=(0.1780,1.0182)

Group A 7 255 central Fisher p=0.05322 CI=(0.1560, 1.0099)
Group B 30 466 Blaker’s exact p=0.04999 CI=(0.1683, 0.9983)

Example 3
Event No Event two-sided Fisher p=0.05001 CI=(0.1766, 1.0101)

Group A 7 257 central Fisher p=0.05062 CI=(0.1548,1.0019)
Group B 30 466 Blaker’s exact p=0.05001 CI=(0.1670,1.0018)
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For calculating bounds on the error in estimating pb(x), we first assume
that the error in calculating Fb(x) and F̄b is small enough that it can be
ignored, i.e., it is much smaller than the desired tolerance of the limits
denoted δ. Because of the monotonicity in b of both Fb(x) and F̄b(x), for all
b ∈ (a1, a2) where b(x1, x1 + j) < a1 < a2 ≤ b(x1, x1 + j + 1), we have

P(a1, a2) ≡ Fa1(x1) + F̄a2(x1) ≤ pb(x) ≤ Fa2(x1) + F̄a1(x1) ≡ P̄ (a1, a2)

We can use these bounds to create an algorithm that can either find the
confidence limits to within some pre-specified tolerance level, δ, or output
bounds on those confidence limits. Here is an outline of an algorithm to
calculate the upper Blaker confidence limit, a similar algorithm could be
used for the lower confidence limit:

1. Set i = 1, j = x1 + x0, N = Ndiv, where Ndiv is a positive integer
greater than 1.

2. Calculate blow = b(x1, j) and bhi = b(x1, j + 1) using a numeric root
function (e.g., uniroot in R).

3. If bhi−blow < δ, set the upper confidence interval equal to bhi/2+blow/2
and stop. Otherwise continue.

4. If P̄ {blow, bhi} ≤ α, decrease j by 1 and go to step 2. If P {blow, bhi} >
α, set the upper confidence limit to bhi and stop. Otherwise continue.

5. Divide up the interval (blow, bhi] into N pieces where the ith piece is
(ai−1, ai] and a0 = blow and aN = bhi. Calculate P̄ and P for each
piece. If all the P̄ values are less than or equal to α decrease j by 1
and go to step 2. If all the P values are greater than α, set the upper
confidence limit to bhi and stop. Otherwise continue.

6. If any P̄ (ahi−1, ahi) ≤ α, set bhi = ahi where ahi is the minimum value
such that P̄ (ahi−1, ahi) ≤ α. If any P(alow, alow+1) > α set blow =
alow where alow is the minimum value such that P(alow, alow+1) > α.
Increase N to 2N , and increase i by 1. If i < Imax go to step 5, if not
set the upper confidence limit as blow/2 + bhi/2 and output (blow, bhi]
as bounds on the limit and if bhi − blow > δ give a warning that the
tolerance level was not reached.

For the matching interval to the two-sided Fisher exact test, we follow
the same outline, except b(xa, xb) is defined as

b(xa, xb) = {β : fβ(xa) = fβ(xb)}.
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This works because the non-parametric hypergeometric distribution is uni-
modal in x1 as can be shown by writing the ratio fβ(x)/fβ(x+1) and showing
that it is a monotone function of x (see e.g., Liao and Rosen, 2001).
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