
ggRandomForests: Exploring Random Forest Survival

John Ehrlinger and Jeevanantham Rajeswaran and Eugene H. Blackstone
Cleveland Clinic

Abstract

Random forest (Breiman 2001a) (RF) is a non-parametric statistical method requiring
no distributional assumptions on covariate relation to the response. RF is a robust, nonlin-
ear technique that optimizes predictive accuracy by fitting an ensemble of trees to stabilize
model estimates. Random survival forests (RSF) (Ishwaran and Kogalur 2007; Ishwaran,
Kogalur, Blackstone, and Lauer 2008) are an extension of Breiman’s RF techniques al-
lowing efficient non-parametric analysis of time to event data. The randomForestSRC
package (Ishwaran and Kogalur 2014) is a unified treatment of Breiman’s random forest
for survival, regression and classification problems.

Predictive accuracy makes RF an attractive alternative to parametric models, though
complexity and interpretability of the forest hinder wider application of the method.
We introduce the ggRandomForests package, tools for visually understand random for-
est models grown in R (R Core Team 2014) with the randomForestSRC package. The
ggRandomForests package is structured to extract intermediate data objects from ran-
domForestSRC objects and generate figures using the ggplot2 (Wickham 2009) graphics
package.

This document is structured as a tutorial for building random forest for survival with
the randomForestSRC package and using the ggRandomForests package for investigating
how the forest is constructed. We analyse the Primary Biliary Cirrhosis of the liver data
from a clinical trial at the Mayo Clinic (Fleming and Harrington 1991). We demonstrate
random forest variable selection using Variable Importance (VIMP) (Breiman 2001a) and
Minimal Depth (Ishwaran, Kogalur, Gorodeski, Minn, and Lauer 2010), a property de-
rived from the construction of each tree within the forest. We will also demonstrate the
use of variable dependence and partial dependence plots (Friedman 2000) to aid in the
interpretation of RSF results. We then examine variable interactions between covariates
using conditional variable dependence plots. Our aim is to demonstrate the strength of
using Random Forest methods for both prediction and information retrieval, specifically
in time to event data settings.

Keywords: random forest, survival, VIMP, minimal depth, R, randomForestSRC.

1. Introduction

Random forest (Breiman 2001a) (RF) is a non-parametric statistical method which requires
no distributional assumptions on covariate relation to the response. RF is a robust, nonlin-
ear technique that optimizes predictive accuracy by fitting an ensemble of trees to stabilize
model estimates. Random Survival Forest (RSF) (Ishwaran and Kogalur 2007; Ishwaran
et al. 2008) is an extension of Breiman’s RF techniques to survival settings, allowing efficient
non-parametric analysis of time to event data. The randomForestSRC package (Ishwaran

2 Exploring Random Forest Survival

and Kogalur 2014, http://CRAN.R-project.org/package=randomForestSRC) is a unified
treatment of Breiman’s random forest for survival, regression and classification problems.

Predictive accuracy make RF an attractive alternative to parametric models, though complex-
ity and interpretability of the forest hinder wider application of the method. We introduce the
ggRandomForests package (http://CRAN.R-project.org/package=ggRandomForests) for
visually exploring random forest models. The ggRandomForests package is structured to ex-
tract intermediate data objects from randomForestSRC objects and generate figures using the
ggplot2 graphics package (Wickham 2009, http://CRAN.R-project.org/package=ggplot2).

Many of the figures created by the ggRandomForests package are also available directly from
within the randomForestSRC package. However ggRandomForests offers the following ad-
vantages:

• Separation of data and figures: ggRandomForests contains functions that operate on ei-
ther the rfsrc forest object directly, or on the output from randomForestSRC post pro-
cessing functions (i.e., plot.variable, var.select) to generate intermediate ggRandom-
Forests data objects. ggRandomForests functions are provide to further process these
objects and plot results using the ggplot2 graphics package. Alternatively, users can use
these data objects for their own custom plotting or analysis operations.

• Each data object/figure is a single, self contained unit. This allows simple modifica-
tion and manipulation of the data or ggplot objects to meet users specific needs and
requirements.

• We chose to use the ggplot2 package for our figures for flexibility in modifying the
output. Each ggRandomForests plot function returns either a single ggplot object, or
a list of ggplot objects, allowing the use of additional ggplot2 functions to modify
and customize the final figures.

This document is structured as a tutorial for using the randomForestSRC package for building
and post-processing random survival forest models and using the ggRandomForests package
for understanding how the forest is constructed. In this tutorial, we will build a random
survival forest for the primary biliary cirrhosis (PBC) of the liver data set (Fleming and
Harrington 1991), available in the randomForestSRC package.

In Section 2 we introduce the pbc data set and summarize the proportional hazards analysis
of this data from Chapter 4 of Fleming and Harrington (1991). In Section 3, we describe how
to grow a random survival forest with the randomForestSRC package. Random forest is not a
parsimonious method, but uses all variables available in the data set to construct the response
predictor. We demonstrate random forest variable selection techniques (Section 4) using
Variable Importance (VIMP) (Breiman 2001a) in Section 4.1 and Minimal Depth (Ishwaran
et al. 2010) in Section 4.2. We then compare both methods with variables used in the Fleming
and Harrington (1991) model.

Once we have an idea of which variables we are most interested in, we use dependence
plots (Friedman 2000) (Section 5) to understand how these variables are related to the re-
sponse. Variable dependence (Section 5.1) plots give us an idea of the overall trend of a
variable/response relation, while partial dependence plots (Section 5.2) show us the risk ad-
justed relation by averaging out the effects of other variables. Dependence plots often show

http://CRAN.R-project.org/package=randomForestSRC
http://CRAN.R-project.org/package=ggRandomForests
http://CRAN.R-project.org/package=ggplot2

Ehrlinger, Rajeswaran and Blackstone 3

strongly non-linear variable/response relations that are not easily obtained through paramet-
ric modeling.

We then graphically examine forest variable interactions with the use of variable and partial
dependence conditioning plots (coplots) (Chambers 1992; Cleveland 1993) (Section 6) and
close with concluding remarks in Section 7.

2. Data summary: primary biliary cirrhosis (PBC) data set

The primary biliary cirrhosis of the liver (PBC) study consists of 424 PBC patients referred
to Mayo Clinic between 1974 and 1984 who met eligibility criteria for a randomized placebo
controlled trial of the drug D-penicillamine (DPCA). The data is described in (Fleming and
Harrington 1991, Chapter 0.2) and a partial likelihood model (Cox proportional hazards)
is developed in Chapter 4.4. The pbc data set, included in the randomForestSRC package,
contains 418 observations, of which 312 patients participated in the randomized trial (Fleming
and Harrington 1991, Appendix D).

R> data("pbc", package = "randomForestSRC")

For this analysis, we modify some of the data for better formatting of our results. Since the
data contains about 12 years of follow up, we prefer using years instead of days to describe
survival. We also convert the age variable to years, and the treatment variable to a factor
containing levels of c("DPCA", "placebo"). The variable names, type and description are
given in Table 1.

2.1. Exploratory data analysis

It is good practice to view your data before beginning analysis. Exploratory Data Analysis
(EDA) Tukey (1977) will help you to understand the data, and find outliers, missing values
and other data anomalies within each variable before getting deep into the analysis. To
this end, we use ggplot2 figures with the facet_wrap function to create two sets of panel
plots, one of histograms for categorical variables (Figure 1), and another of scatter plots for
continuous variables (Figure 2). Variables are plotted along a continuous variable on the
X-axis to separate the individual observations.

In categorical EDA plots (Figure 1), we are looking for patterns of missing data (white portion
of bars). We often use surgical date for our X-axis variable to look for possible periods of low
enrollment. There is not a comparable variable available in the pbc data set, so instead we
used follow up time (years). Another reasonable choice may have been to use the patient
age variable for the X-axis. The important quality of the selected variable is to spread the
observations out to aid in finding data anomalies.

In continuous data EDA plots (Figure 2), we are looking for missingness (rug marks) and
extreme or non-physical values. For survival settings, we color and shape the points as red
‘x’s to indicate events, and blue circles to indicate censored observation.

Extreme value examples are evident in a few of the variables in Figure 2. We are typically
looking for values that are outside of the biological range. This is often caused by measure-
ments recorded in differing units, which can sometimes be corrected algorithmically. Since we

4 Exploring Random Forest Survival

Variable name Description Type

years Time (years) numeric
status Event (F = censor, T = death) logical
treatment Treament (DPCA, Placebo) factor
age Age (years) numeric
sex Female = T logical

ascites Presence of Asictes logical
hepatom Presence of Hepatomegaly logical
spiders Presence of Spiders logical
edema Edema (0, 0.5, 1) factor
bili Serum Bilirubin (mg/dl) numeric

chol Serum Cholesterol (mg/dl) integer
albumin Albumin (gm/dl) numeric
copper Urine Copper (ug/day) integer
alk Alkaline Phosphatase (U/liter) numeric
sgot SGOT (U/ml) numeric

trig Triglicerides (mg/dl) integer
platelet Platelets per cubic ml/1000 integer
prothrombin Prothrombin time (sec) numeric
stage Histologic Stage factor

Table 1: pbc data set variable dictionary.

status treatment sex ascites

hepatom spiders edema stage

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
Time (years)

Figure 1: EDA plots for categorical variables (logicals and factors). Bars indicate number of
patients within 1 year of followup interval for each categorical variable. Colors correspond to
class membership within each variable. Missing values are included in white.

can not ask the original investigator to clarify these values in this particular study, we will
continue without modifying the data.

Both EDA figures indicate the pbc data set contains quite a bit of missing data. Table 2

Ehrlinger, Rajeswaran and Blackstone 5

age bili albumin alk

sgot prothrombin chol copper

trig platelet

40

60

80

0

10

20

2

3

4

0

5000

10000

100
200
300
400

10
12
14
16
18

500

1000

1500

0

200

400

600

200

400

600

200

400

600

0 5 10 0 5 10
Time (years)

Death
FALSE

TRUE

Figure 2: EDA plots for continuous variables. Symbols indicate observations with variable
value on Y-axis against follow up time in years. Symbols are colored and shaped according
to the death event (status variable). Missing values are indicated by rug marks along the
X-axis

shows the number of missing values in each variable of the pbc data set. Of the 19 variables
in the data, 12 have missing values. The pbc column details variables with missing data in
the full pbc data set, though there are patients that were not randomized into the trial. If
we restrict the data to the trial only, most of the missing values are also removed, leaving
only 4 variables with missing values. Therefore, we will focus on the 312 observations from
the clinical trial for the remainder of this document. We will discuss how randomForestSRC
handles missing values in Section 3.3.

2.2. Fleming and Harrington (1991) Model Summary (gg_survival)

We conclude the data set investigation with a summary of Fleming and Harrington (1991)
model results from Chapter 4.4. We start by generating Kaplan–Meier (KM) survival esti-
mates comparing the treatment groups of DPCA and placebo. We use the ggRandomForests
gg_survival function to generate these estimates from the data set as follows.

R> pbc.trial <- pbc %>% filter(!is.na(treatment))

R> pbc.test <- pbc %>% filter(is.na(treatment))

R>

R> gg_dta <- gg_survival(interval = "years", censor = "status",

+ by = "treatment", data = pbc.trial,

+ conf.int = 0.95)

The code block reduces the pbc data set to the pbc.trial which only include observations

6 Exploring Random Forest Survival

pbc pbc.trial

treatment 106 0
ascites 106 0
hepatom 106 0
spiders 106 0
chol 134 28

copper 108 2
alk 106 0
sgot 106 0
trig 136 30
platelet 11 4

prothrombin 2 0
stage 6 0

Table 2: Missing value counts in pbc data set and pbc clinical trial observations (pbc.trial).

from the clinical trial. The remaining observations are stored in the pbc.test data set for
later use. The ggRandomForests package is designed to use a two step process in figure
generation. The first step is data generation, where we store a gg_survival data object in
the gg_dta object. The gg_survival function uses the data set, follow up interval, censor
indicator and an optional grouping argument (by). By default gg_survival also calculates
95% confidence band, which we can control with the conf.int argument.

In the figure generation step, we use the ggRandomForests plot routine plot.gg_survival

as shown in the following code block. The plot.gg_survival function uses the gg_dta

data object to plot the survival estimate curves for each group and corresponding confi-
dence interval ribbons. We have used additional ggplot2 commands to modify the axis and
legend labels (labs), the legend location (theme) and control the plot range of the y-axis
(coord_cartesian) for this figure.

R> plot(gg_dta) +

+ labs(y = "Survival Probability", x = "Observation Time (years)",

+ color = "Treatment", fill = "Treatment") +

+ theme(legend.position = c(0.2, 0.2)) +

+ coord_cartesian(y = c(0, 1.01))

The gg_survival plot of Figure 3 is analogous to Fleming and Harrington (1991) Figure 0.2.3
and Figure 4.4.1, showing there is little difference between the treatment and control groups.

The gg_survival function generates a variety of time-to-event estimates, including the cu-
mulative hazard. The follow code block creates a cumulative hazard plot (Fleming and Har-
rington 1991, Figure 0.2.1) in Figure 4 using the same data object generated by the original
gg_survival function call. The red DPCA line is directly comparable to Figure 0.2.1, we’ve
add the cumulative hazard estimates for the placebo population in blue.

R> plot(gg_dta, type = "cum_haz") +

+ labs(y = "Cumulative Hazard", x = "Observation Time (years)",

Ehrlinger, Rajeswaran and Blackstone 7

0.00

0.25

0.50

0.75

1.00

0 3 6 9 12
Observation Time (years)

S
ur

vi
va

l P
ro

ba
bi

lit
y

Treatment
DPCA

placebo

Figure 3: Kaplan–Meier survival estimates comparing the DPCA treatment (red) with placebo

(blue) groups for the pbc.trail data set. Median survival with shaded 95% confidence band.

+ color = "Treatment", fill = "Treatment") +

+ theme(legend.position = c(0.2, 0.8)) +

+ coord_cartesian(ylim = c(-0.02, 1.22))

0.0

0.4

0.8

1.2

0 3 6 9 12
Observation Time (years)

C
um

ul
at

iv
e

H
az

ar
d

Treatment
DPCA

placebo

Figure 4: Kaplan–Meier cumulative hazard estimates comparing the DPCA treatment (red)
with placebo (blue) groups for the pbc data set.

In Figure 3, we demonstrated grouping on the categorical variable (treatment). To demon-
strate plotting grouped survival on a continuous variable, we examine KM estimates of sur-
vival within stratified groups of bilirubin measures. The groupings are obtained directly

8 Exploring Random Forest Survival

from Fleming and Harrington (1991) Figure 4.4.2, where they presented univariate model
results of predicting survival on a function of bilirubin.

We set up the bili groups on a temporary data set (pbc.bili) using the cut function with
intervals matching the reference figure. For this example we combine the data generation and
plot steps into a single line of code. The error argument of the plot.gg_survival function
is used to control display of the confidence bands. We suppress the intervals for this figure
with error = "none" and again modify the plot display with ggplot2 commands to generate
Figure 5.

R> pbc.bili <- pbc.trial

R> pbc.bili$bili_grp <- cut(pbc.bili$bili, breaks = c(0, 0.8, 1.3, 3.4, 29))

R>

R> plot(gg_survival(interval = "years", censor = "status", by = "bili_grp",

+ data = pbc.bili), error = "none") +

+ labs(y = "Survival Probability", x = "Observation Time (years)",

+ color = "Bilirubin")

0.00

0.25

0.50

0.75

1.00

0 3 6 9 12
Observation Time (years)

S
ur

vi
va

l P
ro

ba
bi

lit
y

Bilirubin
(0,0.8]

(0.8,1.3]

(1.3,3.4]

(3.4,29]

Figure 5: Kaplan–Meier survival estimates comparing different groups of Bilirubin measures
(bili) for the pbc data set. Groups defined in Chapter 4 of Fleming and Harrington (1991).

In Chapter 4, Fleming and Harrington (1991) use partial likelihood methods to build a linear
model with log transformations on some variables. We summarize the final, biologically
reasonable model in Table 3 for later comparison with our random forest results.

3. Random survival forest

A Random Forest (Breiman 2001a) is grown by bagging (Breiman 1996a) a collection of clas-
sification and regression trees (CART) (Breiman, Friedman, Olshen, and Stone 1984). The
method uses a set of B bootstrap (Efron and Tibshirani 1994) samples, growing an indepen-
dent tree model on each sub-sample of the population. Each tree is grown by recursively

Ehrlinger, Rajeswaran and Blackstone 9

Coef. Std. Err. Z stat.

Age 0.033 0.009 3.84
log(Albumin) -3.055 0.724 -4.22
log(Bilirubin) 0.879 0.099 8.90
Edema 0.785 0.299 2.62
log(Prothrombin Time) 3.016 1.024 2.95

Table 3: pbc proportional hazards model summary of 312 randomized cases in pbc.trial

data set. (Fleming and Harrington 1991, Table 4.4.3c)

partitioning the population based on optimization of a split rule over the p-dimensional co-
variate space. At each split, a subset of m ≤ p candidate variables are tested for the split rule
optimization, dividing each node into two daughter nodes. Each daughter node is then split
again until the process reaches the stopping criteria of either node purity or node member
size, which defines the set of terminal (unsplit) nodes for the tree. In regression trees, node
impurity is measured by mean squared error, whereas in classification problems, the Gini
index is used (Friedman 2000) .

Random forest sorts each training set observation into one unique terminal node per tree. Tree
estimates for each observation are constructed at each terminal node, among the terminal node
members. The Random Forest estimate for each observation is then calculated by aggregating,
averaging (regression) or votes (classification), the terminal node results across the collection
of B trees.

Random Survival Forests (Ishwaran 2007; Ishwaran et al. 2008) (RSF) are an extension of
Random Forest to analyze right censored, time to event data. A forest of survival trees
is grown using a log-rank splitting rule to select the optimal candidate variables. Survival
estimate for each observation are constructed with a Kaplan–Meier (KM) estimator within
each terminal node, at each event time.

Random Survival Forests adaptively discover nonlinear effects and interactions and are fully
nonparametric. Averaging over many trees enables RSF to approximate complex survival
functions, including non-proportional hazards, while maintaining low prediction error. Ish-
waran and Kogalur (2010) showed that RSF is uniformly consistent and that survival forests
have a uniform approximating property in finite-sample settings, a property not possessed by
individual survival trees.

The randomForestSRC rfsrc function call grows the forest, determining the type of forest
by the response supplied in the formula argument. In the following code block, we grow a
random forest for survival, by passing a survival (Surv) object to the forest. The forest uses
all remaining variables in the pbc.trial data set to generate the RSF survival model.

R> rfsrc_pbc <- rfsrc(Surv(years, status) ~ ., data = pbc.trial,

+ nsplit = 10, na.action = "na.impute")

Sample size: 312

Number of deaths: 125

Was data imputed: yes

Number of trees: 1000

10 Exploring Random Forest Survival

Minimum terminal node size: 3

Average no. of terminal nodes: 59.648

No. of variables tried at each split: 5

Total no. of variables: 17

Analysis: RSF

Family: surv

Splitting rule: logrank *random*

Number of random split points: 10

Error rate: 16.07%

The print.rfsrc function returns information on how the random forest was grown. Here the
family = "surv" forest has ntree = 1000 trees (the default ntree argument). The forest
selected from ceil(

√
p = 17) = 5 randomly selected candidate variables for splitting at each

node, stopping when a terminal node contained three or fewer observations. For continuous
variables, we used a random logrank split rule, which randomly selects from nsplit = 10

split point values, instead of optimizing over all possible values.

3.1. Generalization error (gg_error)

One advantage of random forest is a built in generalization error estimate. Each bootstrap
sample selects approximately 63.2% of the population on average. The remaining 36.8% of
observations, the Out-of-Bag (Breiman 1996b) (OOB) sample, can be used as a hold out test
set for each tree. An OOB prediction error estimate can be calculated for each observation
by predicting the response over the set of trees which were not trained with that particular
observation. Out-of-Bag prediction error estimates have been shown to be nearly identical
to n–fold cross validation estimates (Hastie, Tibshirani, and Friedman 2009). This feature of
random forest allows us to obtain both model fit and validation in one pass of the algorithm.

The gg_error function operates on the random forest (rfsrc_pbc) object to extract the error
estimates as a function of the number of trees in the forest. The following code block first
creates a gg_error data object, then uses the plot.gg_error function to create a ggplot

object for display in a single line of code.

R> plot(gg_error(rfsrc_pbc)) + coord_cartesian(ylim = c(0.09, 0.31))

The gg_error plot of Figure 6 demonstrates that it does not take a large number of trees
to stabilize the forest prediction error estimate. However, to ensure that each variable has
enough of a chance to be included in the forest prediction process, we do want to create a
rather large random forest of trees.

3.2. Training Set Prediction (gg_rfsrc)

The gg_rfsrc function extracts the OOB prediction estimates from the random forest. This
code block executes the data extraction and plotting in one line, since we are not interested in
holding the prediction estimates for later reuse. Each of the ggRandomForests plot commands
return ggplot objects, which we can also store for modification or reuse later in the analysis
(ggRFsrc object). Note that we again use additional ggplot2 commands to modify the display
of the plot object.

Ehrlinger, Rajeswaran and Blackstone 11

0.10

0.15

0.20

0.25

0.30

0 250 500 750 1000
Number of Trees

O
O

B
 E

rr
or

 R
at

e

Figure 6: Random forest OOB prediction error estimates as a function of the number of trees
in the forest.

R> ggRFsrc <- plot(gg_rfsrc(rfsrc_pbc), alpha = 0.2) +

+ scale_color_manual(values = strCol) +

+ theme(legend.position = "none") +

+ labs(y = "Survival Probability", x = "Time (years)") +

+ coord_cartesian(ylim = c(-0.01, 1.01))

R> show(ggRFsrc)

0.00

0.25

0.50

0.75

1.00

0 3 6 9 12
Time (years)

S
ur

vi
va

l P
ro

ba
bi

lit
y

Figure 7: Random forest OOB predicted survival. Blue curves correspond to censored obser-
vations, red curves correspond to observations experiencing death events.

12 Exploring Random Forest Survival

The gg_rfsrc plot of Figure 7 shows the predicted survival from our RSF model. Each
line represents a single patient in the training data set, where censored patients are colored
blue, and patients who have experienced the event (death) are colored in red. We extend all
predicted survival curves to the longest follow up time (12 years), regardless of the actual
length of a patient’s follow up time.

Interpretation of general survival properties from Figure 7 is difficult because of the number of
curves displayed. To get more interpretable results, it is preferable to plot a summary of the
survival results. The following code block compares the predicted survival between treatment
groups, as we did in Figure 3.

R> plot(gg_rfsrc(rfsrc_pbc, by = "treatment")) +

+ theme(legend.position = c(0.2, 0.2)) +

+ labs(y = "Survival Probability", x = "Time (years)") +

+ coord_cartesian(ylim = c(-0.01, 1.01))

0.00

0.25

0.50

0.75

1.00

0 3 6 9 12
Time (years)

S
ur

vi
va

l P
ro

ba
bi

lit
y

group
DPCA

placebo

Figure 8: Random forest predicted survival stratified by treatment groups. DPCA group in
red, placebo in blue with shaded 95% confidence bands.

The gg_rfsrc plot of Figure 8 shows the median survival with a 95% shaded confidence band
for the DPCA group in red, and the placebo group in blue. When calling gg_rfsrc with either
a by argument or a conf.int argument, the function calculates a bootstrap confidence interval
around the median survival line. By default, the function will calculate the conf.int=0.95

confidence interval, with the number of bs.samples equal to the number of observations.

3.3. Random forest imputation

There are two modeling issues when dealing with missing data values: “How does the algorithm
build a model when values are missing from the training data?”, and “How does the algorithm
predict a response when values are missing from the test data?”. The standard procedure
for linear models is to either remove or impute the missing data values before modelling.

Ehrlinger, Rajeswaran and Blackstone 13

Removing the missingness is done by either removing the variable with missing values (column
wise) or removing the observations (row wise). Removal is a simple solution, but may bias
results when either observations or variables are scarce.

The randomForestSRC package imputes missing values using adaptive tree imputation (Ish-
waran et al. 2008). Rather than impute missing values before growing the forest, the algorithm
takes a “just–in–time” approach. At each node split, the set of mtry candidate variables is
checked for missing values. Missing values are then imputed by randomly drawing values from
non-missing data within the node. The split-statistic is then calculated on observations that
were not missing values. The imputed values are used to sort observations into the subsequent
daughter nodes and then discarded before the next split occurs. The process is repeated until
the stopping criteria is reached and all observations are sorted into terminal nodes.

A final imputation step can be used to fill in missing values from within the terminal nodes.
This step uses a process similar to the previous imputation but uses the OOB non-missing
terminal node data for the random draws. These values are aggregated (averaging for contin-
uous variables, voting for categorical variables) over the ntree trees in the forest to estimate
an imputed data set. By default, the missing values are not filled into the training data, but
are available within the forest object for later use if desired.

Adaptive tree imputation still requires the missing at random assumptions (Rubin 1976).
At each imputation step, the random forest assumes that similar observations are grouped
together within each node. The random draws used to fill in missing data do not bias the split
rule, but only sort observations similar in non-missing data into like nodes. An additional
feature of this approach is the ability of predicting on test set observations with missing
values.

3.4. Test set predictions

The strength of adaptive tree imputation becomes clear when doing prediction on test set
observations. If we want to predict survival for patients that did not participate in the trial
using the model we created in Section 3, we need to somehow account for the missing values
detailed in Table 2.

The predict.rfsrc call takes the forest object (rfsrc_pbc), and the test data set (pbc_test)
and returns a predicted survival using the same forest imputation method for missing values
within the test data set (na.action="na.impute").

R> rfsrc_pbc_test <- predict(rfsrc_pbc, newdata = pbc.test,

+ na.action = "na.impute")

Sample size of test (predict) data: 106

Number of deaths in test data: 36

Was test data imputed: yes

Number of grow trees: 1000

Average no. of grow terminal nodes: 59.648

Total no. of grow variables: 17

Analysis: RSF

Family: surv

Test set error rate: 19.25%

14 Exploring Random Forest Survival

The forest summary indicates there are 106 test set observations with 36 deaths and the
predicted error rate is 19.1%. We plot the predicted survival just as we did the training set
estimates.

R> plot(gg_rfsrc(rfsrc_pbc_test), alpha=.2) +

+ scale_color_manual(values = strCol) +

+ theme(legend.position = "none") +

+ labs(y = "Survival Probability", x = "Time (years)") +

+ coord_cartesian(ylim = c(-0.01, 1.01))

0.00

0.25

0.50

0.75

1.00

0 3 6 9 12
Time (years)

S
ur

vi
va

l P
ro

ba
bi

lit
y

Figure 9: Random forest survival estimates for patients in the pbc.test data set. Blue curves
correspond to censored patients, red curves correspond to patients experiencing a death event.

The gg_rfsrc plot of Figure 9 shows the test set predictions, similar to the training set
predictions in Figure 7, though with fewer patients the survival curves do not cover the
same area of the figure. It is important to note that because Figure 7 is constructed with
OOB estimates, the survival results are comparable as estimates from unseen observations in
Figure 9.

4. Variable selection

Random forest is not a parsimonious method, but uses all variables available in the data set
to construct the response predictor. Also, unlike parametric models, random forest does not
require the explicit specification of the functional form of covariates to the response. Therefore
there is no explicit p-value/significance test for variable selection with a random forest model.
Instead, RF ascertains which variables contribute to the prediction through the split rule
optimization, optimally choosing variables which separate observations.

The typical goal of a random forest analysis is to build a prediction model, in contrast to ex-
tracting information regarding the underlying process (Breiman 2001b). There is not usually

Ehrlinger, Rajeswaran and Blackstone 15

much care given in how variables are included into the training data set. Since the goal is
prediction, investigators often include the “kitchen sink” if it can help.

In contrast, in survival settings we are typically also interested in how we can possibly improve
the the outcome of interest. To achieve this, for understandable inference, it is important to
avoid both duplication and transformations of variables whenever possible when building our
data sets. Duplication of variables, including multiple measures of a similar covariate, can
reduce or mask the importance of the covariate. Transformations can also mask importance
as well as make interpretation of the inference results difficult to impossible.

In this Section, We explore two separate approaches to investigate the RF variable selection
process. Variable Importance (Section 4.1), a property related to variable misspecification,
and Minimal Depth (Section 4.2), a property derived from the construction of the trees within
the forest.

4.1. Variable Importance (gg_vimp)

Variable importance (VIMP) was originally defined in CART using a measure involving surro-
gate variables (see Chapter 5 of Breiman et al. (1984)). The most popular VIMP method uses
a prediction error approach involving “noising-up” each variable in turn. VIMP for a variable
xv is the difference between prediction error when xv is randomly permuted, compared to
prediction error under the observed values (Breiman 2001a; Liaw and Wiener 2002; Ishwaran
2007; Ishwaran et al. 2008).

Since VIMP is the difference in OOB prediction error before and after permutation, a large
VIMP value indicates that misspecification detracts from the predictive accuracy in the forest.
VIMP close to zero indicates the variable contributes nothing to predictive accuracy, and
negative values indicate the predictive accuracy improves when the variable is misspecified.
In the later case, we assume noise is more informative than the true variable. As such, we
ignore variables with negative and near zero values of VIMP, relying on large positive values
to indicate that the predictive power of the forest is dependent on those variables.

The gg_vimp function extracts VIMP measures for each of the variables used to grow the
forest. The plot.gg_vimp function shows the variables, in VIMP rank order, labeled with
the named vector in the lbls argument.

R> plot(gg_vimp(rfsrc_pbc), lbls = st.labs) +

+ theme(legend.position = c(0.8, 0.2)) + labs(fill = "VIMP > 0")

The gg_vimp plot of Figure 10 details VIMP ranking for the pbc.trial baseline variables,
from the largest (Serum Bilirubin) at the top, to smallest (Treament (DPCA, Placebo)) at
the bottom. VIMP measures are shown using bars to compare the scale of the error increase
under permutation and colored by the sign of the measure (red for negative values). Note
that four of the five highest ranking variables by VIMP match those selected by the Fleming
and Harrington (1991) model listed in Table 3, with urine copper (2) ranking higher than age
(8). We will return to this in Section 4.3.

4.2. Minimal Depth (gg_minimal_depth)

In VIMP, prognostic risk factors are determined by testing the forest prediction under al-
ternative data settings, ranking the most important variables according to their impact on

16 Exploring Random Forest Survival

Treament (DPCA, Placebo)
Triglicerides (mg/dl)

Female = T
Presence of Spiders

Alkaline Phosphatase (U/liter)
Platelets per cubic ml/1000
Presence of Hepatomegaly
Serum Cholesterol (mg/dl)

SGOT (U/ml)
Age (years)

Histologic Stage
Presence of Asictes

Albumin (gm/dl)
Prothrombin time (sec)

Edema (0, 0.5, 1)
Urine Copper (ug/day)

Serum Bilirubin (mg/dl)

0.00 0.02 0.04 0.06
Variable Importance

VIMP > 0
FALSE

TRUE

Figure 10: Random forest Variable Importance (VIMP). Blue bars indicates positive VIMP,
red indicates negative VIMP. Importance is relative to positive length of bars.

predictive ability of the forest. An alternative method uses inspection of the forest construc-
tion to rank variables. Minimal depth (Ishwaran et al. 2010; Ishwaran, Kogalur, Chen, and
Minn 2011) assumes that variables with high impact on the prediction are those that most
frequently split nodes nearest to the root node, where they partition the largest samples of
the population.

Within each tree, node levels are numbered based on their relative distance to the root of the
tree (with the root at 0). Minimal depth measures important risk factors by averaging the
depth of the first split for each variable over all trees within the forest. The assumption in
the metric is that smaller minimal depth values indicate the variable separates large groups
of observations, and therefore has a large impact on the forest prediction.

In general, to select variables according to VIMP, we examine the VIMP values, looking
for some point along the ranking where there is a large difference in VIMP measures. Given
minimal depth is a quantitative property of the forest construction, Ishwaran et al. (2010) also
derive an analytic threshold for evidence of variable impact. A simple optimistic threshold
rule uses the mean of the minimal depth distribution, classifying variables with minimal depth
lower than this threshold as important in forest prediction.

The randomForestSRC var.select function uses the minimal depth methodology for variable
selection, returning an object with both minimal depth and vimp measures. The ggRandom-
Forests gg_minimal_depth function is analogous to the gg_vimp function. Variables are
ranked from most important at the top (minimal depth measure), to least at the bottom
(maximal minimal depth).

R> varsel_pbc <- var.select(rfsrc_pbc)

R> gg_md <- gg_minimal_depth(varsel_pbc, lbls = st.labs)

R> print(gg_md)

Ehrlinger, Rajeswaran and Blackstone 17

gg_minimal_depth

model size : 12

depth threshold : 5.5552

PE :[1] 16.074

Top variables:

depth vimp

bili 1.67 0.068346

albumin 2.49 0.012758

copper 2.64 0.019499

prothrombin 2.95 0.014414

chol 3.30 0.005583

edema 3.43 0.016569

age 3.45 0.007816

platelet 3.69 0.001106

sgot 3.71 0.006412

alk 3.95 0.000702

trig 4.32 0.000291

stage 4.56 0.008257

The gg_minimal_depth summary mostly reproduces the output from the var.select func-
tion from the randomForestSRC package. We report the minimal depth threshold (threshold
5.555) and the number of variables with depth below that threshold (model size 12). We also
list a table of the top (12) selected variables, in minimal depth rank order with the associated
VIMP measures. The minimal depth numbers indicate that bili tends to split between the
first and second node level, and the next three variables (albumin, copper, prothrombin)
split between the second and third levels on average.

R> plot(gg_md, lbls = st.labs)

The gg_minimal_depth plot of Figure 11 is similar to the gg_vimp plot in Figure 10, ranking
variables from most important at the top (minimal depth measure), to least at the bottom
(maximal minimal depth). The vertical dashed line indicates the minimal depth threshold
where smaller minimal depth values indicate higher importance and larger values indicate
lower importance.

4.3. Variable selection comparison

Since the VIMP and Minimal Depth measures use different criteria, we expect the variable
ranking to be somewhat different. We use gg_minimal_vimp function to compare rankings
between minimal depth and VIMP in Figure 12.

R> plot(gg_minimal_vimp(gg_md), lbls = st.labs) +

+ theme(legend.position=c(0.8, 0.2))

18 Exploring Random Forest Survival

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●Female = T
Presence of Spiders

Treament (DPCA, Placebo)
Presence of Hepatomegaly

Presence of Asictes
Histologic Stage

Triglicerides (mg/dl)
Alkaline Phosphatase (U/liter)

SGOT (U/ml)
Platelets per cubic ml/1000

Age (years)
Edema (0, 0.5, 1)

Serum Cholesterol (mg/dl)
Prothrombin time (sec)
Urine Copper (ug/day)

Albumin (gm/dl)
Serum Bilirubin (mg/dl)

3 5 7 9
Minimal Depth of a Variable

Figure 11: Minimal Depth variable selection. Low minimal depth indicates important vari-
ables. The dashed line is the threshold of maximum value for variable selection.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Serum Bilirubin (mg/dl)
Albumin (gm/dl)

Urine Copper (ug/day)
Prothrombin time (sec)

Serum Cholesterol (mg/dl)
Edema (0, 0.5, 1)

Age (years)
Platelets per cubic ml/1000

SGOT (U/ml)
Alkaline Phosphatase (U/liter)

Triglicerides (mg/dl)
Histologic Stage

Presence of Asictes
Presence of Hepatomegaly
Treament (DPCA, Placebo)

Presence of Spiders
Female = T

5 10 15
VIMP Rank

M
in

im
al

 D
ep

th
 (

R
an

k
O

rd
er

)

VIMP
●

●

−

+

Figure 12: Comparing Minimal Depth and Vimp rankings. Points on the red dashed line
are ranked equivalently, points above have higher VIMP ranking, those below have higher
minimal depth ranking.

The points along the red dashed line indicate where the measures are in agreement. Points
above the red dashed line are ranked higher by VIMP than by minimal depth, indicating the
variables are more sensitive to misspecification. Those below the line have a higher minimal
depth ranking, indicating they are better at dividing large portions of the population. The
further the points are from the line, the more the discrepancy between measures.

We examine the ranking of the different variable selection methods further in Table 4. We

Ehrlinger, Rajeswaran and Blackstone 19

Variable FH Min depth VIMP

age 3 1 1
albumin 2 2 5
alk NA 3 2
bili 1 4 4
chol NA 5 10

copper NA 6 3
edema 5 7 8
platelet NA 8 12
prothrombin 4 9 9
sgot NA 10 13

stage NA 11 16
trig NA 12 7

Table 4: Comparison of variable selection criteria. Minimal depth ranking, VIMP ranking
and Fleming and Harrington (1991) (FH) proportional hazards model ranked according to
abs(Z stat) from Table 3.

can use the Z statistic from Table 3 to rank variables selected in the Fleming and Harrington
(1991) model to compare with variables selected by minimal depth and VIMP. The table is
constructed by taking the top ranked minimal depth variables (below the selection threshold)
and matching the VIMP ranking and Fleming and Harrington (1991) model transforms. We
see all three methods indicate a strong relation of serum bilirubin to survival, and overall, the
minimal depth and VIMP rankings agree reasonably well with the Fleming and Harrington
(1991) model.

The minimal depth selection process reduced the number of variables of interest from 17 to
12, which is still a rather large subset of interest. An obvious selection set is to examine
the five variables selected by Fleming and Harrington (1991). Combining the Minimal Depth
and Fleming and Harrington (1991) model, there may be evidence to keep the top 7 variables.
Though minimal depth does not indicate the edema variable is very interesting, VIMP ranking
does agree with the proportional hazards model, indicating we might not want to remove
the edema variable. Both minimal depth and VIMP suggest including copper, a measure
associated with liver disease.

Regarding the chol variable, recall missing data summary of Table 2. In in the trial data
set, there were 28 observations missing chol values. The forest imputation randomly sorts
observations with missing values into daughter nodes when using the chol variable, which is
also how randomForestSRC calculates VIMP. We therefore expect low values for VIMP when
a variable has a reasonable number of missing values.

Restricting our remaining analysis to the five Fleming and Harrington (1991) variables, plus
the copper retains the biological sense of these analysis. We will now examine how these six
variables are related to survival using variable dependence methods to determine the direction
of the effect and verify that the log transforms used by Fleming and Harrington (1991) are
appropriate.

20 Exploring Random Forest Survival

5. Variable dependence

As random forest is not parsimonious, we have used minimal depth and VIMP to reduce
the number of variables to a manageable subset. Once we have an idea of which variables
contribute most to the predictive accuracy of the forest, we would like to know how the
response depends on these variables.

Although often characterized as a black box method, the forest predictor is a function of the
predictor variables f̂RF = f(x). We use graphical methods to examine the forest predicted
response dependency on covariates. We again have two options, variable dependence plots
(Section 5.1) are quick and easy to generate, and partial dependence plots (Section 5.2) are
more computationally intensive but give us a risk adjusted look at variable dependence.

5.1. Variable Dependence (gg_variable)

Variable dependence plots show the predicted response relative to a covariate of interest, with
each training set observation represented by a point on the plot. Interpretation of variable
dependence plots can only be in general terms, as point predictions are a function of all
covariates in that particular observation.

Variable dependence is straight forward to calculate, involving only the getting the predicted
response for each observation. In survival settings, we must account for the additional dimen-
sion of time. We plot the response at specific time points of interest, for example survival at
1 or 3 years.

R> ggRFsrc + geom_vline(aes(xintercept = 1), linetype = "dashed") +

+ geom_vline(aes(xintercept = 3), linetype = "dashed") +

+ coord_cartesian(xlim = c(0, 5))

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5
Time (years)

S
ur

vi
va

l P
ro

ba
bi

lit
y

Figure 13: Random forest predicted survival (Figure 7) with vertical dashed lines indicate
the 1 and 3 year survival estimates.

Ehrlinger, Rajeswaran and Blackstone 21

The gg_rfsrc of Figure 13 identical to Figure 7 (stored in the ggRFsrc variable) with the
addition of a vertical dashed line at the 1 and 3 year survival time. A variable dependence plot
is generated from the predicted response value of each survival curve at the intersecting time
line plotted against covariate value for that observation. This can be visualized as taking a
slice of the predicted response at each time line, and spreading the resulting points out along
the variable of interest.

The gg_variable function extracts the training set variables and the predicted OOB response
from rfsrc and predict objects. In the following code block, we store the gg_variable data
object for later use (gg_v), as all remaining variable dependence plots can be constructed
from this object.

R> gg_v <- gg_variable(rfsrc_pbc, time = c(1, 3),

+ time.labels = c("1 Year", "3 Years"))

R>

R> plot(gg_v, xvar = "bili", alpha = 0.4) + #, se=FALSE

+ labs(y = "Survival", x = st.labs["bili"]) +

+ theme(legend.position = "none") +

+ scale_color_manual(values = strCol, labels = event.labels) +

+ scale_shape_manual(values = event.marks, labels = event.labels) +

+ coord_cartesian(ylim = c(-0.01, 1.01))

1 Year

3 Years

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0 10 20
Serum Bilirubin (mg/dl)

S
ur

vi
va

l

Figure 14: Variable dependence of survival at 1 and 3 years on bili variable. Individual cases
are marked with blue circles (alive or censored) and red ‘x’s (dead). Loess smooth curve with
shaded 95% confidence band indicates decreasing survival with increasing bilirubin.

22 Exploring Random Forest Survival

The gg_variable plot of Figure 14 shows variable dependence for the Serum Bilirubin (bili)
variable. Again censored cases are shown as blue circles, events are indicated by the red ‘x’
symbols. Each predicted point is dependent on the full combination of all other covariates,
not only on the covariate displayed in the dependence plot. The smooth loess line (Cleveland
1981; Cleveland and Devlin 1988) indicates the trend of the prediction over the change in the
variable.

Examination of Figure 14 indicates most of the cases are grouped in the lower end of bili
values. We also see that most of the higher values experienced an event. The “normal”
range of Bilirubin is from 0.3 to 1.9 mg/dL, indicating the distribution from our population
is well outside the normal range. These values make biological sense considering Bilirubin is
a pigment created in the liver, the organ effected by the PBC disease. The figure also shows
that the risk of death increases as time progresses. The risk at 3 years is much greater than
that at 1 year for patients with high Bilirubin values compared to those with values closer to
the normal range.

The plot.gg_variable function call operates on the gg_variable object controlled by the
list of variables of interest in the xvar argument. By default, the plot.gg_variable function
returns a list of ggplot objects, one figure for each variable named in xvar. The remaining
arguments are passed to internal ggplot2 functions controlling the display of the figure. The
se argument is passed to the internal call to geom_smooth for fitting smooth lines to the data.
The alpha argument lightens the coloring points in the geom_point call, making it easier to
see point over plotting. We also demonstrate modification of the plot labels using the labs

function and point attributes with the scale_ functions.

An additional plot.gg_variable argument (panel = TRUE) can be used to combine multi-
ple variable dependence plots into a single figure. In the following code block, we plot the
remaining continuous variables of interest found in Section 4.3.

R> xvar <- c("bili", "albumin", "copper", "prothrombin", "age")

R> xvar.cat <- c("edema")

R>

R> plot(gg_v, xvar = xvar[-1], panel = TRUE, alpha = 0.4) + #se = FALSE, , span=1

+ labs(y = "Survival") +

+ theme(legend.position = "none") +

+ scale_color_manual(values = strCol, labels = event.labels) +

+ scale_shape_manual(values = event.marks, labels = event.labels) +

+ coord_cartesian(ylim = c(-0.05, 1.05))

The gg_variable plot in Figure 15 displays a panel of the remaining continuous variable
dependence plots. The panels are sorted in the order of variables in the xvar argument and
include a smooth loess line (Cleveland 1981; Cleveland and Devlin 1988) to indicate the trend
of the prediction dependence over the covariate values. The se=FALSE argument turns off the
loess confidence band, and the span=1 argument controls the degree of smoothing.

The figures indicate that survival increases with albumin level, and decreases with bili,
copper, prothrombin and age. Note the extreme value of prothrombin (> 16) influences the
loess curve more than other points, which would make it a candidate for further investigation.

We expect survival at 3 years to be lower than at 1 year. However, comparing the two time
plots for each variable does indicate a difference in response relation for bili, copper and

Ehrlinger, Rajeswaran and Blackstone 23

albumin copper prothrombin age

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

1 Year
3 Years

2 3 4 0 200 400 600 10 12 14 16 40 60 80

S
ur

vi
va

l

Figure 15: Variable dependence of predicted survival at 1 and 3 years on continuous variables
of interest. Individual cases are marked with blue circles for censored cases and red ‘x’s for
death events. Loess smooth curve indicates the survival trend with increasing values.

prothrombine. The added risk for high levels of these variables at 3 years indicates a non-
proportional hazards response. The similarity between the time curves for albumin and age

indicates the effect of these variables is constant over the disease progression.

There is not a convenient method to panel scatter plots and boxplots together, so we recom-
mend creating panel plots for each variable type separately. We plot the categorical variable
(edema) in Figure 16 separately from the continuous variables in Figure 15.

R> plot(gg_v, xvar = xvar.cat, alpha = 0.4) + labs(y = "Survival") +

+ theme(legend.position = "none") +

+ scale_color_manual(values = strCol, labels = event.labels) +

+ scale_shape_manual(values = event.marks, labels = event.labels) +

+ coord_cartesian(ylim = c(-0.01, 1.02))

The gg_variable plot of Figure 16 for categorical variable dependence displays boxplots to
examine the distribution of predicted values within each level of the variable. The points
are plotted with a jitter to see the censored and event markers more clearly. The boxes are
shown with horizontal bars indicating the median, 75th (top) and 25th (bottom) percentiles.
Whiskers extend to 1.5 times the interquartile range. Points plotted beyond the whiskers are
considered outliers.

When using categorical variables with linear models, we use boolean dummy variables to
indicate class membership. In the case of edema, we would probably create two logical vari-
ables for edema = 0.5 (complex Edema presence indicator) and edema = 1.0 (Edema with
diuretics) contrasted with the edema = 0 variable (no Edema). Random Forest can use factor

24 Exploring Random Forest Survival

1 Year

3 Years

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0 0.5 1
edema

S
ur

vi
va

l

Figure 16: Variable dependence of survival 1 and 3 years on edema categorical variable.
Symbols with blue circles indicate censored cases and red ‘x’s indicate death events. Boxplots
indicate distribution of predicted survival for all observations within each edema group.

variables directly, separating the populations into homogeneous groups of edema at nodes that
split on that variable. Figure 16 indicates similar survival response distribution between 1
and 3 year when edema = 1.0. The distribution of predicted survival does seem to spread out
more than for the other values, again indicating a possible non-proportional hazards response.

5.2. Partial Dependence (gg_partial)

Partial dependence plots are a risk adjusted alternative to variable dependence. Partial plots
are generated by integrating out the effects of variables beside the covariate of interest. The
figures are constructed by selecting points evenly spaced along the distribution of the variable
of interest. For each of these points (X = x), we calculate the average RF prediction over all
remaining covariates in the training set by

f̃(x) =
1

n

n∑
i=1

f̂(x, xi,o), (1)

where f̂ is the predicted response from the random forest and xi,o is the value for all other
covariates other than X = x for observation i (Friedman 2000).

Generating partial dependence data is effectively averaging the response for a series of nomo-
grams constructed for each observation by varying the variable of interest. The operation
is computationally intensive, especially when there are a large number of observations. The

Ehrlinger, Rajeswaran and Blackstone 25

default parameters for the plot.variable function generate partial dependence estimates at
npts = 25 points along the variable of interest. For each point of interest, the plot.variable
function averages the n response predictions. This process is repeated for each of the variables
of interest.

For time to event data, we also have to deal with the additional time dimension, as with vari-
able dependence. The following code block uses the mclapply function from the parallel pack-
age to run the plot.variable function for three time points (time=1, 3 and 5 years) in par-
allel. For RSF models, we calculate a risk adjusted survival estimates (surv.type="surv"),
suppressing the internal base graphs (show.plots = FALSE) and store the point estimates in
the partial_pbc list.

R> xvar <- c(xvar, xvar.cat)

R> partial_pbc <- mclapply(c(1,3,5), function(tm){

+ plot.variable(rfsrc_pbc, surv.type = "surv", time = tm, xvar.names = xvar,

+ partial = TRUE, show.plots = FALSE)

+ })

Because partial dependence data is collapsed onto the risk adjusted response, we can show
multiple time curves on a single panel. The following code block converts the plot.variable

output into a list of gg_partial objects, and then combines these data objects, with descrip-
tive labels, along each variable of interest using the combine.gg_partial function.

R> gg_dta <- mclapply(partial_pbc, gg_partial)

R> pbc_ggpart <- combine.gg_partial(gg_dta[[1]], gg_dta[[2]],

+ lbls = c("1 Year", "3 Years"))

We then segregate the continuous and categorical variables, and generate a panel plot of all
continuous variables in the gg_partial plot of Figure 17. The panels are ordered by minimal
depth ranking. Since all variables are plotted on the same Y-axis scale, those that are strongly
related to survival make other variables look flatter. The figures also confirm the strong non-
linear contribution of these variables. Non-proportional hazard response is also evident in at
least the bili and copper variables by noting the divergence of curves as time progresses.

R> ggpart <- pbc_ggpart

R> ggpart$edema <- NULL

R>

R> plot(ggpart, panel = TRUE) + #, se = FALSE

+ labs(x = "", y = "Survival", color = "Time", shape = "Time") +

+ theme(legend.position = c(0.8, 0.2)) +

+ coord_cartesian(ylim = c(25, 101))

Categorical partial dependence is displayed as boxplots, similar to categorical variable depen-
dence. Risk adjustment greatly reduces the spread of the response as expected, and may also
move the mean response compared to the unadjusted results. The categorical gg_partial
plot of Figure 18 indicates that, adjusting for other variables, survival decreases with rising
edema values. We also note that the risk adjusted distribution does spread out as we move
further out in time.

26 Exploring Random Forest Survival

●●●●●●●●●●●●●●●●●●● ● ●● ● ● ●
● ●

●
●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●● ● ●

●●●●●●●●●●●●●●●●●●●●●●

● ● ●

● ●●●●●●●●●●●●●●●●●●●●● ● ● ●

bili albumin copper

prothrombin age

40

60

80

100

40

60

80

100

0 10 20 2 3 4 0 200 400 600

10 12 14 16 40 60 80

S
ur

vi
va

l

Time
● 1 Year

3 Years

Figure 17: Partial dependence of predicted survival at 1 year (red circle) and 3 years (blue
triangle) as a function continuous variables of interest. Symbols are partial dependence point
estimates with loess smooth line to indicate trends.

R> ggplot(pbc_ggpart[["edema"]], aes(y=yhat, x=edema, col=group))+

+ geom_boxplot(notch = TRUE,

+ outlier.shape = NA) + # panel=TRUE,

+ labs(x = "Edema", y = "Survival (%)", color="Time", shape="Time") +

+ theme(legend.position = c(0.2, 0.2)) +

+ coord_cartesian(ylim = c(25, 101))

Partial dependence is an extrapolation operation. By averaging over a series of nomograms,
the algorithm constructs observations for all values of the variable of interest, regardless of the
relation with other variables. In contrast, variable dependence only uses observations from
within the training set. A simple example would be for a model including BMI, weight and
height. When examining partial dependence of BMI, the algorithm only manipulates BMI
values, height or weight values. The averaging operation is then confounded in two directions.
First, dependence on height and weight is shared with BMI, making it difficult to see the true
response dependence. Second, partial dependence is calculated over nomograms that can not
physically occur. For simple variable combinations, like BMI, it is not difficult to recognize

Ehrlinger, Rajeswaran and Blackstone 27

40

60

80

100

0 0.5 1
Edema

S
ur

vi
va

l (
%

)

Time
1 Year

3 Years

Figure 18: Partial dependence plot of predicted survival at 1 year (red) and 3 years (blue) as
a function of edema groups (categorical variable). Boxplots indicate distribution within each
group.

this and modify the independent variable list to avoid these issues. However, care must be
taken when interpreting more complex biological variables.

5.3. Partial dependence as a function of time

In the previous section, we calculated risk adjusted (partial) dependence at two time points
(1 and 3 years). The selection of these points can be driven by biological times of interest
(i.e., 1 year and 5 year survival in cancer studies) or by investigating time points of interest
from a gg_rfsrc prediction plot. We typically restrict generating gg_partial plots to the
variables of interest at two or three time points of interest due to computational constraints.

It is instructive to see a more detailed map of the risk adjusted response to get a feel for
interpreting partial and variable dependence plots. In Figure 17, we can visualize the two
curves as extending into the plane of the page along a time axis. Filling in more partial
dependence curves, it is possible to create a partial dependence surface.

For this exercise, we will generate a series of 50 gg_partial plot curves for the bili variable.
To fill the surface in, we also increased the number of points along the distribution of bili
to npts=50 to create a grid of 50 × 50 risk adjusted estimates of survival along time in one
dimension and the bili variable in the second.

The gg_partial surface of Figure 19 was constructed using the surf3D function from the
plot3D package (Soetaert 2014, http://CRAN.R-project.org/package=plot3D). Source
code for generating this figure is shown in Appendix A.1.

The figure shows partial dependence of survival (Z-axis) as a function of bili over a five year
follow up time period. Lines perpendicular to the Bilirubin axis are distributed along the
bili variable. Lines parallel to the Bilirubin axis are taken at 50 training set event times,
the first event after t = 0 at the back to last event before t = 5 years at the front. The

http://CRAN.R-project.org/package=plot3D

28 Exploring Random Forest Survival

T
im

e

1

2

3

4

Bilirubin

5
10

15
20

25

S
urvival

40

50

60

70

80

90

Figure 19: Partial dependence surface. Partial dependence of predicted survival (0 to 5 years)
as a function of bili. Blue lines indicate partial dependence at 1 and 3 years, as in bili

panel of Figure 17.

distribution of the time lines is also evenly selected using the same procedure as selecting
points for partial dependence curves.

The 2500 estimated partial dependence points are joined together with a simple straight line
interpolation to create the surface, colored according to the survival estimates (yellow close
to 1, red for lower values) to aid the visualization of 3 dimensions on a 2 dimensional page.
The blue lines in Figure 19 correspond to the 1 and 3 year partial dependence, as shown in
the bili panel of Figure 17.

Viewed as a surface, we see how the partial dependence changes with time. For low values of
bili, survival decreases at a constant rate. For higher values, the rate seems constant until
somewhere near 2 years, where it increases rapidly before slowing again as we approach the
5 year point.

6. Conditional dependence plots

Conditioning plots (coplots) (Chambers 1992; Cleveland 1993) are a powerful visualization
tool to efficiently study how a response depends on two or more variables (Cleveland 1993).
The method allows us to view data by grouping observations on some conditional membership.

Ehrlinger, Rajeswaran and Blackstone 29

The simplest example involves a categorical variable, where we plot our data conditional on
class membership, for instance on groups of the edema variable. We can view a coplot as
a stratified variable dependence plot, indicating trends in the RF prediction results within
panels of group membership.

Interactions with categorical data can be generated directly from variable dependence plots.
Recall the variable dependence for bilirubin shown in Figure 14. We recreated the gg_variable
plot in Figure 20, modified by adding a linear smooth as we intend on segregating the data
along conditional class membership.

R> # Get variable dependence at 1 year

R> ggvar <- gg_variable(rfsrc_pbc, time = 1)

R>

R> # For labeling coplot membership

R> ggvar$edema <- paste("edema = ", ggvar$edema, sep = "")

R>

R> # Plot with linear smooth (method argument)

R> var_dep <- plot(ggvar, xvar = "bili",

+ alpha = 0.5) +

+ # geom_smooth(method = "glm",se = FALSE) +

+ labs(y = "Survival",

+ x = st.labs["bili"]) +

+ theme(legend.position = "none") +

+ scale_color_manual(values = strCol, labels = event.labels) +

+ scale_shape_manual(values = event.marks, labels = event.labels) +

+ coord_cartesian(y = c(-.01,1.01))

R>

R> var_dep

We can view the conditional dependence of survival against bilirubin, conditional on edema

group membership (categorical variable) in Figure 21 by reusing the saved ggplot object
(var_dep) and adding a call to the facet_grid function.

R> var_dep + facet_grid(~edema)

Comparing Figure 20 with conditional panels of Figure 21, we see the overall response is
similar to the edema=0 response. The survival for edema=0.5 is slightly lower, though the
slope of the smooth indicates a similar relation to bili. The edema=1 panel shows that the
survival for this (smaller) group of patients is worse, but still follows the trend of decreasing
with increasing bili.

Conditional membership within a continuous variable requires stratification at some level.
We can sometimes make these stratification along some feature of the variable, for instance
a variable with integer values, or 5 or 10 year age group cohorts. However with our variables
of interest, there are no logical stratification indications. Therefore we arbitrarily stratify our
variables into 6 groups of roughly equal population size using the quantile_cuts function.
We pass the break points located by quantile_cuts to the cut function to create group-
ing intervals, which we can then add to the gg_variable object before plotting with the

30 Exploring Random Forest Survival

0.00

0.25

0.50

0.75

1.00

0 10 20
Serum Bilirubin (mg/dl)

S
ur

vi
va

l

Figure 20: Variable dependence of survival at 1 year against bili variable. Reproduction of
top panel of Figure 14 with a linear smooth to indicate trend.

edema = 0 edema = 0.5 edema = 1

0.00

0.25

0.50

0.75

1.00

0 10 20 0 10 20 0 10 20
Serum Bilirubin (mg/dl)

S
ur

vi
va

l

Figure 21: Variable dependence coplot of survival at 1 year against bili, conditional on
edema group membership. Linear smooth indicates trend of variable dependence.

plot.gg_variable function. This time we use the facet_wrap function to generate the pan-
els grouping interval, which automatically sorts the six panels into two rows of three panels
each.

R> # Find intervals with similar number of observations and create groups.

R> albumin_cts <- quantile_pts(ggvar$albumin, groups = 6, intervals = TRUE)

R> ggvar$albumin_grp <- cut(ggvar$albumin, breaks = albumin_cts)

R>

R> # Adjust naming for facets

R> levels(ggvar$albumin_grp) <- paste("albumin =", levels(ggvar$albumin_grp))

Ehrlinger, Rajeswaran and Blackstone 31

R>

R> plot(ggvar, xvar = "bili", alpha = 0.5) + #method = "glm", , se = FALSE

+ labs(y = "Survival", x = st.labs["bili"]) +

+ theme(legend.position = "none") +

+ scale_color_manual(values = strCol, labels = event.labels) +

+ scale_shape_manual(values = event.marks, labels = event.labels) +

+ facet_wrap(~albumin_grp) +

+ coord_cartesian(y = c(-.01,1.01))

albumin = (1.96,2.97] albumin = (2.97,3.23] albumin = (3.23,3.51]

albumin = (3.51,3.74] albumin = (3.74,4] albumin = (4,4.64]

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0 10 20 0 10 20 0 10 20
Serum Bilirubin (mg/dl)

S
ur

vi
va

l

Figure 22: Variable dependence coplot of survival at 1 year against bili, conditional on
albumin interval group membership.

The gg_variable coplot of Figure 22 indicates that the effect of bili decreases conditional
on membership within increasing albumin groups. To get a better feel for how the response
depends on both these variables together, it is instructive to look at the compliment coplot of
albumin conditional on membership in bili groups. We repeat the previous coplot process,
predicted survival as a function of the albumin variable, conditional on membership within 6
groups bili intervals. As the code to create the coplot of Figure 23 is nearly identical to the
code for creating Figure 22, we include the source code for this figure in Appendix A.2.

The gg_variable coplot of Figure 23 indicates the probability of survival increases with
increasing albumin and increases within groups of increasing bili.

Typically, conditional plots for continuous variables include overlapping intervals along the
grouped variable (Cleveland 1993). We chose to use mutually exclusive continuous variable
intervals for the following reasons:

• Simplicity - We can create the coplot figures directly from the gg_variable object by
adding a conditional group column directly to the object.

32 Exploring Random Forest Survival

bilirubin = (0.3,1.7] bilirubin = (1.7,3.1] bilirubin = (3.1,5.1]

bilirubin = (5.1,7.1] bilirubin = (7.1,14] bilirubin = (14,28]

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

2 3 4 2 3 4 2 3 4
Albumin (gm/dl)

S
ur

vi
va

l

Figure 23: Variable dependence coplot of survival at 1 year against albumin, conditonal on
bili interval group membership.

• Interpretability - We find it easier to interpret and compare the panels if each observation
is only in a single panel.

• Clarity - We prefer using more space for the data portion of the figures than typically
displayed in the coplot function which requires the bar plot to present the overlapping
segments.

It is still possible to augment the gg_variable to include overlapping conditional mem-
bership with continuous variables by duplicating rows of the training set data within the
rfsrc$xvar object, and then setting the conditional group membership as described. The
plot.gg_variable function recipe above could be used to generate the panel plot, with pan-
els ordered according to the factor levels of the grouping variable. We leave this as an exercise
for the reader.

6.1. Partial dependence coplots (gg_partial_coplot)

By characterizing conditional plots as stratified variable dependence plots, the next logical step
would be to generate an analogous conditional partial dependence plot. The process is similar
to variable dependence coplots, first determine conditional group membership, then calculate
the partial dependence estimates on each subgroup using the plot.variable function with a
subset argument for each grouped interval. The ggRandomForests gg_partial_coplot func-
tion is a wrapper for generating conditional partial dependence data objects. Given a random
forest (rfsrc) object and a groups vector for conditioning the training data set observations,
gg_partial_coplot calls the plot.variable function the training set observations condi-
tional on groups membership. The function returns a gg_partial_coplot object, a subclass

Ehrlinger, Rajeswaran and Blackstone 33

of the gg_partial object, which can be plotted with the plot.gg_partial function.

The following code block will generate the data object for creating partial dependence coplot
of 1 year survival as a function of bili conditional on membership within the 6 groups of
albumin intervals that we examined in the Figure 22.

R> partial_coplot_pbc <- gg_partial_coplot(rfsrc_pbc, xvar = "bili",

+ groups = ggvar$albumin_grp,

+ surv_type = "surv",

+ time = 1,

+ show.plots = FALSE)

R> ggplot(partial_coplot_pbc, aes(x=bili, y=yhat, col=group, shape=group)) + #

+ geom_smooth(se = FALSE) +

+ labs(x = st.labs["bili"], y = "Survival at 1 year (%)",

+ color = "albumin", shape = "albumin") +

+ coord_cartesian(y = c(49,101))

50

60

70

80

90

100

0 10 20
Serum Bilirubin (mg/dl)

S
ur

vi
va

l a
t 1

 y
ea

r
(%

) albumin
(1.96,2.97]

(2.97,3.23]

(3.23,3.51]

(3.51,3.74]

(3.74,4]

(4,4.64]

Figure 24: Partial dependence coplot of survival at 1 year against bili, conditional on
albumin interval group membership. Points estimates with loess smooth to indicate trend
within each group.

The gg_partial_coplot of Figure 24 shows point estimates of the risk adjusted survival as a
function of bili conditional on group membership defined by albumin intervals. The figure
is slightly different than the gg_partial plot of Figure 17 as each set of partial dependence
estimates is calculated over a subset of the training data. We again connect the point estimates
with a Loess curve.

34 Exploring Random Forest Survival

For completeness, we construct the compliment coplot view of one year survival as a function
of albumin conditional on bili interval group membership in Figure 25. We list the source
code for this figure in Appendix A.3.

50

60

70

80

90

100

2 3 4
Albumin (gm/dl)

S
ur

vi
va

l a
t 1

 y
ea

r
(%

) Bilirubin
(0.3,1.7]

(1.7,3.1]

(3.1,5.1]

(5.1,7.1]

(7.1,14]

(14,28]

Figure 25: Partial dependence coplot of survival at 1 year against albumin, conditional on
bili interval group membership. Points estimates with loess smooth to indicate trend within
each group.

6.2. Partial plot surfaces

Just as in partial dependence, we can view the partial coplot curves as slices along a surface
that could extend along an axis into the page. This visualization is made a bit difficult by our
choice to select groups of similar population size, as the curves are not evenly spaced along
the grouping variables. So, similar to the partial dependence surface we created along time
in Section 5.3, we can examine the relation of these two variables using a partial dependence
surface. A difficulty with conditional dependence for this exercise is the reduction of the sam-
ple sizes for calculating a coplot surface. So instead, we calculate the full partial dependence
surface by generating 50 albumin values spaced evenly along the data distribution. For each
value of albumin, we calculate the partial dependence on bili at npts = 50 points with the
plot.variable function. We generate the surface again using the surf3D function.

The partial dependence surface of Figure 26 shows partial dependence of 1 year survival on
the Z-axis against values of Bilirubin and Albumin. We again use linear interpolation between
the 2500 estimates, and color the surface by the response. Here blue corresponds to lower and
yellow to higher risk adjusted survival. The blue lines are placed at the cut points between
groups of albumin and bili used in the partial coplots of Figures 24 and 25 respectively.

To construct the partial coplot for groups of albumin in Figure 24, we arbitrarily segmented
the training set into 6 groups of equal membership size. The segments between blue lines

Ehrlinger, Rajeswaran and Blackstone 35

Bilirubin

5

10

15

20

25
Albumin

2.0

2.5

3.0

3.5

4.0
4.5

S
urvival at 1 Year

80

85

90

95

Figure 26: Partial dependence surface of survival at 1 year as a funtion of bili and albumin.
Blue lines indicate partial coplot cut points for albumin (Figure 24) and bili (Figure 25).

parallel to the Bilirubin axis indicate where on the surface these observations are located.
Similarly, the blues lines perpendicular to the Bilirubin axis segment observations into the
6 groups of bili intervals. Figure 26 indicates the arbitrary grouping for groups of bili in
Figure 25.

The figure indicates that partial dependence of higher albimun levels are similar, which results
in the over plotting seen in Figure 24. The distribution is sparser at lower albimun levels,
creating the larger area in lowest albimun values, where the partial dependence changes the
most.

7. Conclusion

In this vignette, we have demonstrated the use of Random Survival Forest methods with
the ggRandomForests (http://CRAN.R-project.org/package=ggRandomForests) package.
We have shown how to grow a random forest model and determine which variables con-
tribute to the forest prediction accuracy using both VIMP and Minimal Depth measures.
We outlined how to investigate variable associations with the response variable using vari-
able dependence and the risk adjusted partial dependence plots. We’ve also explored variable
interactions by using pairwise minimal depth interactions and directly viewed these inter-
actions using variable dependence coplots and partial dependence coplots. Along the way,

http://CRAN.R-project.org/package=ggRandomForests

36 Exploring Random Forest Survival

we’ve demonstrated the use of additional commands from the ggplot2 package (Wickham
2009, http://CRAN.R-project.org/package=ggplot2) package for modifying and customiz-
ing plots from ggRandomForests functions.

8. Computational details

This document is a package vignette for the ggRandomForests package for “Visually Ex-
ploring Random Forests” (http://CRAN.R-project.org/package=ggRandomForests). The
ggRandomForests package is designed for use with the randomForestSRC package (Ishwaran
and Kogalur 2014, http://CRAN.R-project.org/package=randomForestSRC) for growing
survival, regression and classification random forest models and uses the ggplot2 package (Wick-
ham 2009, http://CRAN.R-project.org/package=ggplot2) for plotting diagnostic and vari-
able association results. ggRandomForests is structured to extract data objects from random-
ForestSRC objects and provides functions for printing and plotting these objects.

The vignette is a tutorial for using the ggRandomForests package with the randomForestSRC
package for building and post-processing random survival forests. In this tutorial, we explore
a random forest for survival model constructed for the primary biliary cirrhosis (PBC) of the
liver data set (Fleming and Harrington 1991), available in the randomForestSRC package.
We grow a random survival forest and demonstrate how ggRandomForests can be used when
determining how the survival response depends on predictive variables within the model.
The tutorial demonstrates the design and usage of many of ggRandomForests functions and
features and also how to modify and customize the resulting ggplot graphic objects along
the way.

The vignette is written in LATEXusing the knitr package (Xie 2015, 2014, 2013, http://CRAN.
R-project.org/package=knitr), which facilitates weaving R (R Core Team 2014) code, re-
sults and figures into document text.

This vignette is available within the ggRandomForests package on the Comprehensive R
Archive Network (CRAN) (R Core Team 2014, http://cran.r-project.org). Once the
package has been installed, the vignette can be viewed directly from within R with the fol-
lowing command:

R> vignette("randomForestSRC-Survival", package = "ggRandomForests")

A development version of the ggRandomForests package is also available on GitHub (https:
//github.com). We invite comments, feature requests and bug reports for this package at
https://github.com/ehrlinger/ggRandomForests.

Acknowledgement

This work was supported in part by the National Institutes of Health grant R01-HL103552-
01A1.

References

http://CRAN.R-project.org/package=ggplot2
http://CRAN.R-project.org/package=ggRandomForests
http://CRAN.R-project.org/package=randomForestSRC
http://CRAN.R-project.org/package=ggplot2
http://CRAN.R-project.org/package=knitr
http://CRAN.R-project.org/package=knitr
http://cran.r-project.org
https://github.com
https://github.com
https://github.com/ehrlinger/ggRandomForests

Ehrlinger, Rajeswaran and Blackstone 37

Breiman L (1996a). “Bagging Predictors.” Machine Learning, 26, 123–140.

Breiman L (1996b). “Out–Of–Bag Estimation.” Technical report, Statistics Department,
University of California,Berkeley, CA. 94708. URL ftp://ftp.stat.berkeley.edu/pub/

users/breiman/OOBestimation.ps.Z.

Breiman L (2001a). “Random Forests.” Machine Learning, 45(1), 5–32.

Breiman L (2001b). “Statistical Modeling: The Two Cultures.” Statistical Science, 16(3),
199–231.

Breiman L, Friedman JH, Olshen R, Stone C (1984). Classification and Regression Trees.
Wadsworth and Brooks, Monterey, CA.

Chambers JM (1992). Statistical Models in S. Wadsworth & Brooks/Cole.

Cleveland WS (1981). “LOWESS: A Program for Smoothing Scatterplots by Robust Locally
Weighted Regression.” The American Statistician, 35(1), 54.

Cleveland WS (1993). Visualizing Data. Summit Press.

Cleveland WS, Devlin SJ (1988). “Locally-Weighted Regression: An Approach to Regression
Analysis by Local Fitting.” Journal of the American Statistical Association, 83(403), 596–
610.

Efron B, Tibshirani R (1994). An Introduction to the Bootstrap. Chapman & Hall/CRC.
ISBN 0412042312.

Fleming TR, Harrington DP (1991). Counting Processes and Survival Analysis. John Wiley
& Sons, New York.

Friedman JH (2000). “Greedy Function Approximation: A Gradient Boosting Machine.”
Annals of Statistics, 29, 1189–1232.

Hastie T, Tibshirani R, Friedman JH (2009). The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Second edition. Springer-Verlag, New York. ISBN 978-
0-387-84857-0.

Ishwaran H (2007). “Variable Importance in Binary Regression Trees and Forests.” Electronic
Journal of Statistics, 1, 519–537.

Ishwaran H, Kogalur UB (2007). “Random Survival Forests for R.” R News, 7, 25–31.

Ishwaran H, Kogalur UB (2010). “Consistency of Random Survival Forests.” Statistics and
Probability Letters, 80, 1056–1064.

Ishwaran H, Kogalur UB (2014). “Random Forests for Survival, Regression and Classifi-
cation (RF-SRC), R package version 1.6.” URL http://CRAN.R-project.org/package=

randomForestSRC.

Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS (2008). “Random Survival Forests.” The
Annals of Applied Statistics, 2(3), 841–860.

ftp://ftp.stat.berkeley.edu/pub/users/breiman/OOBestimation.ps.Z
ftp://ftp.stat.berkeley.edu/pub/users/breiman/OOBestimation.ps.Z
http://CRAN.R-project.org/package=randomForestSRC
http://CRAN.R-project.org/package=randomForestSRC

38 Exploring Random Forest Survival

Ishwaran H, Kogalur UB, Chen X, Minn AJ (2011). “Random Survival Forests for High–
Dimensional Data.” Statist. Anal. Data Mining, 4, 115–132.

Ishwaran H, Kogalur UB, Gorodeski EZ, Minn AJ, Lauer MS (2010). “High–Dimensional
Variable Selection for Survival Data.” J. Amer. Statist. Assoc., 105, 205–217.

Liaw A, Wiener M (2002). “Classification and Regression by randomForest.” R News, 2(3),
18–22.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Rubin D (1976). “Inference and Missing Data.” Biometrika, 63, 581–592.

Soetaert K (2014). plot3D: Plotting multi-dimensional data. R package version 1.0-2, URL
http://CRAN.R-project.org/package=plot3D.

Tukey JW (1977). Exploratory Data Analysis. Pearson.

Wickham H (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New
York. ISBN 978-0-387-98140-6.

Xie Y (2013). Dynamic Documents with R and knitr. Chapman and Hall/CRC, Boca Raton,
Florida. ISBN 978-1482203530, URL http://yihui.name/knitr/.

Xie Y (2014). “knitr: A Comprehensive Tool for Reproducible Research in R.” In V Stodden,
F Leisch, RD Peng (eds.), Implementing Reproducible Computational Research. Chapman
and Hall/CRC. ISBN 978-1466561595, URL http://www.crcpress.com/product/isbn/

9781466561595.

Xie Y (2015). knitr: A General-Purpose Package for Dynamic Report Generation in R. R
package version 1.9, URL http://yihui.name/knitr/.

A. Source Code

Throughout this document, we have listed all R source code to create the figures included here
with a few exceptions. For completeness, we include the missing code blocks in this appendix.
The code blocks are included here in order of appearance in the document.

A.1. Partial Dependence in Time Dimension

The surface plot of 5.3 demonstrates how partial dependence curves relate to the survival
curves. This code block is the R source code for creating Figure 19.

R> # Restrict the time of interest to less than 5 years.

R> time_pts <- rfsrc_pbc$time.interest[which(rfsrc_pbc$time.interest<=5)]

R>

R> # Find the 50 points in time, evenly space along the distribution of

R> # event times for a series of partial dependence curves

R> time_cts <-quantile_pts(time_pts, groups = 50)

http://www.R-project.org/
http://CRAN.R-project.org/package=plot3D
http://yihui.name/knitr/
http://www.crcpress.com/product/isbn/9781466561595
http://www.crcpress.com/product/isbn/9781466561595
http://yihui.name/knitr/

Ehrlinger, Rajeswaran and Blackstone 39

R>

R> # Load stored data from the package.

R> # See ?partial_pbc_time for how this data was generated.

R> #

R> # Time surfaces are created with the partial.rfsrc command

R> # partial_pbc_time <- partial.rfsrc(rfsrc_pbc, xvar = "bili",sav

R> # npts = 50, show.plots = FALSE,

R> # surv.type="surv")

R> #

R> load(partial_pbc_time, package="ggRandomForests")

R>

R> # We need to attach the time points of interest to our data.

R> time.tmp <- do.call(c,lapply(time_cts,

+ function(grp){rep(grp, 50)}))

R>

R> # Convert the list of plot.variable output to gg_partial

R> partial_time <- do.call(rbind,lapply(partial_pbc_time, gg_partial))

R>

R> # attach the time data to the gg_partial_coplot

R> partial_time$time <- time.tmp

R>

R> # Modify the figure margins to make it larger

R> par(mai = c(0,0.3,0,0))

R>

R> # Transform the gg_partial_coplot object into a list of three named matrices

R> # for surface plotting with plot3D::surf3D

R> srf <- surface_matrix(partial_time, c("time", "bili", "yhat"))

R>

R> # Generate the figure.

R> surf3D(x = srf$x, y = srf$y, z = srf$z, col = heat.colors(25),

+ colkey = FALSE, border = "black", bty = "b2",

+ shade = 0.5, expand = 0.5, theta=110,phi=15,

+ lighting = TRUE, lphi = -50,

+ ylab = "Bilirubin", xlab = "Time", zlab = "Survival"

+)

R>

R> # Extract the 1 and 3 year points.

R> # Find the indices of the points closest in time

R> t.pts <- sapply(c(1,3), function(pt){min(abs(srf$x - pt), na.rm=TRUE)})

R> # Extract the 1 and 3 year points.

R> # Find the indices of the points closest in time

R> t.pts <- sapply(c(1,3), function(pt){min(abs(srf$x - pt), na.rm=TRUE)})

R> indx <- vector("list", length=2)

R> indx[[1]] <- which(abs(srf$x - 1) < t.pts[1]+1.e-5)

R> indx[[2]] <- which(abs(srf$x - 3) < t.pts[2]+1.e-5)

R>

R> # Generate curves along 1 and 3 year partial dependence

40 Exploring Random Forest Survival

R> alt <- lapply(indx, function(ind){

+ lines3D(x=srf$x[ind], y=srf$y[ind],z=srf$z[ind],

+ add=TRUE, col="blue", lwd=6)

+ })

A.2. Bilirubin Coplot

In Section 6, we generate variable dependence coplots for the bili variable conditional on
grouping on intervals of the albumin variable, and the complimentary albumin variable condi-
tional on grouping on intervals of the bili variable. We include the source code for Figure 22
in the document. Since the code is nearly identical for the later case, we include the source
code for generating Figure 23 here.

R> # Find intervals with similar number of observations.

R> bili_cts <-quantile_pts(ggvar$bili, groups = 6, intervals = TRUE)

R>

R> # We need to move the minimal value so we include that observation

R> bili_cts[1] <- bili_cts[1] - 1.e-7

R>

R> # Create the conditional groups and add to the gg_variable object

R> ggvar$bili_grp <- cut(ggvar$bili, breaks = bili_cts)

R>

R> # Adjust naming for facets

R> levels(ggvar$bili_grp) <- paste("bilirubin = ",levels(ggvar$bili_grp), sep = "")

R>

R> # plot.gg_variable

R> plot(ggvar[-which(is.na(ggvar$albumin)),], xvar = "albumin",

+ method = "glm", alpha = 0.5, se = FALSE) +

+ labs(y = "Survival", x = st.labs["albumin"]) +

+ theme(legend.position = "none") +

+ scale_color_manual(values = strCol, labels = event.labels) +

+ scale_shape_manual(values = event.marks, labels = event.labels) +

+ facet_wrap(~bili_grp) +

+ coord_cartesian(ylim = c(-0.01, 1.01))

A.3. Bilirubin Partial Coplot

Similar to variable dependence coplots, In Section 6.1, we compare the partial dependence
coplots for the same albumin and bili variable groupings. Again, the source code for Fig-
ure 24 is nearly identical to the source code for generating Figure 25. We include the partial
dependence coplot source code for the albumin variable conditional on grouping on intervals
of the bili variable.

R> partial_coplot_pbc2 <- gg_partial_coplot(rfsrc_pbc, xvar = "albumin",

+ groups = bili_grp,

+ surv_type = "surv",

Ehrlinger, Rajeswaran and Blackstone 41

+ time = 1,

+ show.plots = FALSE)

R>

R>

R> # Stored in

R> # data(partial_coplot_pbc2, package = "ggRandomForests")

R>

R> plot(partial_coplot_pbc2, se = FALSE) +

+ labs(x = st.labs["albumin"], y = "Survival at 1 year (%)",

+ color = "Bilirubin", shape = "Bilirubin") +

+ scale_color_brewer(palette = "Set2") +

+ coord_cartesian(y = c(49,101))

A.4. Partial Dependence in Multiple Variable Dimensions

In Section 6.2, we generate a partial dependence surface of one year survival dependence on
both bili and albumin variables. We include the Source code for generating Figure 26 here.

R> # Find the quantile points to create 50 cut points

R> alb_partial_pts <-quantile_pts(ggvar$albumin, groups = 50)

R>

R> # Load the stored partial coplot data.

R> # See ?partial_pbc_surf for how this data was generated.

R> #

R> # partial_pbc_surf <- lapply(alb_partial_pts, function(ct){

R> # rfsrc_pbc$xvar$albumin <- ct

R> # plot.variable(rfsrc_pbc, xvar = "bili", time = 1,

R> # npts = 50, show.plots = FALSE,

R> # partial = TRUE, surv.type="surv")

R> # })

R> #

R> data("partial_pbc_surf")

R>

R> # Instead of groups, we want the raw albumin point values,

R> # To make the dimensions match, we need to repeat the values

R> # for each of the 50 points in the albumin direction

R> albumin.tmp <- do.call(c,lapply(alb_partial_pts,

+ function(grp){rep(grp, 50)}))

R>

R> # Convert the list of plot.variable output to

R> partial_surf <- do.call(rbind,lapply(partial_pbc_surf, gg_partial))

R>

R> # attach the data to the gg_partial_coplot

R> partial_surf$albumin <- albumin.tmp

R>

R> # Modify the figure margins to make the figure larger

42 Exploring Random Forest Survival

R> par(mai = c(0,.3,0,0))

R>

R> # Transform the gg_partial_coplot object into a list of three named matrices

R> # for surface plotting with plot3D::surf3D

R> srf <- surface_matrix(partial_surf, c("bili", "albumin", "yhat"))

R>

R> # Generate the figure.

R> surf3D(x = srf$x, y = srf$y, z = srf$z, col = topo.colors(25),

+ colkey = FALSE, border = "black", bty = "b2",

+ shade = 0.5, expand = 0.5, theta=55, phi=15,

+ lighting = TRUE, lphi = -50,

+ xlab = "Bilirubin", ylab = "Albumin", zlab = "Survival at 1 Year"

+)

R>

R> # Extract the albumin and bilirubin points

R> # Remove end points

R> bli <- bili_cts[-c(1,7)]

R> alb <- albumin_cts[-c(1,7)]

R>

R> # Find the indices of the points closest to split points

R> alb.pts <- lapply(alb, function(pt){min(abs(srf$y - pt), na.rm=TRUE)})

R> bli.pts <- lapply(bli, function(pt){min(abs(srf$x - pt), na.rm=TRUE)})

R>

R> indx.alb <- lapply(1:length(alb.pts), function(al){

+ which(abs(srf$y - alb[al]) < alb.pts[[al]]+1.e-5)})

R> indx.bli <- lapply(1:length(bli.pts), function(al){

+ which(abs(srf$x - bli[al]) < bli.pts[[al]]+1.e-5)})

R>

R> # Draw the lines

R> indx <- c(indx.alb, indx.bli)

R> st <- lapply(indx, function(ind){

+ lines3D(x=srf$x[ind],

+ y=srf$y[ind],

+ z=srf$z[ind],

+ add=TRUE, col="blue", lwd=6)})

Affiliation:

John Ehrlinger
Quantitative Health Sciences
Lerner Research Institute
Cleveland Clinic
9500 Euclid Ave
Cleveland, Ohio 44195

Ehrlinger, Rajeswaran and Blackstone 43

E-mail: john.ehrlinger@gmail.com
URL: http://github.com/ehrlinger/ggRandomForests/

mailto:john.ehrlinger@gmail.com
http://github.com/ehrlinger/ggRandomForests/

	Introduction
	Data summary: primary biliary cirrhosis (PBC) data set
	Exploratory data analysis
	PBC Model Summary

	Random survival forest
	Generalization Error
	Prediction
	Random forest imputation
	Test set predictions

	Variable selection
	Variable Importance
	Minimal Depth
	Variable selection comparison

	Variable dependence
	Variable Dependence
	Partial Dependence
	Partial dependence as a function of time

	Conditional dependence plots
	Partial dependence coplots
	Partial plot surfaces

	Conclusion
	Computational details
	Source Code
	Partial Dependence in Time Dimension
	Bilirubin Coplot
	Bilirubin Partial Coplot
	Partial Dependence in Multiple Variable Dimensions

