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1. Introduction

Graphical models are statistical models for data observed on a set of variables Y1, . . . , Yd, that
specify a set of conditional and marginal independencies between the variables. The set of inde-
pendencies is exactly determined by the structure of a graph having the variables as nodes.

2. Basic types of graph

In general, a graph G is a mathematical object defined by a set of nodes (or vertices) V and by
a set of edges E. In graphical models, graphs are used to define relation between the variables.
Thus, the nodes in V are in 1-1 correspondence with the variables, and the edges in E are pairs
of distinct nodes i and j denoting an association between the variables Yi and Yj . Edges can be
undirected or directed. Undirected edges ij specify no order between i and j. They are typically
denoted by a line i−− j, or a dashed line, or by a bi-directed arrow i←→ j. Directed edges i→ j
specify an order with i coming before j. The graphs can be classified according to the type of edge
they contain. The main types are:

• undirected graphs, containing only undirected edges;
• directed acyclic graphs, containing only directed edges;
• mixed graphs, containing both undirected and directed edges.

2.1. Undirected graphs

An undirected graph contains only undirected edges. In statistics it is suitable to describe the
associations between variables that are considered on equal standing.

Consider the following example. Let Y,X, V, U be 4 variables and suppose that we define the
undirected graph

Y V

X U

with edges V U, Y U,UX, Y X. The graph may be defined by a square matrix, the adjacency matrix,
that has the elements in positions (i, j) and (j, i) equal to 1 whenever the edge ij is in G. This can
be defined in ggm using the constructor function UG:

> G = UG(~V * U + Y * U + U * X + Y * X)

> G

V U Y X

V 0 1 0 0

U 1 0 1 1

Y 0 1 0 1

X 0 1 1 0

The output is a matrix whose row and column names are the nodes. The argument of the function
UG is a model formula defining the edges of the graph by 4 two-way interaction terms. The same
graph could be defined by a different model formula, with one two-factor interaction V U and a
three-factor interaction Y XU :
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> G = UG(~V * U + Y * X * U)

> G

V U Y X

V 0 1 0 0

U 1 0 1 1

Y 0 1 0 1

X 0 1 1 0

The two subgraphs defined by the subsets V U and Y XU are complete, that is, they have all the
possible edges:

> a = c("U", "V")

> b = c("Y", "X", "U")

> G[a, a]

U V

U 0 1

V 1 0

> G[b, b]

Y X U

Y 0 1 1

X 1 0 1

U 1 1 0

Moreover, the two subgraphs are maximal in the sense that they cannot be enlarged without losing
completeness. Therefore the two subsets V U and Y XU are called two cliques of the graph. Finding
the cliques of an undirected graph is an NP-hard problem.

Sometimes we will need undirected graphs with bi-directed or dashed edges like for example

Y V

X U

Y V

X U

To distinguish these graphs we code in their adjacency matrix the edges by a 2 instead of a 1.
Thus, with same function UG, we define the two previous graphs by

> G2 = 2 * UG(~Y * V + V * U + U * X + Y * X)

> G2

Y V U X

Y 0 2 0 2

V 2 0 2 0

U 0 2 0 2

X 2 0 2 0

2.2. Directed acyclic graphs

A directed acyclic graph (a DAG for short) contains only directed edges. Each edge is a couple
(i, j) of nodes, defining the tail and the head of an arrow i→ j. Moreover in a DAG there are no
cycles, i.e., is impossible starting from a node and following the direction of the arrows to get back
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to the starting node. For example the following graph is a DAG.

X

Z U V

Y

In a DAG each node i has an associated set of parents meaning the (possibly empty) set pa(j) of
the nodes i such that i→ j is in G. Thus for example the parents of V are X and U , the parents of
U are Z and Y , while X and Y have no parents each. A directed acyclic graph is used in statistics
to specify a data generating process, where each variable is directly dependent by some parent
variables, and indirectly dependent via intermediate variables.

A DAG G may be defined by its adjacency matrix, a square matrix that has the elements in
position (i, j) equal to 1 whenever the edge i→ j is in G. In ggm the previous DAG is defined by
a constructor function DAG that takes as arguments several model formulae giving the parents of
each node (except, possibly, the nodes with no parents). The previous DAG is defined as follows:

> D = DAG(V ~ X + U, U ~ Z + Y, Z ~ X + Y)

> D

V X U Z Y

V 0 0 0 0 0

X 1 0 0 1 0

U 1 0 0 0 0

Z 0 0 1 0 0

Y 0 0 1 1 0

A property of DAGs is that the nodes can be always reordered (not uniquely, in general) such that
the parents are before the children. This is called the topological order of the DAG. For instance

> Do = topSort(D)

> Do

Y X Z U V

Y 0 0 1 1 0

X 0 0 1 0 1

Z 0 0 0 1 0

U 0 0 0 0 1

V 0 0 0 0 0

produces the adjacency matrix in the topological order, that turns out to be always upper trian-
gular.

Drawing graphs from right to left

The description of a DAG by a sequence of model formulae implies that each formula defines a
node and its parents and that the parents are to the right of the symbol ∼. Even if this is the
opposite of the topological order, sometimes it is convenient and therefore we shall draw a DAG
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from right to left. For example, the DAG defined above could be drawn as follows.

X

V U Z

Y

Graphs with isolated nodes

A node is isolated if the set of its parents and children are empty. A DAG with an isolated node
X can be defined by introducing in the model formula a term X ∼ X. For instance the graph

Z Y X

is defined by

> D = DAG(Z ~ Y, X ~ X)

> D

Z Y X

Z 0 0 0

Y 1 0 0

X 0 0 0

3. Some basic Gaussian graphical models

We distinguish 5 types of graphical models

1. Covariance graph models
2. Concentration graph models
3. Regression graph models
4. General multivariate regression graph models
5. Linear structural equation models

These models can be developed for both continuous or discrete data, but our discussion will be
limited to the first situation.

In this case, the standard assumption is that the observed data are a random sample from
a d-dimensional Gaussian distribution Y = (Y1, . . . , Yd) ∼ N(µ,Σ), representing the population,
where µ is the mean vector that, without loss of generality, can be assumed to be zero, and where
Σ = [σij ] is a p.d. covariance matrix. Often the Gaussian assumption is too strong, but as in
linear regression, we can fit the models with a set weaker assumptions provided that we include
appropriate nonlinear terms (see the package checklin). Each model can be simply characterized
by a set of linear constraints on parameters of the population.

3.1. Covariance graph models

A Gaussian covariance graph model for Y is defined by zero constraints on the covariances as
specified by the missing edges of an undirected graph G. The model specifies that

σij = 0 whenever the edge ij is not in G.

In a Gaussian distribution σij = 0 if and only the two variables Yi and Yj are marginally indepen-
dent. Therefore a covariance graph model specifies an independence Yi ⊥⊥ Yj for each missing edge
ij. The model belongs to the class of linear in covariance structures (cf. Anderson, 1971).
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Example

We analyze for a sample of 72 students, the covariance matrix among 4 variables measuring 4
different strategies to cope with stress. The variables are Y , cognitive avoidance; X, vigilance; V ,
blunting and U , monitoring. The data are contained in the package SIN. The following instructions
compute the sample covariance matrix.

> require(SIN)

> data(stressful)

> S = sdcor2cov(stressful$stddev, stressful$corr)

> dimnames(S) = list(c("Y", "X", "V", "U"), c("Y", "X", "V", "U"))

> S

Y X V U

Y 45.832900 -8.652060 6.602104 0.207839

X -8.652060 40.832100 0.000000 9.220131

V 6.602104 0.000000 4.494400 -0.976260

U 0.207839 9.220131 -0.976260 9.424900

Inspection of the sample correlation matrix

> cov2cor(S)

Y X V U

Y 1.00 -0.20 0.46 0.01

X -0.20 1.00 0.00 0.47

V 0.46 0.00 1.00 -0.15

U 0.01 0.47 -0.15 1.00

shows that a possible hypothesis to test is σXV = σY U = 0. This corresponds to a covariance graph
model

Y V

X U

This model can be fitted by maximum likelihood with

> G <- 2 * UG(~Y * X + X * U + U * V + V * Y)

> G

Y X U V

Y 0 2 0 2

X 2 0 2 0

U 0 2 0 2

V 2 0 2 0

> fitCovGraph(G, S, n = 72)

$Shat

Y X V U

Y 45.810113 -8.816792 6.617870 0.000000

X -8.816792 40.915862 0.000000 9.254775

V 6.617870 0.000000 4.501194 -1.000127

U 0.000000 9.254775 -1.000127 9.421285

$dev

[1] 0.007675671

$df

[1] 2
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$it

[1] 8

The output of the function is a list with components Shat, the fitted covariance matrix, dev, the
likelihood ratio statistic against the saturated model, i.e., the model with no restrictions on the
covariances, and it, the number of iterations of the algorithm. The fit for the stressful data is
almost perfect.

3.2. Concentration graph models

A Gaussian concentration graph model for a random vector Y is defined by zero constraints on
the inverse of the covariance matrix Σ. This is called the concentration matrix and is denoted by
Σ−1 = [σij ]. Given an undirected graph G this model specifies that

σij = 0 whenever the edge ij is not in G.

If Y has a Gaussian distribution, the constraint σij = 0 is shown to be equivalent to the conditional
independence Yi ⊥⊥ Yj | given all the remaining variables. Thus the concentration graph model
specifies a set of pairwise conditional independencies for each missing edge in the graph.

undirected graphs G is defined by a set of nodes, usually denoted by integers i = 1, . . . , d, and by
a set E of edges, described by pairs {i, j} of nodes. The set of missing edges is the complementary
set of E. A simple representation of the graph is given by its adjacency matrix. A concentration
graph model is also called a covariance selection model ; see Dempster (1972).

A Gaussian undirected graph model for a d-dimensional random vector Y = (Y1, . . . , Yd) is
defined by a family of Gaussian distributions with mean vector zero and a d× d covariance matrix
Σ = [σij ] such that its inverse Σ−1 = [σij ] satisfies

σij = 0 whenever i−− j is not in G

The inverse of the covariance matrix is called a concentration matrix and therefore the model spec-
ifies zero constraints on the concentrations. The model is sometimes called a covariance selection
model (Dempster) or concentration graph model (Cox and Wermuth, 1996).

The concentration graph model specifies a set of conditional independencies: for each missing
edge i−− j, the variables Yi and Yj are independent given all the remaining variables YV \ij .

example

We analyze a covariance matrix for a sample of 684 female college students, concerning 4 variables
on anxiety and anger. The 4 variables are: Y = state anxiety, X = state anger, V = trait anxiety,
U = trait anger. The sample covariance matrix is as follows

> S = matrix(c(37.1926, 24.9311, 21.6056, 15.6907, 24.9311, 44.8472,

+ 17.8072, 21.5865, 21.6056, 17.8072, 32.2462, 18.3523, 15.6907,

+ 21.5865, 18.3523, 43.1191), 4, 4)

> dimnames(S) = list(c("Y", "X", "V", "U"), c("Y", "X", "V", "U"))

> S

Y X V U

Y 37.1926 24.9311 21.6056 15.6907

X 24.9311 44.8472 17.8072 21.5865

V 21.6056 17.8072 32.2462 18.3523

U 15.6907 21.5865 18.3523 43.1191

A preliminary analysis is that of computing the marginal and partial correlation matrices. The
function correlations stores the marginal and partial correlations in the lower and upper triangle
of a matrix, respectively:

> correlations(S)
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Y X V U

Y 1.0000000 0.4485459 0.46954702 -0.03769731

X 0.6104435 1.0000000 0.02522645 0.31929907

V 0.6238767 0.4682618 1.00000000 0.31833491

U 0.3918133 0.4908850 0.49217141 1.00000000

The almost zero partial correlations ρ̂Y U.XV and ρ̂XV.Y U suggest the concentration graph model

Y V

X U

This can be fitted by ML using the function fitConGraph as follows.

> G = UG(~Y * V + V * U + U * X + X * Y)

> ml = fitConGraph(amat = G, S, n = 684)

> ml

$Shat

Y X V U

Y 37.19260 24.93110 21.60560 16.79689

X 24.93110 44.84720 16.98069 21.58650

V 21.60560 16.98069 32.24620 18.35230

U 16.79689 21.58650 18.35230 43.11910

$dev

[1] 1.947154

$df

[1] 2

$it

[1] 7

The output is the same of the function fitConGraph where Shat is the fitted covariance matrix
Σ̂ = [σ̂ij ]. The fitted concentration matrix is simply the inverse Σ̂−1 and we can verify that the
two conditions of the maximum likelihood estimates are verified, that is (a) the concentrations
corresponding to the missing edges are zero:

> round(solve(ml$Shat), 4)

Y X V U

Y 0.0568 -0.0214 -0.0268 0.0000

X -0.0214 0.0398 0.0000 -0.0116

V -0.0268 0.0000 0.0568 -0.0137

U 0.0000 -0.0116 -0.0137 0.0348

and (b) the fitted covariances corresponding to the edges present coincide with the sample covari-
ances.

3.3. Directed acyclic graph models

A Gaussian directed acyclic graph model for a d-dimensional random vector Y is defined by the
recursive equations

Y = BY + ε, where ε ∼ N(0,∆)

is a vector of independent residuals with a diagonal covariance matrix ∆ and B = [βij ] is a matrix
of coefficients such that

βij = 0 whenever i← j is not in G.
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Therefore the concentration and covariance matrices of Y are

Σ−1 = AT ∆−1A, Σ = A−1∆AT

where A = I −B.
The model specifies a set of conditional independencies between Yi and Yj given all the remaining

variables YV \ij if the edge {i, j} is missing.

3.4. Structural equation models


