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Abstract

In this document the R package ghyp is described in detail. Basically, the density

functions of the generalized hyperbolic distribution and its special cases and the fitting

procedure. Some code chunks indicate how the package ghyp can be used.
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1 Introduction

The origin of this package goes back to the first authors’ years at RiskLab, when he worked

together with Alexander McNeil to develop an algorithm for fitting multivariate general-

ized hyperbolic distributions. Accordingly, the functionality of this package largely overlaps

McNeil’s S-Plus library QRMlib [2]. However, there are quite some differences in the imple-

mentation. From the user’s point of view, one of the most important may be that one can

choose between different parametrizations. In addition, with the present library it is possible

to fit multivariate as well as univariate generalized hypberbolic distributions and not only the

special cases.

2 Definition

Facts about generalized hyperbolic (GH) distributions are cited according to [1] chapter 3.2.

The random vector X is said to have a multivariate GH distribution if

X := µ+Wγ +
√
WAZ (2.1)

where

(i) Z ∼ Nk(0, Ik)

(ii) A ∈ R
d×k

(iii) µ, γ ∈ R
d

(iv) W ≥ 0 is a scalar-valued random variable which is independent of Z and has a Gener-

alized Inverse Gauss distribution (see appendix B).

2.1 Expected value and variance

The expected value and the variance are given by

E(X) = µ+ E(W )γ (2.2)

cov(X) = E(cov(X|W )) + cov(E(X|W )) (2.3)

= var(W )γγ′ + E(W )Σ

where Σ = AA′.
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2.2 Linear transformations

The GH class is closed under linear operations:

If X ∼ GHd(λ, χ, ψ, µ,Σ, γ) and Y = BX + b, where B ∈ R
k×d and b ∈ R

k , then Y ∼
GHk(λ, χ, ψ,Bµ + b, BΣB′, Bγ).

2.3 Density

Since the conditional distribution of X given W is gaussian with mean µ+Wγ and variance

WΣ the GH density can be found in the following way.

fX(x) =

∫ ∞

0
fX|W (x|w) fW (w) dw (2.4)

=

∫ ∞

0

e(x−µ)′Σ−1γ

(2π)
d

2 |Σ| 12w d

2

exp

{

−Q(x)

2w
− γ′Σ−1γ

2/w

}

fW (w)dw

=
(
√

ψ/χ)λ(ψ + γ′Σ−1γ)
d

2
−λ

(2π)
d

2 |Σ| 12 Kλ(
√
χψ)

×
Kλ− d

2

(
√

(χ+ Q(x))(ψ + γ′Σ−1γ) e(x−µ)′Σ−1γ

(
√

(χ+ Q(x))(ψ + γ′Σ−1γ))
d

2
−λ

where Q(x) denotes the mahalanobis distance and the relation (A.2) of the modified bessel

function of the third kind Kλ(·) (A.1) is used. The constraints of the parameters λ, χ and ψ

were described in appendix B.

3 Parametrization

There are several alternative parametrizations for the GH distribution. In this package the

user can choose between two of them, the (λ, χ, ψ, µ,Σ, γ)-parametrization and the (λ, α, µ,Σ, γ)-

parametrization. Have a look at appendix F.1 to see how both of these parametrizations can

be used.

3.1 (λ, χ, ψ, µ,Σ, γ)-Parametrization

The λ, χ, ψ, µ,Σ, γ-parametrization is straight forward but has a drawback of an identification

problem. Indeed, the distributions GHd(λ, χ, ψ, µ,Σ, γ) and GHd(λ, χ/k, kψ, µ, kΣ, kγ) are

identical for any k > 0. Therefore, an identifying problem occurs when we start to fit the

parameters of a ghyp distribution. This problem can be solved by introducing a suitable

contraint. One possibility is to require the determinant of the covariance matrix to be 1.
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3.2 (λ, α, µ,Σ, γ)-Parametrization

There is a more elegant way to eliminate the degree of freedom. We simply constrain the

expected value of the mixing variableW to be 1. This makes the interpretation of the skewness

parameters γ easier and in addition, the fitting procedure becomes faster (see 4.1).

We define [3]

E(W ) =

√

χ

ψ

Kλ+1(
√
χψ)

Kλ(
√
χψ)

= 1. (3.1)

and set

α =
√

χψ. (3.2)

It follows that

ψ = α
Kλ+1(α)

Kλ(α)
and χ =

α2

ψ
= α

Kλ(α)

Kλ+1(α)
. (3.3)

The drawback of the (λ, α, µ,Σ, γ)-parametrization is that it does not exist in the case α = 0

and λ ∈ [−1, 0]. This is the case of a student-t distribution with non-existing variance. Note

that the (λ, α, µ,Σ, γ)-parametrization yields to a slightly different student-t parametrization.

See section (C.1) for details.

4 Fitting generalized hyperbolic distributions to data

Numerical optimizers can be used to fit univariate GH distributions to data by means of

maximum likelihood estimation. Multivariate GH distributions can be fitted with algorithms

based on the expectation-maximazion (EM) scheme.

4.1 EM-Scheme

Assume we have iid data x1, . . . ,xn and parameters represented by Θ = (λ, α, µ,Σ, γ). The

problem is to maximize

lnL(Θ;x1, . . . ,xn) =
n

∑

i=1

ln fX(xi; Θ). (4.1)

This problem is not easy to solve due to the number of parameters and necessity of maximizing

over covariance matrices. We can proceed by introducing an augmented likelihood function

ln L̃(Θ;x1, . . . ,xn, w1, . . . , wn) =

n
∑

i=1

ln fX|W (xi|wi;µ,Σ, γ) +

n
∑

i=1

ln fW (wi;λ, α) (4.2)
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and spend the effort on the estimation of the latent mixing variables wi coming from the

mixture representation of (2.1). This is where the EM algorithm comes into play.

E-step: Calculate the conditional expectation of the likelihood function (4.2) given the data

x1, . . . ,xn and the current estimates of parameters Θ[k]. This results in the objective

function

Q(Θ;Θ[k]) = E(ln L̃(Θ;x1, . . . ,xn, w1, . . . , wn)|x1, . . . ,xn; Θ[k]). (4.3)

M-step: Maximize the objective function with respect to Θ to obtain the next set of estimates

Θ[k+1].

Alternating between these steps yields to the maximum likelihood estimation of the parame-

ter set Θ.

In practice, performing the E-Step means maximizing the second summand of (4.2) numeri-

cally. The log density of the GIG distribution (see B.1) is

ln fW (w) =
λ

2
ln(ψ/χ) − ln(2Kλ

√

χψ) + (λ− 1) lnw − χ

2

1

w
− ψ

2
w. (4.4)

When using the (λ, α)-parametrization this problem is of dimension two instead of three and

consequently increases the performance.

Since the wi’s are latent one has to replace w, 1/w and lnw with expected values in order to

maximize the log likelihood function. Let

η
[k]
i := E(wi |xi; Θ

[k]), δ
[k]
i := E(w−1

i |xi; Θ
[k]), ξ

[k]
i := E(lnwi |xi; Θ

[k]). (4.5)

We have to find the conditional density of wi given xi to be able to calculate these quantities

(see (D.1)).

4.2 MCECM estimation

In the R implementation we employ a modified EM scheme which is called multi-cycle, ex-

pectation, conditional estimation (MCECM) algorithm ([1], [2]). The different steps of the

MCECM algorithm are sketched as follows:

(1) Select reasonable starting values for Θ[k]. For example λ = 1, α = 1, µ is set to the

sample mean, Σ to the sample covariance matrix and γ to a zero skewness vector.
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(2) Calculate χ[k] and ψ[k] as a function of α[k] using (3.3).

(3) Use (4.5), (B.2) and (D.1) to calculate the weights η
[k]
i and δ

[k]
i . Average the weights to

get

η̄[k] =
1

n

n
∑

i=1

η
[k]
i and δ̄[k] =

1

n

n
∑

i=1

δ
[k]
i . (4.6)

(4) If an asymmetric model is to be fitted set γ to 0, else set

γ[k+1] =
1

n

∑n
i=1 δ

[k]
i (x̄ − xi)

η̄[k]δ̄[k] − 1
. (4.7)

(5) Update µ and Σ:

µ[k+1] =
1

n

∑n
i=1 δ

[k]
i (xi − γ[k+1])

δ̄[k]
(4.8)

Σ[k+1] =
1

n

n
∑

i=1

δ
[k]
i (xi − µ[k+1])(xi − µ[k+1])′ − η̄[k]γ[k+1]γ[k+1] ′. (4.9)

(6) Set Θ[k,2] = (λ[k], α[k], µ[k+1],Σ[k+1], γ[k+1]) and calculate weights η
[k,2]
i , δ

[k,2]
i and ξ

[k,2]
i

using (4.5), (B.3) and (B.2).

(7) Maximise the second summand of (4.2) with respect to λ, χ and ψ to complete the

calculation of Θ[k,2] and go back to step (2). Note that the objective function must

calculate χ and ψ in dependence of λ and α using the relation (3.3).

5 Special cases of the generalized hyperbolic distribution

The GH distribution contains several special cases known under special names [1].

• If λ = d+1
2 the name generalized is dropped and we have a multivariate hyperbolic

distribution. The univariate margins are still GH distributed. Inversely, when λ = 1 we

get a multivariate GH distribution with hyperbolic margins.

• If λ = −1
2 the distribution is called Normal Inverse Gauss (NIG).

• If α = 0 and λ > 0 one gets a limiting case which is known amongst others as Variance

Gamma (VG) distribution.
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• If α = 0 and λ < −2 one gets a limiting case which is known as a skewed student-t

distribution.

All the necessary formulas to fit the special cases can be found in the appendix.

A Modified Bessel function of the third kind

The modified bessel function of the third kind appears in the GIG density (B.1). This function

is defined as

Kλ(x) :=
1

2

∫ ∞

0
wλ−1 exp

{

−1

2
x

(

w + w−1
)

}

dw , x > 0. (A.1)

By means of the following relation the GH density (2.1) can be written in the closed form.

∫ ∞

0
wλ−1 exp

{

−1

2

(χ

w
+ wψ

)

}

dw = 2

(

χ

ψ

)
λ

2

Kλ(
√

χψ) (A.2)

When calculating the densities of the special cases of the GH density we can use the asymtotic

relations

Kλ(x) ∼ Γ(λ) 2λ−1x−λ as x→ 0 + and λ > 0 (A.3)

and

Kλ(x) ∼ Γ(−λ) 2−λ−1xλ as x→ 0 + and λ < 0. (A.4)
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(A.4) follows from (A.3) and the observation that the Bessel function is symmetric with

respect to λ.
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B Generalized Inverse Gaussian distribution

The density of a Generalized Inverse Gaussian (GIG) distribution is given as

fGIG(w) =

(

ψ

χ

)
λ

2 wλ−1

2Kλ(
√
χψ)

exp

{

−1

2

(χ

w
+ ψw

)

}

, (B.1)

with parameters satisfying

χ > 0, ψ ≥ 0, λ < 0

χ > 0, ψ > 0, λ = 0

χ ≥ 0, ψ > 0, λ > 0 .
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The GIG density contains the Gamma (Γ) and Inverse Gamma (IΓ) densities as limiting cases.

If χ = 0 and λ > 0 then X is gamma distributed with parameters λ and 1
2ψ (Γ(λ, 1

2ψ)).

If ψ = 0 and λ < 0 then X has an inverse gamma distribution with parameters −λ and 1
2χ

(IΓ(−λ, 1
2χ)).

The n− th moment of a GIG distributed random variable can be found to be

E(Xn) =

(

χ

ψ

)
n

2 Kλ+n(
√
χψ)

Kλ(
√
χψ)

. (B.2)

Furthermore

E(lnX) =
dE(Xα)

dα α=0
. (B.3)

Numerical calculations may be performed with the integral representation as well. In the R

package ghyp the derivative is implemented.

B.1 Gamma distribution

When χ = 0 and λ > 0 the GIG distribution reduces to the gamma distribution defined as

fW (w) =
βα

Γ(α)
wα−1 exp {−βw} .

The expected value and the variance are E(X) = β/α and var(X) = α/β2, respectively. The

expected value of the logarithm is E(lnX) = ψ(α)−ln(β) where ψ(·) is the digamma function.

We will see that this value is not needed to fit a multivariate variance gamma distribution

(see D.3).

B.2 Inverse gamma distribution

When ψ = 0 and λ < 0 the GIG distribution reduces to the gamma distribution defined as

fW (w) =
βα

Γ(α)
w−α−1 exp

{

−β

w

}

.

The expected value and the variance are E(X) = β/(α−1) and var(X) = β2/((α−1)2(α−2)),

and exist provided that α > 1 and α > 2 respectively. The expected value of the logarithm

is E(lnX) = ln(β) − ψ(α). This value is required in order to fit a symmetric multivariate

student-t distribution by means of the MCECM algorithm (see D.2).
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C Densities of the special cases of the generalized hyperbolic

distribution

As mentioned in section 5 the GH distribution contains several special cases. In what follows

the densities of the special cases are derived. In the case of a hyperbolic or normal inverse

gaussian distribution we simply fix the parameter λ either to (d+ 1)/2 or −0.5.
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C.1 Student-t distribution

With relation (A.4) it can be easily shown that when ψ → 0 and λ < 0 the density results in

ft(x) =
χ−λ(γ′Σ−1γ)

d

2
−λ

(2π)
d

2 |Σ| 12 Γ(−λ)2−λ−1
×

K
λ− d

2

(
√

(χ+ Q(x))γ′Σ−1γe(x−µ)′Σ−1γ

(
√

(χ+ Q(x))γ′Σ−1γ)
d

2
−λ

. (C.1)

We use the common student-t parametrization and set the degree of freedom ν = −2λ 1.

Because ψ = 0 the transformation of α to χ and ψ (see 3.3) reduces to

χ = α
Kλ(α)

Kλ+1(α)

α→0−→ 2 (−λ− 1) = ν − 2. (C.2)

Putting it all together the density is calculated to be

ft(x) =
(ν − 2)

ν

2 (γ′Σ−1γ)
ν+d

2

(2π)
d

2 |Σ| 12 Γ(ν
2 )2

ν

2
−1

×
K ν+d

2

(
√

(ν − 2 + Q(x))γ′Σ−1γ) e(x−µ)′Σ−1γ

(
√

(ν − 2 + Q(x))γ′Σ−1γ)
ν+d

2

. (C.3)

When γ → 0 we observe the symmetric multivariate t distribution

ft(x)) =
(ν − 2)

ν

2 Γ(ν+d
2 )

π
d

2 |Σ| 12 Γ(ν
2 )(ν − 2 + Q(x))

ν+d

2

. (C.4)

C.2 Variance gamma distribution

The relation (A.4) can be used again to show that when ψ → 0 and λ > 0 the density of the

GH distribution results in

ft(x) =
ψλ(ψ + γ′Σ−1γ)

d

2
−λ

(2π)
d

2 |Σ| 12 Γ(λ)2λ−1
×

K
λ− d

2

(
√

Q(x)(ψ + γ′Σ−1γ)) e(x−µ)′Σ−1γ

(
√

Q(x)(ψ + γ′Σ−1γ))
d

2
−λ

. (C.5)

In the case of a variance gamma distribution the transformation of α to χ and ψ (see 3.3)

reduces to

ψ = α
Kλ+1(α)

Kλ(α)
= 2λ (C.6)

1Note that the (λ,α, µ, Σ, γ) parametrization yields to a slightly different student-t parametrization: In
this package the parameter Σ denotes the variance in the multivariate case and the standard deviation in the
univariate case. Thus, set σ =

p

ν/(ν − 2) in the univariate case to get the same results as with the standard
R implementation of the student-t distribution.
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Thus, the density is

ft(x) =
2λλ(2λ+ γ′Σ−1γ)

d

2
−λ

(2π)
d

2 |Σ| 12 Γ(λ)
×

Kλ− d

2

(
√

Q(x)(2λ + γ′Σ−1γ)) e(x−µ)′Σ−1γ

(
√

Q(x)(2λ + γ′Σ−1γ))
d

2
−λ

. (C.7)

D Conditional density of the mixing variable W

Performing the E-Step of the MCECM algorithm requires the calculation of the conditional

expectation of wi given xi. In this section the conditional density is derived.

D.1 Generalized hyperbolic, hyperbolic and NIG distribution

The mixing term w is GIG distributed. By using (2.4) and (B.1) the density of wi given xi

can be calculated to be again the GIG density with parameters (λ− d
2 ,Q(x)+χ,ψ+γ′Σ−1γ).

fw|x(w) =
fX,W (x, w)

fX(x)

=
fX|W (x)fGIG(w)

∫ ∞
0 fX|W (x)fGIG(w)dw

=

(

γ′Σ−1γ + ψ

Q(x) + χ

)0.5(λ− d

2
)

×

wλ− d

2
−1 exp

{

−1
2

(

Q(x)+χ

w
+ w (γ′Σ−1γ + ψ)

)}

2Kλ− d

2

(
√

(Q(x) + χ) (γ′Σ−1γ + ψ))
(D.1)

D.2 Student-t distribution

The mixing term w is IΓ distributed. Again the conditional density of wi given xi results

in the GIG density. The equations (2.4) and (B.4) were used. The parameters of the GIG

density are (λ− d
2 ,Q(x) + χ, γ′Σ−1γ). When γ becomes 0 the conditional density reduces to



14

the IΓ density with parameters (d
2 − λ,

Q(x)+χ

2 ).

fw|x(w) =
fX,W (x, w)

fX(x)

=
fX|W (x)fIΓ(w)

∫ ∞
0 fX|W (x)fIΓ(w)dw

=

(

γ′Σ−1γ

Q(x) + χ

)0.5(λ− d

2
)

×
wλ− d

2
−1 exp

{

−1
2

(

Q(x)+χ

w
+ w γ′Σ−1γ

)}

2K
λ− d

2

(
√

(Q(x) + χ) γ′Σ−1γ)
(D.2)

D.3 Variance gamma distribution

The mixing term w is Γ distributed. By using (2.4) and (B.4) the density of wi given xi can

be calculated to be again the GIG density with parameters (λ− d
2 ,Q(x), ψ + γ′Σ−1γ).

fw|x(w) =
fX,W (x, w)

fX(x)

=
fX|W (x)fΓ(w)

∫ ∞
0 fX|W (x)fΓ(w)dw

=

(

γ′Σ−1γ + ψ

Q(x)

)0.5(λ− d

2
)

× (D.3)

wλ− d

2
−1 exp

{

−1
2

(

Q(x)
w

+ w (γ′Σ−1γ + ψ)
)}

2K
λ− d

2

(
√

Q(x) (γ′Σ−1γ + ψ))
(D.4)

E Distribution objects

In the package ghyp we follow an object oriented programming approach and introduce

distribution objects. There are mainly four reasons for that:

1. Unlike most distributions the GH distribution has quite a few parameters which have

to fulfill some consistency requirements. Consistency checks can be performed uniquely

when an object is initialized.

2. Once initialized the common functions belonging to a distribution can be called con-

veniently by passing the distribution object. A repeated input of the parameters is

avoided.
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3. Distributions returned from fitting procedures can be directly passed to, e.g., the density

function since fitted distribution objects add information to the distribution object and

consequently inherit from the class of the distribution object.

4. Generic method dispatching can be used to provide a uniform interface to, e.g., sim-

ulate random variates of a specific distribution like rand(n, distribution.object).

Additionally, one can take advantage of generic programming since R provides virtual

classes and some forms of polymorphism.

See appendix F for several examples and F.2 for particular examples concerning the object

oriented approach.

F Examples

This section provides examples of distribution objects and the object oriented approach as

well as fitting to data and portfolio optimization.

F.1 Initializing distribution object

This example shows how GH distribution objects can be initialized by either using the

(λ, χ, ψ, µ,Σ, γ) or the (λ, α, µ,Σ, γ)-parametrization.

> library(ghyp)

> ghyp(lambda = -2, alpha.bar = 0.5, mu = 10, sigma = 5, gamma = 1)

Object of class 'ghypuv' (Univariate Generalized Hyperbolic)

Model:

Asymmetric Generalized Hyperbolic

Parameters:

lambda alpha.bar mu sigma gamma

-2.0000000 0.5000000 10.0000000 5.0000000 1.0000000

Slot 'data' is NULL.
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> ghyp(lambda = -2, chi = 5, psi = 0.1, mu = 10:11, sigma = diag(5:6),

+ gamma = -1:0)

Object of class 'ghypmv' (Multivariate Generalized Hyperbolic)

Model:

Asymmetric Generalized Hyperbolic

Mixing parameters (lambda / alpha.bar):

lambda alpha.bar

-2.000000 0.707107

mu:

[1] 10 11

sigma:

[,1] [,2]

[1,] 5 0

[2,] 0 6

gamma:

[1] -1 0

Slot 'data' is NULL.

F.2 Object oriented approach

First of all a GH distribution object is initialized and a consistency check takes place. The

second command shows how the initialized distribution object is passed to the density func-

tion. Then a student-t distribution is fitted to the daily log-returns of the company Novartis.

The fitted distribution object is passed to the quantile function. Since the fitted distribution

object inherits from the distribution object this constitutes no problem. The generic methods

hist, mean and vcov are defined for distribution objects inheriting from classes ”ghypuv” and

”ghypbase”, respectively.
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> data(smi.stocks)

> univariate.ghyp.object <- ghyp(lambda = -2, alpha.bar = 0.5,

+ mu = 10, sigma = 5, gamma = 1)

> dghyp(10:14, univariate.ghyp.object)

[1] 0.09967129 0.09923090 0.09078867 0.07723714 0.06207470

> fitted.ghyp.object <- fit.tuv(smi.stocks[, "Novartis"], silent = T)

> qghyp(c(0.01, 0.05), fitted.ghyp.object)

[1] -0.03622398 -0.01980706

> hist(fitted.ghyp.object, legend.cex = 0.7)

> mean(fitted.ghyp.object)

[1] 0.0001696209

> vcov(univariate.ghyp.object)

[1] 26.54375

F.3 Fitting generalized hyperbolic distributions to data

A multivariate GH distribution is fitted to the daily returns of four swiss blue chips Credit

Suisse, Nestle, Swisscom and Swiss Re. A pairs plot and four histogramms are plotted in

order to do some graphical diagnostics of the accuracy of the fit.

> fitted.stocks <- fit.ghypmv(data = smi.stocks[1:400, c("CS",

+ "Nestle", "Swisscom", "Swiss.Re")], silent = TRUE)

> pairs(fitted.stocks, cex = 0.5, legend.cex = 0.5)
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’ghypmv’ pairwise plot.
Colnames: CS, Nestle, Swisscom, Swiss.Re

> par(mfrow = c(2, 2))

> for (i in 1:4) {

+ hist(redim(fitted.stocks, i), legend = FALSE,

+ main = colnames(ghyp.data(fitted.stocks))[i])

+ }
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F.4 Portfolio optimization

In the following a portfolio is created and optimized with respect to the variance, quantile

and expected-shortfall. In the case of a normal distribution the result is exactly the same and

does not depend on the method. When the returns are skewed or leptocurtic this procedure

gives quite different results for each of the optimization criterion. Hence we build a synthetic

skewed and leptocurtic multivariate GH distribution and see what happens. The pairs plot

emphasizes the non-normality of the return distribution.

> smi.stock.params <- ghyp.params(fitted.stocks, type = "alpha.bar")

> smi.stock.params$alpha.bar <- 0.35

> smi.stock.params$gamma <- smi.stock.params$gamma - 0.005 * (4:1)

> smi.stock.params$mu <- smi.stock.params$mu + 0.005 * (4:1)
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> skewed.returns <- do.call("ghyp", smi.stock.params)

> pairs(skewed.returns, rghyp(400, skewed.returns), cex = 0.5,

+ legend.cex = 0.5)
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The following figure shows the distribution of the optimized portfolio with respect to the

variance, quantile and expected shortfall. One can see that the skewness is negative when

optimizing with respect to the variance whereas the skewness is positive when optimizing

with respect to the quantile or expected shortfall. Since market risks are mostly measured in

terms of value at risk (VaR) or expected shortfall one could mitigate the risk by optimizing

portfolios with respect to the qunatile or expected shortfall. Additionally, the variance and

the magnitude of ”upward” fluctuation increases. This results in a higher expected growth

when modelling log-returns.
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