Generalised Shape Constraints

(Draft)

Charlotte Maia

October 16, 2011

Abstract

This vignette provides an overview of the gsc package for representing
generalised shape constraints and transforming regularly spaced series to
satisfy those constraints. The author regards generalised shape constraints
as sets of constraints on the signs of the zeroth, first, second and third
derivatives. Quadratic programming is used to implement such trans-
formations, which (unfortunately) tend to produce angular curves. Cur-
rently, the objective function incorporates a roughness penalty to reduce
this problem. However, this approach requires a roughness parameter,
which creates further problems.

1 Introduction

This package provides a function for transforming a regularly spaced se-
ries, such that the transformed series satisfies a set of shape constraints.
For short regularly spaced series, the transformation can be used as a stand
alone smoothing technique. For long or irregularly spaced series, the data
needs to smoothed first, via another method, then the transformation can
be applied to the intermediate series.

The author uses the term generalised shape constraints, to describe
shape constraints that accommodate an almost arbitrary combination of
constraints of the signs of a smooth function’s values and it’s first few
derivatives or a regularly spaced series approximating that function. Cur-
rently, constraints can be applied to the zeroth (the function itself), first,
second or third derivatives. A common example is a convex:increasing
function which has positive first and second derivatives.

Piece-wise constraints are supported and we could fit a convex-concave
function, with a knot specifying where the convexity changes from positive
to negative. It’s worth noting that some convex-concave curves can be
reformulated by constraining the third derivative. However, there are
many exceptions to this.

The transformation is accomplished via quadratic programming and
this package makes use of the quadprog package. The formulation as a
quadratic program is partially described in an appendix.

Unfortunately, transformations can produce angular curves.

The current version of this package, includes a roughness penalty. The
penalty is formulated as the sum of the squares of the transformed series,
after differencing it a few times, to approximate a higher order derivative.

The roughness penalty reduces the angularity problem, however it re-
quires a roughness parameter, which is awkward to determine.

Currently, if the parameter is too high, the transformation fails, pre-
sumably due to an absence of an optimal solution. To avoid this problem,
the examples used in this vignette use a default parameter, which is as-
sumed to be safe. The examples could be improved by experimenting with
the parameter.

Note that this package should be regarded as unstable and experimen-
tal, this package’s functions may be changed in the future.

In addition to the angularity issues, there are some minor issues with
piecewise-wise constraints, especially with constant segments.

2 Generalised Shape Constraints

A generalised shape constraint (gsc) object is created by calling the gsc
function. A trivial gsc object, specifying no constraints can be created as
follows:

> gsc ()
gsc object
sO: none
sl: none
s2: none
s3: none

knots: none

Shape constraints for a particular derivative are specified using a sin-
gle string, consisting of the symbols “0” for constant, “+” for positive
(strictly speaking, non-decreasing), “-” for negative (strictly speaking, non-
increasing) and “?” for unconstrained. For a global constraint (where there
are no knots), the string is a single symbol. For piece-wise constraints,
in principle, the number of constraint symbols should match the number
of segments (the number of knots plus one), however a single symbol is
replicated.

So “0+-?7” refers to “constant-positive-negative-unconstrained”.

The first four arguments of the gsc function describe the zeroth, first,
second and third derivatives. Hence to create a gsc object representing a
positive first derivative (increasing), we write:

> #increasing
> gSC (, u+u)

gsc object
sO: none
sl: +

s2: none
s3: none
knots: none

For a positive second derivative (convex):

> #convex
> gsc (,,"+")

gsc object
sO: none
sl: none
s2: +

s3: none

knots: none

For an convex:increasing constraint:

> #convex:increasing
> gsc (’ H+ll’ H+H)

gsc object
sO: none
sl: +

s2: +

s3: none

knots: none

For piecewise constraints we need to specify internal knots. So an
increasing-constant-increasing constraint with knots at 10 and 20 would
be:

> #increasing-constant-increasing
> gsc (,"+0+", knots=c (10, 20))

gsc object
sO: none
sl: +0+
s2: none
s3: none

knots: 10, 20

Note that, in general, the knots need to be elements of the = values of
the series we wish to transform. More on this later.

Where the constraint on one derivative is intended to be global and
another is intended to be piecewise we can take advantage of replication.
So for a constraint that’s globally positive (in it’s zeroth derivative) and
piecewise straight-convex-concave with knots at 50 and 200:

> #straight-convex-concave:positive
> gsc ("+",,"0+-", knots=c (50, 200))

sO: +++
sl: none
s2: O0+-
s3: none

knots: 50, 200

3 Transformation Overview

The function gsc_solve is used to transform a series, re-iterating that the
series needs to be regularly spaced. The current version of the function,
takes three main arguments:

> args (gsc_solve)

function (m, x, y, order = 4, reweight = TRUE, p = 0.98)
NULL

Where m is a gsc object, x and y represent an unconstrained series
and the other arguments control the way the roughness penalty is com-
puted. The function returns a vector (which I denote v), representing the
transformed values of y.

Increasing the order (two to six) or increasing the the roughness pa-
rameter p (0 < p < 1) increases the smoothness. However, if the values
are too high, then an error is produced, which I need to explore further.

The values of x don’t effect the solution, except where piece-wise con-
straints are used.

4 Convex:Increasing Example

Some simulated data (approximately quadratic):
>n = 100

> x = seq (0, 10, length=n)

>y =x"2+ 8 * rnorm (n)

> plot (x, y, type="1")

40 60 80 100
| | |

20

A gsc object (convex-increasing):
>m = gsc (,"+", "+")

Compute the transformed series:
> v = gsc_solve (m, x, y)

> plot (x, y, type="1l", main="transformed series in blue")
> lines (x, v, col="blue")

transformed series in blue

100
|

60
|

40

20

5 Third Derivative Example

We may be able to use a constraint on the third derivative to transform the
inverse of an empirical CDF. Actually this approach is incorrect, however
I didn’t realise it until I finished writing the vignette, so I decided to leave
in...

Giving a random sample, sorted with no duplicates:

> n_raw = 80

> x = unique (rnorm (n_raw))
> n = length (x)

> x = sort (x)

‘We can compute cumulative probabilities, corresponding to it’s quan-
tiles:

>p=(1:n) /n

Note that whilst the above calculation for p is suitable for step func-
tions, it’s unsuitable for continuous functions, however, I'll use it anyway,
for simplicity.

The series z and p (which is irregular in x) gives us the ECDF:

> plot (x, p, type="1")

1.0

0.6

0.4

0.2

0.0

Whilst it’s irregular in z, it’s regular in p, hence we can apply a con-
straint to the third (and first) derivative, using the transposed series:
>m = gSC (’u+n,’u+u)
> v = gsc_solve (m, p, x)

> plot (x, p, type="1")
> lines (v, p, col="blue")

1.0

0.6

0.4

0.2

0.0

Note that contrary to other sections of this vignette, v is the trans-
formed x values rather than the transformed y values.

At first glance, it may seem like a reasonable curve, however some very
rough numerical differentiation, exposes it’s problems.

> #resample first, series x_ and p_

> n_ = 200
> x_ = seq (min (v), max (v), length=n_)
>p_=c (1 / n, numeric (a_ - 2), 1)
> for (i in 2:(n_ - 1))

{ k = sum (x_ [i] >= v)

p_ [i] =k /n+ (x_ [i] - v [k]) / (v [k + 1] - v [kK]) / n

}
> #differentiate
>dx = (x_ [n_] - x_ [1]) / (n_ - 1)
> dp = diff (p_)
> midpoints = x_ [-n_] + dx / 2
> density = dp / dx

v

plot (midpoints, density, type="1", main="poor series")

poor series

density
0.2 0.3 0.4

0.1

midpoints

6 Concave-Straight-Convex Example

More simulated data.

= 107

= seq (-5, 10, length=n)

= rep (0, n)

[x < 0] =x [x <0]°3

[x >5] = (x [x >5] -5)73
y =y + 6 * rnorm (n)

NN < X B
|

V V.V VvV Vv Vv

> plot (x, y, type="1")

100
|

50
|

-50

-100

In general, the knots we use need to be elements of z. If the knots
aren’t elements of x then each knot defines an interval between two points,
where there are no constraints.

Intuitively, there are knots at zero and five, however these need to be
adjusted to satisfy the criteria above.

> closest = function (x, k)

{ dist = abs (x - k)
i = which.min (dist)
x [i]
}
> k1 = closest (x, 0)

> k2 = closest (x, 5)
‘We can regard the series as a concave-straight-convex curve:

>m = gsc (,"+++", "-0+", knots=c (k1, k2))

>m

gsc object
sO: none
sl: +++

s2: -0+
s3: none

knots: -0.0471698113207548, 5.04716981132075

10

Note that we could constrain the second segment’s first derivative to
produce a constant segment, however the series tends to be slightly jagged.
If we do this we need to remove the second segment’s second derivative
constraint of straightness. I've added further increasing constraints.

> v = gsc_solve (m, x, y)
> plot (x, y, type="1")

> lines (x, v, col="blue")
> abline (v=c (k1, k2), 1lty=2)

100
|

-50

-100

Appendix: Quadratic Program
The package minimises the following function:

(1 — p)expr1 + (p)expre

For the second order case, the the subexpressions above expand as

follows:
expr; — Z(yl - v¢)2
Vi

expra — Z (V%it2) — 20541 + vp)°?
Vi€l (n—2)

11

Where y is the (constant) untransformed series, v is the (unknown)
transformed series (to be solved for) and the expression Vi € 1 : (n — 2)
implies that we iterate over all indices, except the last two.

Noting that p is the weight of the roughness penalty and the second
subexpression is the unweighted roughness penalty.

For third order case the second subexpression is replaced by:

exprg — Z (1)[7;+3] - 3U[¢+2] + 3U[¢+1] - U[i])Q
Viel:(n—3)

For the fourth:

exprg — Z (Via) — 4V[ig3) + 6V o) — AVpiga] + v[i])g
Viel:(n—4)

Formulation of the constraints is more complex.

The previous version of this package didn’t use a roughness penalty
and I might return to that approach. Future versions may incorporate
smoothness (or roughness) into the constraints or formulate the roughness
penalty differently.

12

