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Abstract

This vignette provides some worked examples of the analysis of multivariate linear
models (MvLM s) with graphical methods for visualizing results using the heplots pack-
age and the candisc package. The emphasis here is on using these methods in R, and
understanding how they help reveal aspects of these models that might not be apparent
from other graphical displays. No attempt is made to describe the theory of MvLM s
or the statistical details behind HE plots and their reduced-rank canonical cousins. For
that, see |Fox et al.|(2009); [Friendly| (2007} [2006).
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1 MANOVA Designs

1.1 Plastic film data

An experiment was conducted to determine the optimum conditions for extruding plastic film.
Three responses, tear resistance, film gloss and film opacity were measured in relation to
two factors, rate of extrusion and amount of an additive, both of these being set to two
values, High and Low. The design is thus a 2 x 2 MANOVA, with n = 5 per cell. This
example illustrates 2D and 3D HE plots, the difference between “effect” scaling and “evidence”
(significance) scaling, and visualizing composite linear hypotheses.

We begin with an overall MANOVA for the two-way MANOVA model. Because each effect
has 1 df, all of the multivariate statistics are equivalent, but we specify test.statistic="Roy"
because Roy’s test has a natural visual interpretation in HE plots.

> plastic.mod <- Im(cbind(tear, gloss, opacity) ~ ratexadditive, data=Plastic)
> Anova(plastic.mod, test.statistic="Roy")

Type II MANOVA Tests: Roy test statistic
Df test stat approx F num Df den Df Pr(>F)

rate 1 1.619 7.55 3 14 0.003 **
additive 1 0.912 4.26 3 14 0.025 =
rate:additive 1 0.287 1.34 3 14 0.302
Signif. codes: O 'sxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1



For the three responses jointly, the main effects of rate and additive are significant, while
their interaction is not. In some approaches to testing effects in multivariate linear models
(MvLM), significant multivariate tests are often followed by univariate tests on each of the
responses separately to determine which responses contribute to each significant effect. In
R, these analyses are most convieniently performed using the update() method for the mlm
object plastic.mod.

> Anova(update(plastic.mod, tear ~ .))

Anova Table (Type II tests)

Response: tear

Sum Sq Df F value Pr(>F)
rate 1.74 1 15.8 0.0011 **
additive 0.76 1 6.9 0.0183 x*
rate:additive 0.00 1 0.0 0.9471
Residuals 1.76 16
Signif. codes: O '#xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

> Anova(update(plastic.mod, gloss ~ .))

Anova Table (Type II tests)

Response: gloss
Sum Sq Df F value Pr(>F)

rate 1.300 1 7.92 0.012 *

additive 0.612 1 3.73 0.071 .

rate:additive 0.544 1 3.32 0.087 .

Residuals 2.628 16

Signif. codes: O '#xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

> Anova(update(plastic.mod, opacity ~ .))

Anova Table (Type II tests)

Response: opacity

Sum Sq Df F value Pr(>F)
rate 0.4 1 0.10 0.75
additive 4.9 1 1.21 0.29
rate:additive 4.0 1 0.98 0.34
Residuals 64.9 16

The results above show significant main effects for tear, a significant main effect of rate for
gloss, and no significant effects for opacity, but they don’t shed light on the nature of these
effects. Traditional univariate plots of the means for each variable separately are useful, but
they don’t allow visualization of the relations among the response variables.

We can visualize these effects for pairs of variables in an HE plot, showing the “size” and
orientation of hypothesis variation (H) in relation to error variation (E) as ellipsoids. When,
as here, the model terms have 1 degree of freedom, the H ellipsoids degenerate to a line.

> # Compare evidence and effect scaling

> colors = c("red", "darkblue", "darkgreen", "brown")

> heplot(plastic.mod, size="evidence", col=colors, cex=1.25)

> heplot(plastic.mod, size="effect", add=TRUE, lwd=4, term.labels=FALSE, col=colors)



With effect scaling, both the H and E sums of squares and products matrices are both
divided by the error df, giving multivariate analogs of univariate measures of effect size, e.g.,
(y1—y2)/s. With significance scaling, the H ellipse is further divided by A, the critical value
of Roy’s largest root statistic. This scaling has the property that an H ellipse will protrude
somewhere outside the E ellipse iff the multivariate test is significant at level a. Figure
shows both scalings, using a thinner line for significance scaling. Note that the (degenerate)
ellipse for additive is significant, but does not protrude outside the E ellipse in this view.
All that is guarranteed is that it will protrude somewhere in the 3D space of the responses.

By design, means for the levels of interaction terms are not shown in the HE plot, be-
cause doing so in general can lead to messy displays. We can add them here for the term
rate:additive as follows:

## add interaction means
intMeans <- termMeans(plastic.mod, 'rate:additive', abbrev.levels=2)

points(intMeans[,1], intMeans[,2], pch=18, cex=1.2, col="brown")

text (intMeans[,1], intMeans[,2], rownames(intMeans), adj=c(0.5,1), col="brown")
lines(intMeans[c(1,3),1], intMeans[c(1,3),2], col="brown")
lines(intMeans[c(2,4),1], intMeans[c(2,4),2], col="brown")
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Figure 1: HE plot for effects on tear and gloss according to the factors rate, additive
and their interaction, rate:additive. The thicker lines show effect size scaling, the thinner
lines show significance scaling.

The factor means in this plot (Figure [I) have a simple interpretation: The high rate
level yields greater tear resistance but lower gloss than the low level. The high additive
amount produces greater tear resistance and greater gloss.

The rate:additive interaction is not significant overall, though it approaches significance
for gloss. The cell means for the combinations of rate and additive shown in this figure

#rownames (intMeans) <- apply(expand.grid(c('Lo','Hi'), c('Lo', 'Hi')), 1, paste, collapse=':"')



suggest an explanation, for tutorial purposes: with the low level of rate, there is little
difference in gloss for the levels of additive. At the high level of rate, there is a larger
difference in gloss. The H ellipse for the interaction of rate:additive therefore “points”
in the direction of gloss indicating that this variable contributes to the interaction in the
multivariate tests.

In some MANOVA models, it is of interest to test sub-hypotheses of a given main effect
or interaction, or conversely to test composite hypotheses that pool together certain effects
to test them jointly. All of these tests (and, indeed, the tests of terms in a given model) are
carried out as tests of general linear hypotheses in the MvLM.

In this example, it might be useful to test two composite hypotheses: one corresponding
to both main effects jointly, and another corresponding to no difference among the means of
the four groups (equivalent to a joint test for the overall model). These tests are specified in
terms of subsets or linear combinations of the model parameters.

> plastic.mod

Call:
Im(formula = cbind(tear, gloss, opacity) ~ rate * additive, data = Plastic)
Coefficients:
tear gloss opacity
(Intercept) 6.30 9.56 3.74
rateHigh 0.58 -0.84 -0.60
additiveHigh 0.38 0.02 0.10

rateHigh:additiveHigh 0.02 0.66 1.78

Thus, for example, the joint test of both main effects tests the parameters rateHigh and
additiveHigh.

> print(linearHypothesis(plastic.mod, c("rateHigh", "additiveHigh"), title="Main effects"), SSP=FALSE)

Multivariate Tests: Main effects
Df test stat approx F num Df den Df Pr(>F)

Pillai 2 0.71161 2.7616 6 30 0.029394 =*
Wilks 2 0.37410 2.9632 6 28 0.022839 *
Hotelling-Lawley 2  1.44400 3.1287 6 26 0.019176 *
Roy 2 1.26253 6.3127 3 15 0.005542 *:x
Signif. codes: 0 'x*x' 0.001 '*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

> print(linearHypothesis(plastic.mod, c("rateHigh", "additiveHigh", "rateHigh:additiveHigh"), title="Groups"), S

Multivariate Tests: Groups
Df test stat approx F num Df den Df Pr(>F)

Pillai 3 1.14560  3.2948 9 48.000 0.003350 *x*
Wilks 3 0.17802  3.9252 9 34.223 0.001663 **
Hotelling-Lawley 3  2.81752 3.9654 9 38.000 0.001245 **
Roy 3 1.86960 9.9712 3 16.000 0.000603 **x*
Signif. codes: O 'xxx' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Correspondingly, we can display these tests in the HE plot by specifying these tests in
the hypothesis argument to heplot(), as shown in Figure

Finally, a 3D HE plot can be produced with heplot3d(), giving Figure [3 This plot was
rotated interactively to a view that shows both main effects protruding outside the error
ellipsoid.

> colors = c("pink", "darkblue", "darkgreen", "brown")
> heplot3d(plastic.mod, col=colors)



> heplot(plastic.mod, hypotheses=1list("Group" =
c("rateHigh", "additiveHigh", "rateHigh:additiveHigh ")),
col=c(colors, "purple"),
lwd=c(2, 3, 3, 3, 2), cex=1.25)

> heplot(plastic.mod, hypotheses=list("Main effects" =
c("rateHigh", "additiveHigh")), add=TRUE,
col=c(colors, "darkgreen"), cex=1.25)
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Figure 2: HE plot for tear and gloss, supplemented with ellipses representing the joint tests
of main effects and all group differences

1.2 Effects of physical attractiveness on mock jury decisions

In a social psychology study of influences on jury decisions by (1989), male partici-
pants (prison inmates) were shown a picture of one of three young women. Pilot work had

indicated that one woman was beautiful, another of average physical attractiveness, and the
third unattractive. Participants rated the woman they saw on each of twelve attributes on
scales of 1-9. These measures were used to check on the manipulation of “attractiveness” by
the photo.

Then the participants were told that the person in the photo had committed a Crime,
and asked to rate the seriousness of the crime and recommend a prison sentence, in Years.
The data are contained in the data frame MockJuryH

> str(MockJury)

!The data were made available courtesy of Karl Wuensch, from http://core.ecu.edu/psyc/wuenschk/
StatData/PLASTER.dat


http://core.ecu.edu/psyc/wuenschk/StatData/PLASTER.dat
http://core.ecu.edu/psyc/wuenschk/StatData/PLASTER.dat
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Figure 3: 3D HE plot for the plastic film data

'data.frame': 114 obs. of 17 variables:

$ Attr : Factor w/ 3 levels "Beautiful","Average",..: 1111111111 ...

$ Crime : Factor w/ 2 levels "Burglary","Swindle": 1 111111111 ...

$ Years :int 10351773723 ...

$ Serious :int 8853994452 .

$ exciting :int 6933115446 .

$ calm :int 9546156988 .

$ independent : int 996 9577 287 .

$ sincere :int 83381569765 .

$ warm :int 5568887617 .

$ phyattr :int 9979888598 .

$ sociable :int 9949997219

$ kind :int 9429455957 .

$ intelligent : int 6 949787999 .

$ strong :int 95599952765 .

$ sophisticated: int 9549996276 .

$ happy :int 5559895268 .

$ ownPA :int 9759796536 .

Sample sizes were roughly balanced for the independent variables in the three conditions of
the attractiveness of the photo, and the combinations of this with Crime:

> table(MockJury$Attr)

Beautiful Average Unattractive
38

> table(MockJury$Attr, MockJury$Crime)

Burglary Swindle

Beautiful 21 18
Average 18 20
Unattractive 20 17



The main questions of interest were: (a) Does attractiveness of the “defendent” influence
the sentence or perceived seriousness of the crime? (b) Does attractiveness interact with the
nature of the crime?

But first, we try to assess the ratings of the photos in relation to the presumed categories
of the independent variable Attr. The questions here are (a) do the ratings of the photos
on physical attractiveness (phyattr) confirm the original classification? (b) how do other
ratings differentiate the photos? To keep things simple, we consider ony a few of the other
ratings in a one-way MANOVA.

> (jury.modl <- 1m( cbind(phyattr, happy, independent, sophisticated) ~ Attr, data=MockJury))

Call:
Im(formula = cbind(phyattr, happy, independent, sophisticated) ~
Attr, data = MockJury)

Coefficients:

phyattr happy independent sophisticated
(Intercept) 8.282 5.369 6.410 6.077
AttrAverage -4.808 0.430 0.537 -1.340
AttrUnattractive -5.390 -1.359 -1.410 -1.753

> Anova(jury.modl, test="Roy")

Type II MANOVA Tests: Roy test statistic
Df test stat approx F num Df den Df Pr(>F)
Attr 2 1.77 48.2 4 109 <2e-16 *x**

Signif. codes: O '#xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Note that Beautiful is the baseline category of Attr, so the intercept term gives the means for
this level. We see that the means are significantly different on all four variables collectively,
by a joint multivariate test. A traditional analysis might follow up with univariate ANOVAs
for each measure separately.

As an aid to interpretation of the MANOVA results We can examine the test of Attr in
this model with an HE plot for pairs of variables, e.g., for phyattr and happy (Figure [4]).
The means in this plot show that Beautiful is rated higher on physical attractiveness than
the other two photos, while Unattractive is rated less happy than the other two. Comparing
the sizes of the ellipses, differences among group means on physical attractiveness contributes
more to significance than do ratings on happy.

> heplot(jury.modl, main="HE plot for manipulation check")

The HE plot for all pairs of variables (Figure [5) shows that the means for happy and
independent are highly correlated, as are the means for phyattr and sophisticated. In
most of these pairwise plots, the means form a triangle rather than a line, suggesting that
these attributes are indeed measuring different aspects of the photos.

With 3 groups and 4 variables, the H ellipsoid has only s = min(dfy,p) = 2 dimensions.
candisc() carries out a canonical discriminant analysis for the MvLM and returns an object
that can be used to show an HE plot in the space of the canonical dimensions. This is plotted
in Figure [6]

> jury.can <- candisc(jury.modl)
> jury.can
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Figure 4: HE plot for ratings of phyattr and happy according to the classification of photos
on Attr

Canonical Discriminant Analysis for Attr:

CanRsq Eigenvalue Difference Percent Cumulative
1 0.639 1.767 1.6 91.33 91.3
2 0.144 0.168 1.6 8.67 100.0

Test of HO: The canonical correlations in the
current row and all that follow are zero

LR test stat approx F num Df den Df Pr(> F)

1 0.309 43.9 4 220 < 2e-16 **x*
2 0.856 18.6 1 111 3.5e-05 **x*
Signif. codes: O 'xxx' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

From this we can see that 91% of the variation among group means is accounted for by the
first dimension, and this is nearly completely aligned with phyattr. The second dimension,
accounting for the remaining 9% is determined nearly entirely by ratings on happy and
independent. This display gives a relatively simple account of the results of the MANOVA
and the relations of each of the ratings to discrimination among the photos.

Proceeding to the main questions of interest, we carry out a two-way MANOVA of the
responses Years and Serious in relation to the independent variables Attr and Crime.
> # influence of Attr of photo and nature of crime on Serious and Years

> jury.mod2 <- 1lm( cbind(Serious, Years) ~ Attr * Crime, data=MockJury)
> Anova(jury.mod2, test="Roy")



> pairs(jury.modl)
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Figure 5: HE plots for all pairs of ratings according to the classification of photos on Attr

Type II MANOVA Tests: Roy test statistic
Df test stat approx F num Df den Df Pr(>F)

Attr 2 0.0756 4.08 2 108 0.020 *

Crime 1 0.0047 0.25 2 107 0.778
Attr:Crime 2 0.0501 2.71 2 108 0.071 .
Signif. codes: O 'x*xx' 0.001 '*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

We see that there is a nearly significant interaction between Attr and Crime and a strong
effect of Attr.

The HE plot shows that the nearly significant interaction of Attr:Crime is mainly in
terms of differences among the groups on the response of Years of sentence, with very little
contribution of Serious. We explore this interaction in a bit more detail below. The main
effect of Attr is also dominated by differences among groups on Years.

If we assume that Years of sentence is the main outcome of interest, it also makes sense
to carry out a step-down test of this variable by itself, controlling for the rating of seriousness
(Serious) of the crime. The model jury.mod3 below is equivalent to an ANCOVA for Years.
> # stepdown test (ANCOVA), controlling for Serious

> jury.mod3 <- 1lm( Years ~ Serious + Attr * Crime, data=MockJury)
> t(coef (jury.mod3))

(Intercept) Serious AttrAverage AttrUnattractive CrimeSwindle
[1,] 0.011612 0.83711 0.39586 0.60285 -0.26302



> opar <- par (xpd=TRUE)
> heplot(jury.can, prefix="Canonical dimension", main="Canonical HE plot")
> par (opar)
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Figure 6: Canonical discriminant HE plot

AttrAverage:CrimeSwindle AttrUnattractive:CrimeSwindle
[1,] -0.53701 2.5123

> Anova(jury.mod3)

Anova Table (Type II tests)

Response: Years
Sum Sq Df F value Pr(>F)

Serious 379 1 41.14 3.9e-09 **x*

Attr 74 2 4.02 0.021 *

Crime 4 1 0.43 0.516

Attr:Crime 49 2 2.67 0.074 .

Residuals 987 107

Signif. codes: O 'xxx' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Thus, even when adjusting for Serious rating, there is still a significant main effect of Attr
of the photo, but also a hint of an interaction of Attr with Crime. The coefficient for Serious
indicates that participants awarded 0.84 additional years of sentence for each 1 unit step on
the scale of seriousness of crime.

A particularly useful method for visualizing the fitted effects in such univariate response
models is provided by the effects package. By default al1Effects() calculates the predicted
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> heplot (jury.mod2)
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Figure 7: HE plot for the two-way MANOVA for Years and Serious

values for all high-order terms in a given model, and the plot method produces plots of these
values for each term. The statements below produce Figure

The effect plot for Serious shows the expected linear relation between that variable and
Years. Of greater interest here is the nature of the possible interaction of Attr and Crime
on Years of sentence, controlling for Serious. The effect plot shows that for the crime of
Swindle, there is a much greater Years of sentence awarded to Unattractive defendents.

2  Multivariate Multiple Regression Designs

The ideas behind HE plots extend naturally to multivariate multiple regression (MMRA)
and multivariate analysis of covariance (MANCOVA). In MMRA, the X matrix contains
only quantitative predictors, while in MANCOVA designs, there is a mixture of factors and
quantitative predictors (covariates).

In the MANOVA case, there is often a subtle difference in emphasis: true MANCOVA
analyses focus on the differences among groups defined by the factors, adjusting for (or con-
trolling for) the quantitative covariates. Analyses concerned with homogeneity of regression
focus on quantitative predictors and attempt to test whether the regression relations are the
same for all groups defined by the factors.
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> library(effects)
> jury.eff <- allEffects(jury.mod3)
> plot(jury.eff, ask=FALSE)
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Figure 8: Effect plots for Serious and the Attr * Crime in the ANCOVA model jury.mod3.

2.1 Rohwer data

To illustrate the homogeneity of regression flavor, we use data from a study by Rohwer (given
in Timm, 1975: Ex. 4.3, 4.7, and 4.23) on kindergarten children, designed to determine
how well a set of paired-associate (PA) tasks predicted performance on the Peabody Picture
Vocabulary test (PPVT), a student achievement test (SAT), and the Raven Progressive matrices
test (Raven). The PA tasks varied in how the stimuli were presented, and are called named
(n), still (s), named still (ns), named action (na), and sentence still (ss).

Two groups were tested: a group of n = 37 children from a low socioeconomic status
(SES) school, and a group of n = 32 high SES children from an upper-class, white residential
school. The data are in the data frame Rohwer in the heplots package:

> some (Rohwer ,n=6)

group SES SAT PPVT Raven n s ns na ss
14 1 Lo 30 55 13 2 112 20 17
17 1 Lo 19 66 13 7 12 21 35 27
18 1 Lo 45 54 100 6 6 14 16
21 1 Lo 32 48 16 0 7 9 14 18
37 1 Lo 79 54 14 0 6 6 15 14
57 2 Hi 99 94 16 4 6 14 27 19

At one extreme, we might be tempted to fit separate regression models for each of the
High and Low SES groups. This approach is not recommended because it lacks power and
does not allow hypotheses about equality of slopes and intercepts to be tested directly.

> rohwer.sesl <- 1m(cbind(SAT, PPVT, Raven) ~n + s + ns + na + ss, data=Rohwer, subset=SES=="Hi")
> Anova(rohwer.sesl)

12



Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)

n 1 0.202 2.02 3 24 0.1376

s 1 0.310 3.59 3 24 0.0284 =*

ns 1 0.358 4.46 3 24 0.0126 *

na 1 0.465 6.96 3 24 0.0016 *x*

ss 1 0.089 0.78 3 24 0.5173

Signif. codes: O '#xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

> rohwer.ses2 <- 1lm(cbind(SAT, PPVT, Raven) ~ n + s + ns + na + ss, data=Rohwer, subset=SES=="Lo")
> Anova(rohwer.ses2)

Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)

n 1 0.0384 0.39 3 29 0.764

s 1 0.1118 1.22 3 29 0.321

ns 1 0.2252 2.81 3 29 0.057 .

na 1 0.2675 3.53 3 29 0.027 =

ss 1 0.1390 1.56 3 29 0.220

Signif. codes: O 'xxx' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

This allows separate slopes and intercepts for each of the two groups, but it is difficult to
compare the coefficients numerically.

> coef (rohwer.ses1)

SAT PPVT Raven
(Intercept) -28.46747 39.697090 13.243836
n 3.25713 0.067283 0.059347
s 2.99658 0.369984 0.492444
ns -5.85906 -0.374380 -0.164022
na 5.66622 1.523009 0.118980
ss -0.62265 0.410157 -0.121156

> coef (rohwer.ses2)

SAT PPVT Raven
(Intercept) 4.151060 33.005769 11.173378
n -0.608872 -0.080567 0.210995
s -0.050156 -0.721050 0.064567
ns -1.732395 -0.298303 0.213584
na 0.494565 1.470418 -0.037318
ss 2.247721 0.323965 -0.052143

Nevertheless, we can visualize the results with HE plots, and here we make use of the fact

that several HE plots can be overlaid using the option add=TRUE as shown in Figure [9

> heplot(rohwer.sesl, ylim=c(40,110),col=c("red", "black"), lwd=2, cex=1.2)

> heplot(rohwer.ses2, add=TRUE, col=c("blue", "black"), grand.mean=TRUE, error.ellipse=TRUE, lwd=2, cex=1.2)

> means <- aggregate(cbind(SAT,PPVT) "SES, data=Rohwer, mean)
> text(means%,?], means[,3], labels=means[,1], pos=3, cex=2, col=c("red", "blue"))

We can readily see the difference in means for the two SES groups (High greater on both
variables) and it also appears that the slopes of the predictor ellipses are shallower for the
High than the Low group, indicating greater relation with the SAT score.

Alternatively (and optimistically), we can fit a MANCOVA model that allows different
means for the two SES groups on the responses, but constrains the slopes for the PA covariates
to be equal.
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Figure 9: HE plot for SAT and PPVT, showing the effects for the PA predictors for the High
and Low SES groups separately

> # MANCOVA, assuming equal slopes

> rohwer.mod <- 1lm(cbind(SAT, PPVT, Raven) ~ SES + n + s + ns + na + ss,
data=Rohwer)

> Anova(rohwer.mod)

Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)

SES 1 0.379 12.18 3 60 2.5e-06 *xx

n 1 0.040 0.84 3 60 0.4773

s 1 0.093 2.04 3 60 0.1173

ns 1 0.193 4.78 3 60 0.0047 *x

na 1 0.231 6.02 3 60 0.0012 *x*

ss 1 0.050 1.05 3 60 0.3770

Signif. codes: O 'xxx' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Note that, although the multivariate tests for two of the covariates (ns and na) are
highly significant, univariate multiple regression tests for the separate responses [from sum-
mary (rohwer .mod)| are relatively weak. We can also test the global 5 df hypothesis, B = 0,
that all covariates have null effects for all responses as a linear hypothesis (suppressing display
of the error and hypothesis SSP matrices),

> (covariates <- rownames (coef (rohwer.mod)) [-(1:2)])
[1] unn "S" Ilnsll "na" "SS"

> Regr<-linearHypothesis(rohwer.mod, covariates)
> print(Regr, digits=5, SSP=FALSE)

14



Multivariate Tests:
Df test stat approx F num Df den Df Pr(>F)

Pillai 5 0.66579 3.5369 15 186.00 2.309e-05 *xx*
Wilks 5 0.44179 3.8118 15 166.03 8.275e-06 *xx*
Hotelling-Lawley 5 1.03094 4.0321 15 176.00 2.787e-06 *xx*
Roy 5 0.75745 9.3924 5 62.00 1.062e-06 **x*
Signif. codes: O 'xxx' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Then 2D views of the additive MANCOVA model rohwer .mod and the overall test for all

covariates are produced as follows, giving the plots in Figure

> colors <- c("red", "blue", rep("black",5), "#969696")

> heplot (rohwer.mod, col=colors,
hypotheses=1list("Regr" = c("n", "s", "ns", "na", "ss")),
cex=1.5, lwd=c(2, rep(3,5), 4),
main="(SAT, PPVT, Raven) ~ SES + n + s + ns + na + ss")

> heplot (rohwer.mod, col=colors, variables=c(1,3),
hypotheses=1list("Regr" = c("n", "s", "ns", "na", "ss")),
cex=1.5, lwd=c(2, rep(3,5), 4),
main="(SAT, PPVT, Raven) ~ SES + n + s + ns + na + ss")

(SAT, PPVT, Raven) ~SES+n+s+ns+na+ss (SAT, PPVT, Raven) ~SES+n+s+ns+na+ss
SES Ereor
Regr © gr.

g =]
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Figure 10: HE plot for SAT and PPVT (left) and for SAT and Raven (right) using the MAN-

COVA model

The positive orientation of the Regr ellipses shows that the prediced values for all three
responses are positively correlated (more so for SAT and PPVT). As well, the High SES group

is higher on all responses than the Low SES group.

Alternatively, all pairwise plots among these responses could be drawn using the pairs

function (figure not shown),

> pairs(rohwer.mod, col=colors,
hypotheses=1ist("Regr" = c("n”, "S", "ns", nnan, "SS")),
cex=1.3, lwd=c(2, rep(3,5), 4))

or as a 3D plot, using heplot3d() as shown in Figure

> colors <- c("pink", "blue", rep("black",5), "#969696")
> heplot3d(rohwer.mod, col=colors,
hypotheses=list("Regr" = C("n", "S", “nS", nnan’ "SS")))
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Figure 11: 3D HE plot for the MANCOVA model fit to the Rohwer data

The MANCOVA model, rohwer.mod, has relatively simple interpretations (large effect
of SES, with ns and na as the major predictors) but the test of relies on the assumption of
homogeneity of slopes for the predictors. We can test this as follows, adding interactions of
SES with each of the covariates:
> rohwer.mod2 <- 1m(cbind(SAT, PPVT, Raven) ~ SES * (n + s + ns + na + ss),

data=Rohwer)
> Anova(rohwer.mod2)

Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)

SES 1 0.391 11.78 3 55 4.5e-06 *xx
n 1 0.079 1.57 3 55 0.20638

s 1 0.125 2.62 3 55 0.05952 .
ns 1 0.254 6.25 3 55 0.00100 *x*:x*
na 1 0.307 8.11 3 55 0.00015 *x*x*
ss 1 0.060 1.17 3 55 0.32813
SES:n 1 0.072 1.43 3 55 0.24417
SES:s 1 0.099 2.02 3 55 0.12117
SES:ns 1 0.118 2.44 3 55 0.07383 .
SES:na 1 0.148 3.18 3 55 0.03081 =*
SES:ss 1 0.057 1.12 3 55 0.35094
Signif. codes: O 'x*xx' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

It appears from the above that there is only weak evidence of unequal slopes from the separate
SES: terms. The evidence for heterogeneity is stronger, however, when these terms are tested
collectively using the linearHypothesis() function:

> (coefs <- rownames (coef (rohwer.mod?2)))

[1] n (Intercept) n "SESLO" Ilnll ||S|| "nS n
[6] "na" "ss" "SESLo:n" "SESLo:s" "SESLo:ns"
[11] "SESLo:na" "SESLo:ss"
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> print(linearHypothesis(rohwer.mod2, coefs[grep(":", coefs)]), SSP=FALSE)

Multivariate Tests:
Df test stat approx F num Df den Df Pr(>F)

Pillai 5 0.41794  1.8452 15 171.00 0.032086 *
Wilks 5 0.62358 1.8936 15 152.23 0.027695 *
Hotelling-Lawley 5  0.53865 1.9272 15 161.00 0.023962 *
Roy 5 0.38465 4.3850 5 57.00 0.001905 *x*
Signif. codes: O 'xxx' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

This model (rohwer.mod2) is similar in spirit to the two models (rohwer.sesl and ro-
hwer.ses2) fit for the two SES groups separately and show in Figure |§|, except that model
rohwer.mod2 assumes a common within-groups error covariance matrix and allows overall
tests.

To illustrate model rohwer.mod2, we construct an HE plot for SAT and PPVT shown in
Figure To simplify this display, we show the hypothesis ellipses for the overall effects of
the PA tests in the baseline high-SES group, and a single combined ellipse for all the SESLo:
interaction terms that we tested previously, representing differences in slopes between the
low and high-SES groups.

Because SES is “treatment-coded” in this model, the ellipse for each covariate represents
the hypothesis that the slopes for that covariate are zero in the high-SES baseline category.
With this parameterization, the ellipse for Slopes represents the joint hypothesis that slopes
for the covariates do not differ in the low-SES group.

> colors <- c("red", "blue", rep("black",5), "#969696")
> heplot (rohwer.mod2, col=c(colors, "brown"),

termS=C("sES" llnll IISII llns n llnall IISSII
hypotheses=1list("Regr" = c("n", "s", "ns", "na", "ss"),
"Slopes" = coefs[grep(":", coefs)]))
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Figure 12: HE plot for SAT and PPVT, fitting the model rohwer.mod2 that allows unequal
slopes for the covariates.
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Comparing Figure for the heterogeneous slopes model with Figure (left) for the
homogeneous slopes model, it can be seen that most of the covariates have ellipses of similar
size and orientation, reflecting simlar evidence against the respective null hypotheses, as does
the effect of SES, showing the greater performance of the high-SES group on all response
measures. Somewhat more subtle, the error ellipse is noticeably smaller in Figure[I2] reflecting
the additional variation accounted for by differences in slopes.
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