hypr
is a package for easy translation between experimental (null) hypotheses, hypothesis matrices and contrast matrices, as used for coding factor contrasts in linear regression models. The package can be used to derive contrasts from hypotheses and vice versa.
The hypr()
function accepts any set of null hypothesis equations as comma-separated arguments. An empty hypr
object can be created by calling the function without arguments, i.e. empty parantheses.
trtC <- hypr(mu1~0, mu2~mu1, mu3~mu1, mu4~mu1)
If you want to provide names for contrasts, you can name the function arguments as follows but this is totally optional:
trtC <- hypr(base = mu0~0, trt1 = mu1~mu0, trt2 = mu2~mu0, trt3 = mu3~mu0)
When calling this function, a hypr
object named trtC
is generated which contains all four hypotheses from above as well as the hypothesis and contrast matrices derived from those. We can display a summary like any other object in R:
trtC
## hypr object containing 4 null hypotheses:
## H0.base: 0 = mu0
## H0.trt1: 0 = mu1 - mu0
## H0.trt2: 0 = mu2 - mu0
## H0.trt3: 0 = mu3 - mu0
##
## Hypothesis matrix (transposed):
## base trt1 trt2 trt3
## mu0 1 -1 -1 -1
## mu1 0 1 0 0
## mu2 0 0 1 0
## mu3 0 0 0 1
##
## Contrast matrix:
## base trt1 trt2 trt3
## mu0 1 0 0 0
## mu1 1 1 0 0
## mu2 1 0 1 0
## mu3 1 0 0 1
These properties can also be directly accessed with the appropriate methods:
formula(trtC) # a list of equations
## $base
## mu0 ~ 0
##
## $trt1
## mu1 - mu0 ~ 0
##
## $trt2
## mu2 - mu0 ~ 0
##
## $trt3
## mu3 - mu0 ~ 0
levels(trtC) # a vector of corresponding factor levels (variables in equations)
## [1] "mu0" "mu1" "mu2" "mu3"
names(trtC) # a vector of corresponding contrast names
## [1] "base" "trt1" "trt2" "trt3"
hmat(trtC) # the hypothesis matrix
## mu0 mu1 mu2 mu3
## base 1 0 0 0
## trt1 -1 1 0 0
## trt2 -1 0 1 0
## trt3 -1 0 0 1
thmat(trtC) # the transposed hypothesis matrix (as displayed in the summary)
## base trt1 trt2 trt3
## mu0 1 -1 -1 -1
## mu1 0 1 0 0
## mu2 0 0 1 0
## mu3 0 0 0 1
cmat(trtC) # the contrast matrix
## base trt1 trt2 trt3
## mu0 1 0 0 0
## mu1 1 1 0 0
## mu2 1 0 1 0
## mu3 1 0 0 1
All of these methods can also be used to manipulate hypr
objects. For example, if you would like to create a hypr
object from a given contrast matrix, you could create an empty hypr
object and then update its contrast matrix:
otherC <- hypr()
cmat(otherC) <- cbind(int = 1, contr.treatment(4)) # add intercept to treatment contrast
otherC
## hypr object containing 4 null hypotheses:
## H0.int: 0 = X1
## H0.2: 0 = -X1 + X2
## H0.3: 0 = -X1 + X3
## H0.4: 0 = -X1 + X4
##
## Hypothesis matrix (transposed):
## int 2 3 4
## X1 1 -1 -1 -1
## X2 0 1 0 0
## X3 0 0 1 0
## X4 0 0 0 1
##
## Contrast matrix:
## int 2 3 4
## X1 1 0 0 0
## X2 1 1 0 0
## X3 1 0 1 0
## X4 1 0 0 1
You can always use cmat
to derive the complete contrast matrix from a hypr
object. Note, however, that depending on the contrast scheme used, it might be necessary to remove the intercept contrast from the matrix before assigning it to a factor for regression analysis.
For example, the trtC
object from above contains such an intercept:
cmat(trtC)
## base trt1 trt2 trt3
## mu0 1 0 0 0
## mu1 1 1 0 0
## mu2 1 0 1 0
## mu3 1 0 0 1
You can set remove_intercept=TRUE
to drop the intercept:
cmat(trtC, remove_intercept = TRUE)
## trt1 trt2 trt3
## mu0 0 0 0
## mu1 1 0 0
## mu2 0 1 0
## mu3 0 0 1
Other contrast coding schemes such as Helmert contrasts do not yield an intercept term:
helC <- hypr(m2~m1, m3~(m1+m2)/2, m4~(m1+m2+m3)/3)
cmat(helC)
## [,1] [,2] [,3]
## m1 -1/2 -1/3 -1/4
## m2 1/2 -1/3 -1/4
## m3 0 2/3 -1/4
## m4 0 0 3/4
Setting remove_intercept=TRUE
would throw an error because the function cannot find the intercept column.
cmat(helC, remove_intercept = TRUE) # throws an error
Therefore, when you are unsure whether to set remove_intercept
to TRUE
or FALSE
(default) but would like to use the sensible default of removing an intercept when there is one, you can set remove_intercept=NULL
. A useful wrapper function which uses this as a default is contr.hypothesis
:
contr.hypothesis(trtC) # removes column `base` column
## trt1 trt2 trt3
## mu0 0 0 0
## mu1 1 0 0
## mu2 0 1 0
## mu3 0 0 1
contr.hypothesis(helC) # removes nothing
## [,1] [,2] [,3]
## m1 -0.5 -0.3333333 -0.25
## m2 0.5 -0.3333333 -0.25
## m3 0.0 0.6666667 -0.25
## m4 0.0 0.0000000 0.75
contr.hypothesis
can also come in handy if you don’t really need the hypr
object but would only like to specify the hypotheses and return the contrast matrix. In that case, you can just use contr.hypothesis
like the hypr
function:
contr.hypothesis(m1~0, m2~m1, m3~m1)
## [,1] [,2]
## m1 0 0
## m2 1 0
## m3 0 1
contr.hypothesis(m2~m1, m3~(m1+m2)/2, m4~(m1+m2+m3)/3)
## [,1] [,2] [,3]
## m1 -0.5 -0.3333333 -0.25
## m2 0.5 -0.3333333 -0.25
## m3 0.0 0.6666667 -0.25
## m4 0.0 0.0000000 0.75