Introduction to hypr

Maximilian M. Rabe

Oct 9th, 2019

Background

hypr is a package for easy translation between experimental (null) hypotheses, hypothesis matrices and contrast matrices, as used for coding factor contrasts in linear regression models. The package can be used to derive contrasts from hypotheses and vice versa.

Creating a hypr object

The hypr() function accepts any set of null hypothesis equations as comma-separated arguments. An empty hypr object can be created by calling the function without arguments, i.e. empty parantheses.

trtC <- hypr(mu1~0, mu2~mu1, mu3~mu1, mu4~mu1)

If you want to provide names for contrasts, you can name the function arguments as follows but this is totally optional:

trtC <- hypr(base = mu0~0, trt1 = mu1~mu0, trt2 = mu2~mu0, trt3 = mu3~mu0)

When calling this function, a hypr object named trtC is generated which contains all four hypotheses from above as well as the hypothesis and contrast matrices derived from those. We can display a summary like any other object in R:

trtC
## hypr object containing 4 null hypotheses:
## H0.base: 0 = mu0
## H0.trt1: 0 = mu1 - mu0
## H0.trt2: 0 = mu2 - mu0
## H0.trt3: 0 = mu3 - mu0
## 
## Hypothesis matrix (transposed):
##     base trt1 trt2 trt3
## mu0  1   -1   -1   -1  
## mu1  0    1    0    0  
## mu2  0    0    1    0  
## mu3  0    0    0    1  
## 
## Contrast matrix:
##     base trt1 trt2 trt3
## mu0 1    0    0    0   
## mu1 1    1    0    0   
## mu2 1    0    1    0   
## mu3 1    0    0    1

These properties can also be directly accessed with the appropriate methods:

formula(trtC) # a list of equations
## $base
## mu0 ~ 0
## 
## $trt1
## mu1 - mu0 ~ 0
## 
## $trt2
## mu2 - mu0 ~ 0
## 
## $trt3
## mu3 - mu0 ~ 0
levels(trtC) # a vector of corresponding factor levels (variables in equations)
## [1] "mu0" "mu1" "mu2" "mu3"
names(trtC) # a vector of corresponding contrast names
## [1] "base" "trt1" "trt2" "trt3"
hmat(trtC) # the hypothesis matrix
##      mu0 mu1 mu2 mu3
## base  1   0   0   0 
## trt1 -1   1   0   0 
## trt2 -1   0   1   0 
## trt3 -1   0   0   1
thmat(trtC) # the transposed hypothesis matrix (as displayed in the summary)
##     base trt1 trt2 trt3
## mu0  1   -1   -1   -1  
## mu1  0    1    0    0  
## mu2  0    0    1    0  
## mu3  0    0    0    1
cmat(trtC) # the contrast matrix
##     base trt1 trt2 trt3
## mu0 1    0    0    0   
## mu1 1    1    0    0   
## mu2 1    0    1    0   
## mu3 1    0    0    1

All of these methods can also be used to manipulate hypr objects. For example, if you would like to create a hypr object from a given contrast matrix, you could create an empty hypr object and then update its contrast matrix:

otherC <- hypr()
cmat(otherC) <- cbind(int = 1, contr.treatment(4)) # add intercept to treatment contrast
otherC
## hypr object containing 4 null hypotheses:
## H0.int: 0 = X1
##   H0.2: 0 = -X1 + X2
##   H0.3: 0 = -X1 + X3
##   H0.4: 0 = -X1 + X4
## 
## Hypothesis matrix (transposed):
##    int 2  3  4 
## X1  1  -1 -1 -1
## X2  0   1  0  0
## X3  0   0  1  0
## X4  0   0  0  1
## 
## Contrast matrix:
##    int 2 3 4
## X1 1   0 0 0
## X2 1   1 0 0
## X3 1   0 1 0
## X4 1   0 0 1

Deriving contrasts

You can always use cmat to derive the complete contrast matrix from a hypr object. Note, however, that depending on the contrast scheme used, it might be necessary to remove the intercept contrast from the matrix before assigning it to a factor for regression analysis.

For example, the trtC object from above contains such an intercept:

cmat(trtC)
##     base trt1 trt2 trt3
## mu0 1    0    0    0   
## mu1 1    1    0    0   
## mu2 1    0    1    0   
## mu3 1    0    0    1

You can set remove_intercept=TRUE to drop the intercept:

cmat(trtC, remove_intercept = TRUE)
##     trt1 trt2 trt3
## mu0 0    0    0   
## mu1 1    0    0   
## mu2 0    1    0   
## mu3 0    0    1

Other contrast coding schemes such as Helmert contrasts do not yield an intercept term:

helC <- hypr(m2~m1, m3~(m1+m2)/2, m4~(m1+m2+m3)/3)
cmat(helC)
##    [,1] [,2] [,3]
## m1 -1/2 -1/3 -1/4
## m2  1/2 -1/3 -1/4
## m3    0  2/3 -1/4
## m4    0    0  3/4

Setting remove_intercept=TRUE would throw an error because the function cannot find the intercept column.

cmat(helC, remove_intercept = TRUE) # throws an error

Therefore, when you are unsure whether to set remove_intercept to TRUE or FALSE (default) but would like to use the sensible default of removing an intercept when there is one, you can set remove_intercept=NULL. A useful wrapper function which uses this as a default is contr.hypothesis:

contr.hypothesis(trtC) # removes column `base` column
##     trt1 trt2 trt3
## mu0    0    0    0
## mu1    1    0    0
## mu2    0    1    0
## mu3    0    0    1
contr.hypothesis(helC) # removes nothing
##    [,1]       [,2]  [,3]
## m1 -0.5 -0.3333333 -0.25
## m2  0.5 -0.3333333 -0.25
## m3  0.0  0.6666667 -0.25
## m4  0.0  0.0000000  0.75

contr.hypothesis can also come in handy if you don’t really need the hypr object but would only like to specify the hypotheses and return the contrast matrix. In that case, you can just use contr.hypothesis like the hypr function:

contr.hypothesis(m1~0, m2~m1, m3~m1)
##    [,1] [,2]
## m1    0    0
## m2    1    0
## m3    0    1
contr.hypothesis(m2~m1, m3~(m1+m2)/2, m4~(m1+m2+m3)/3)
##    [,1]       [,2]  [,3]
## m1 -0.5 -0.3333333 -0.25
## m2  0.5 -0.3333333 -0.25
## m3  0.0  0.6666667 -0.25
## m4  0.0  0.0000000  0.75