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Abstract

For right censored data perhaps the most commonly used test is the logrank test. In
this paper we review several of generalizations of the logrank test to interval censored data
and present an R package, interval, to implement many of them. The interval package
depends on the perm package, which performs exact and asymptotic linear permutation
tests. The perm package performs many of the tests from the coin package, and provides
an independent validation of coin. We discuss steps that were taken to test and validate
both the interval and perm packages.
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1. Introduction

Finkelstein (1986) generalized the logrank test to interval censored data over 20 years ago.
Finkelstein’s test is appropriate for comparing treatment groups when the response is time
to an event and time may only be known to fall into an interval. An example is time to
progression-free survival (see e.g., Freidlin, Korn, Hunsberger, Gray, Saxman, and Zujewski
(2007)), where patients are monitored intermittently and progression is known to have oc-
curred only to within the time since the last visit. Despite this long history, including several
different methods of generalization, these tests are rarely used in the medical literature. This
maybe due in part to the lack of widely available software to analyze interval censored data.
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In this paper we describe an R package, called interval, to perform weighted logrank tests
(WLRT) (including a generalization of the Wilcoxon-Mann-Whitney test) for interval censored
data. For each type of score (either logrank-type or Wilcoxon-type) the interval package allows
three methods for creating tests: (1) score tests, (2) permutation tests derived from the score
statistics in the grouped continuous model (GCM), both described in Fay (1999), and (3)
multiple imputation tests as described in Huang, Lee, and Yu (2008). The p-values from
the permutation tests may be calculated either asymptotically using a permutational central
limit theorem or exactly using either complete enumeration, a network algorithm (for the
two-sample case only), or Monte Carlo resampling. We know of no readily available software
to perform these tests (nor other different generalizations of the WLRTs to interval censored
data), except for the Splus functions (written by the first author) upon which the interval
package is based (see interval.tar.gz at http://stat.cmu.edu/S/).

In Section 2 we give background on the generalizations the of WLRTs for interval censored
data. We review different forms of the likelihood as well as the different methods for carrying
out the tests. This section reviews what is known about the asymptotic validity of these tests
for different interval censoring settings. With this background, we hope to give intuition on
the methods for users primarily familiar with the usual right-censored logrank tests and also
provide information to guide the applied researcher to make an appropriate choice for the test
for their setting of interest.

The mathematical formulation of the WLRTs used in interval package are outlined in Sec-
tion 3. Section 4 provides step-by-step instructions for how to use the interval package to
perform data analysis. This application section demonstrates the use of two main functions
of interval: icfit which provide survival distribution estimates and ictest which performs
weighted logrank tests.

A major focus of this paper is the validation of the interval package. Since there is no other
software available upon which to validate the interval software, we divide up the algorithms
necessary for the test into several distinct pieces for which there is software to validate the
program.

In Section 5, we discuss the estimation of the nonparametric maximum likelihood (NPMLE)
estimator of the survival function from the full (interval censored) data. Currently, there is
an R package, Icens, which provides many different algorithms for estimating that NPMLE.
We have designed the interval package to be able to input NPMLEs from that package,
using the class structure designed there (see Section 7). We also provide one algorithm as an
independent estimator.

Some of the interval tests in the interval package are permutation tests, so we have created
a separate package, perm, upon which interval depends, that performs exact and asymptotic
linear permutation tests. The perm package is discussed in Section 6. Note that this package is
mostly redundant because all of the tests performed by perm are available in the package coin
(Hothorn, Hornik, van de Wiel, and Zeileis (2006)). The redundancy provides independent
software to check the results from perm. We also discuss an important difference between
perm and coin that arises when there are non-integer ties in response scores, something
that can occur with non-negligible probability in interval censored data. We show one such
example which details how the interval package treats these ties correctly, while the coin
package (Version 1.0-5 or less) does not. Additionally, the perm package provides a network
algorithm for the two-sample test (see e.g., Agresti, Mehta, and Patel (1990)), which is not

http://stat.cmu.edu/S/
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provided in coin, although the algorithms implemented in coin are generally faster than the
network algorithm in perm. In Section 7, we also demonstrate how the interval can employ
coin to carry out a permutation test of the logrank scores.

2. Background on Weighted Logrank Tests for Interval Censored Data

2.1. Overview for Applied Researchers

For right censored data, the logrank test is a score test on the proportional hazards model, so
it is an efficient test to use when there are proportional hazards. There are several different
versions of the logrank test that have been developed (see Kalbfleisch and Prentice (1980)). In
particular, the likelihood could be the marginal likelihood of the ranks, the partial likelihood,
or the grouped continuous model. Further, the variance could be estimated by the Fisher’s
information from the likelihood, by Martingale methods (see Fleming and Harrington (1991))
or by permutation methods. The differences between the several different versions of the
logrank test are often not a focus of applied statisticians; however, in this paper since we
are emphasizing validation of software, these slight differences need to be considered to avoid
confusion and will be discussed in detail in later sections (see e.g., Callaert (2003)).

In addition to the logrank test , which is a WLRT with constant weight of 1 (or approximately
1), an important WLRT is the one that generalizes the Wilcoxon-Mann-Whitney test. We
will call these latter tests Wilcoxon-type tests, but they are known by other names (e.g.,
Prentice-Wilcoxon test, propotional odds model, Harrington-Fleming Gρ class with ρ = 1).
Similar to the logrank test, the Wilcoxon-type tests also have been derived using different
likelihoods and using different variances. The important point for the applied researcher is
that the Wilcoxon-type tests emphasize early events (when there are more people at risk)
more than the later events (when there are fewer people at risk), while the logrank test gives
constant weights over time.

One might be tempted, if one has interval censored data, to simply impute the mid-point of the
intervals, and perform the usual right censored weighted logrank tests. Law and Brookmeyer
(1992) studied the mid-point imputation method, where interval censored observations
(Law and Brookmeyer (1992) use the term ‘doubly censored observations’ to mean interval
censored observations) are replaced by the mid-point of the interval, then the data are treated
as right-censored responses. They performed some simulations and showed that when the
censoring mechanism is different between the two groups, the type I error of a nominal 0.05
test was in one case estimated to be as high as 0.19.

We now summarize the details of the next few sections. Both likelihoods that may be applied
to interval censored data (the likelihood under the grouped continuous model (LGCM) and
the marginal likelihood of the ranks (MLR)) should give similar answers. The permutation
form of the tests are generally preferred over the score test forms when using the LGCM,
since permuting allows exact inference when the censoring is not related to the covariate
(e.g., treatment), and the permutation results avoid theoretical problems of the score test
(see below and Fay (1996)). When the censoring is related to treatment and there are few
inspection times compared to the number of subjects, the usual score test is recommended
since it is asymptotically valid in this case. Now we give some more details on the different
tests for interval censored data.
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2.2. Which Likelihood?

From the start there is not a clear decision about which likelihood to use. Self and Grosman
(1986) used the marginal likelihood of the ranks (MLR). This has the advantage that all
the nuisance parameters are eliminated. The disadvantage of the MLR is that it is difficult
to calculate. Note that even in the right censored case with ties, the likelihood is usually
only approximated (see Kalbfleisch and Prentice (1980) pp. 74-75). Satten (1996) introduces
a stochastic approximation to the MLR using Gibbs sampling for the proportional hazards
model and it is generalized to proportional odds and other models by Gu, Sun, and Zuo
(2005).

Finkelstein (1986) (see also, Fay (1996, 1999)) used the likelihood under the grouped con-
tinuous model (LGCM). In the LGCM, there are many nuisance parameters that must be
estimated, and the standard likelihood-based tests (i.e., Score test, Wald test, and Likelihood
ratio test) do not follow the usual theory unless there is a limited number of observation times
which do not grow as the sample size increases (see Fay (1996)). Note however, that, the per-
mutation test formed from the scores of the LGCM is theoretically justified, and is known to
be a valid test when the censoring is unrelated to the covariate (see the following section).
We discuss the computational issues of the LGCM in the next section. For the non-censored
case, Pettitt (1984) studied the two likelihoods and showed that both likelihoods give asymp-
totically equivalent score tests as long as either the number of categories of response is fixed,
or the number of categories does not increase too quickly compared to the total sample size.
Pettitt concluded (see Pettitt (1984), section 5.1) that the score test for the MLR was more
efficient (i.e., had greater power) than the score test for the LGCM; however, Pettitt did not
consider the permutation form of the test using the LGCM.

Finally, when imputation methods are used then Martingale methods may be used (see Huang
et al. (2008) and below).

2.3. Score Test, Permutation Test, or Imputation?

Once the likelihood is chosen, and the scores (i.e., each summand in the first derivative of
the loglikelihood with respect to the parameter of interest evaluated under the null) are
calculated, then the distribution of those scores under the null must be estimated. There are
several methods for doing this, but the three most common are using asymptotic methods
with the observed Fisher’s information, which is commonly known as the score test, using
permutation methods, or using multiple imputation (Huang et al. (2008)) (which in this paper
we call within subject resampling).

When the censoring mechanism is the same for all treatment groups, then the permutation
test is known to be valid for either the MRL or the LGCM. In this case of equal censoring,
the score test is only known to be asymptotically valid using the MRL; using the LGCM we
require the additional assumption that the number of observation times remains fixed as the
sample size goes to infinity (see Fay (1996) for a discussion of this issue).

When there is unequal censoring then the theory of the permutation variance is not met.
Thus, many authors have suggested that with unequal censoring the score variance is better
(see e.g., Fay (1996), p. 820 for the interval censoring case).

Another strategy to create WLRT for interval censored data is to impute right censored data
from the interval censored data and then properly adjust the variance. Huang et al. (2008)
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improved on some earlier attempts at this variance adjustment after imputation. This appears
to be a reasonable strategy, and provides an independent check on the other methods. On
each imputation Huang et al. (2008) only considered the usual Martingale derived variance
(use method=”wsr.HLY” in ictest), while the interval package additionally allows for permu-
tational variance (method=”wsr.pclt”) and Monte Carlo estimation within each imputation
(method=”wsr.mc”).

3. Mathematical Formulation of the Scores for the WLRT

In this section, we provide the general form of rank invariant score test on the grouped
continuous model, and for each of the three score tests available within ictest, we briefly
describe the underlying survival model (or hazard model) and the mathematical form of the
individual scores. Further details on the derivation of the tests are given in Fay (1996) and
Fay (1999).

Suppose we have n subjects. For the ith subject, use the following notation:

xi is the time to event, Xi is the associated random variable.

Li is the largest observation time before the event is known to have occurred.

Ri is the smallest observation time at or after the event is known to have occurred. In other
words, we know that xi ∈ (Li, Ri]. We allow Ri =∞ to denote right censoring.

zi is a k × 1 vector of covariates.

Let the ordered potential observation times be 0 = t0 < t1 < t2 < · · · < tm < tm+1 = ∞.
Partition the sample space by creating (m+ 1) intervals, with the jth interval denoted Ij ≡
(tj−1, tj ]. For simplicity, we assume that Li, Ri ∈ {t0, . . . , tm+1}. Let

αij =

{
1 if Li < tj ≤ Ri
0 otherwise

We write the general model of the survival for the ith individual as

Pr(Xi > tj |zi) = S(tj |z′iβ, γ)

where β is a k × 1 vector of treatment parameters, and γ is an m × 1 vector of nuisance
parameters for the unknown survival function. In the interval package, there are three different
ways we model S(tj |z′iβ, γ), giving three different tests.

The grouped continuous likelihood for interval censored data is

L =
n∏
i=1

m+1∑
j=1

αij
[
S(tj−1|z′iβ, γ)− S(tj |z′iβ, γ)

]
=

n∏
i=1

[
S(Li|z′iβ, γ)− S(Ri|z′iβ, γ)

]
(1)

To form the score statistic we take the derivative of log(L) with respect to β and evaluate
it at β = 0. The MLE of the nuisance parameters when β = 0 (in terms of the baseline
survival) are the self-consistent estimates of survival, Ŝ(tj), j = 1, . . . ,m. For convenience,
let Ŝ(t0) = 1 and Ŝ(tm+1) = 0, even though these values are known by assumption.
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We can write the efficient score vector for the parameter β (see Fay (1996), Fay (1999)) as

U =
n∑
i=1

zi

(
Ŝ′(Li)− Ŝ′(Ri)
Ŝ(Li)− Ŝ(Ri)

)
≡

n∑
i=1

zici (2)

where Ŝ(t) is the nonparametric estimate of the survival function at t using the pooled data
across all groups, and Ŝ′(t) is the derivative with respect to β.

When zi is an k × 1 vector of indicators of k treatments, we can rewrite the `th row of U as

U` =
m∑
j=1

wj

[
d′j` −

n′j`d
′
j

n′j

]
, (3)

where

wj =
Ŝ(tj)Ŝ′(tj−1)− Ŝ(tj−1)Ŝ′(tj)

Ŝ(tj)
[
Ŝ(tj−1)− Ŝ(tj)

] ,

and d′j` represents the expected value under the null of the number of deaths in Ij for the
`th treatment group, d′j represents the expected value under the null of the total number of
deaths in Ij , similarly n′j` and n′j represent the expected number at risk.

We now give the values for ci (from equation 2) and wi (from equation 3) for 3 different
survival models provided in ictest. Although not developed first, we present the model of Sun
(1996) first because it is the generalization of the logrank test most commonly used for right
censored data. Sun (1996) modelled the odds of discrete hazards as proportional to exp(z′iβ)
(see Fay (1999)), leading to the more complicated survival function:

S(tj |zi, γ) =
j∏

k=1

{
1 +

(
S(tk−1|γ)− S(tk|γ)

S(tk|γ)

)}−1

.

Here and in the other two models, S(tj |γ) is a estimator of survival that does not depend on
the covariates zi, and S(tj |γ) is nonparametric because the γ is m× 1 and there are only m
unique time points observed in the data. Denote its estimator S(t|γ̂) ≡ Ŝ(t), which is the
NPMLE of the survival function of all the data ignoring covariates. Under the model of Sun
(1996) we get,

ci =
Ŝ(Li) log S̃(Li)− Ŝ(Ri) log S̃(Ri)

Ŝ(Li)− Ŝ(Ri)
(4)

where S̃(tj) = exp
(
−
∑j
`=1 λ̂`

)
, and λ` =

{
Ŝ(t`−1)− Ŝ(t`)

}
/Ŝ(t`−1), and

wj = 1.

This model is called from the interval package by the option scores=“logrank1”.

The second model we consider was actually developed first, it is the grouped proportional
hazards model introduced by Finkelstein (1986), where the survival function is modeled as
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S(tj |z′iβ, γ) = S(tj |γ)exp(z′iβ). Under this grouped propotional hazards model, the ci values
are:

ci =


Ŝ(Li) log Ŝ(Li)−Ŝ(Ri) log Ŝ(Ri)

Ŝ(Li)−Ŝ(Ri)
for Ri < tm+1

log Ŝ(Li) for Ri = tm+1 ≡ ∞
(5)

and

wj =
Ŝ(tj−1)

[
log Ŝ(tj−1)− log Ŝ(tj)

]
Ŝ(tj−1)− Ŝ(tj)

.

Note that because this model is a proportional hazards one, we call the resulting test a
logrank test also and the model is called by scores=“logrank2” in the interval package. When
Ŝ(tj−1)/Ŝ(tj) ≈ 1 then wj ≈ 1.
Finally, we consider the model proposed by Fay (1996) giving the Wilcoxon-type test, where
the odds are proportional to exp(−ziβ) so that the survival function is

S(tj |zi, γ) =

{
1 +

(
1− S(tj |γ)
S(tj |γ)

)
exp(ziβ)

}−1

and we get

ci = Ŝ(Li) + Ŝ(Ri)− 1

and

wj = Ŝ(tj−1)

We now show the form of the scores in the special case of right censoring. For this, we introduce
new notation. Suppose that there are m∗ observed failure times, t∗1 < t∗2 < · · · < t∗m∗ . In other
words there are m∗ subjects for which xi = Ri is known, so that Li = limε→0Ri− ε ≡ Ri− 0.
Let nj and dj be the number of subjects who are at risk or fail respectively at t∗j . Then the
Kaplan-Meier survival estimate is (see e.g., Kalbfleisch and Prentice (1980))

Ŝ(t) =
∏
j|t∗j≤t

(
nj − dj
nj

)
.

In the following table we summarize the formulation of the scores for the 3 model (score)
choices in interval, as described above, for both interval censored and ordinary right censored
data.
Scores For Right Censored Data
Test Score (ci) for Observed Score (ci′) for Right-censored
(Model) failure at t∗h observation at t∗h′
Logrank1 1−

∑h
`=1

d`
n`

−
∑h
`=1

d`
n`

(Logistic, Sun)
Logrank2 nh

dh

{
− log

(
nh−dh
nh

)}
+ log Ŝ(t∗h) log

{
Ŝ(t∗h′)

}
(Group Prop Hazards, Finkelstein)
Generalized WMW Ŝ(t∗h−1) + Ŝ(t∗h)− 1 Ŝ(t∗h′)− 1
(Proportional Odds)
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4. Application

The calls to the interval package are designed to be in the same style as in the survival
package. As noted in the previous section, the icfit and ictest functions will work on right
censored data (see \interval\demo\right.censored.examples.R\). We demonstrate the
two main functions in interval, icfit and ictest, using the often cited interval censored
breast cosmesis data set of Finkelstein and Wolfe (1985).

4.1. Survival Estimation

Here we calculate the NPMLE for each treatment group in the breast cosmesis data separately
and print them out:

> library(interval)

> data(bcos)

> fit1 <- icfit(Surv(left, right, type = "interval2") ~ treatment,

+ data = bcos)

> summary(fit1)

treatment=Rad:
Interval Probability

1 (4,5] 0.0463
2 (6,7] 0.0334
3 (7,8] 0.0887
4 (11,12] 0.0708
5 (24,25] 0.0926
6 (33,34] 0.0818
7 (38,40] 0.1209
8 (46,48] 0.4656
treatment=RadChem:

Interval Probability
1 (4,5] 0.0433
2 (5,8] 0.0433
3 (11,12] 0.0692
4 (16,17] 0.1454
5 (18,19] 0.1411
6 (19,20] 0.1157
7 (24,25] 0.0999
8 (30,31] 0.0709
9 (35,36] 0.1608
10 (44,48] 0.0552
11 (48,60] 0.0552

These results match those calculated from Icens. The summary function applied to an icfit
object gives the intervals which have positive probability in the NPMLE of the survival
distribution function, i.e. where the estimated survival distribution drops; however, there
are infinitely many functions which drop exactly the same increment within those intervals.
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Figure 1: Non-parametric Maximum Likelihood Survival from Breast Cosmesis Data
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The NPMLE is only unique outside of the intervals which are listed from the summary of
the fit. For example, there are infinitely many survival functions for the treatment=Rad
group, that have S(4) = 1 and S(5) = 1 − 0.0463 = 0.9537. Thus, as has been done in
the Icens package, when plotting the NPMLEs we denote the areas with the indeterminite
drops with grey rectangles. The function which linearly interpolates the survival within these
indeterminte regions is also displayed on the graph. We plot the NPMLE for each treatment
group using plot(fit1) to get Figure 1.

4.2. Two-sample Weighted logrank tests

There are three score tests available in ictest, which are selected by setting the scores
argument to be one of ”logrank1”, ”logrank2”, or ”WMW”. As stated in Section 3, the two
forms of the logrank scores are the scores associated with Finkelstein (1986) and the scores
associated with Sun (1996). Although Finkelstein (1986) are perhaps more natural for interval
censored data, we make those of Sun (1996) the default (scores=”logrank1” or equivalently
rho=0) since these scores reduce to the usual logrank scores with right censored data. The
default method is the permutation test, and since the sample size is sufficiently large we
automatically get the version based on the permutational central limit theorem:
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> icout <- ictest(Surv(left, right, type = "interval2") ~ treatment,

+ data = bcos)

> icout

Asymptotic Logrank two-sample test (permutation form), Sun’s scores

data: Surv(left, right, type = "interval2") by treatment
Z = -2.6684, p-value = 0.007622
alternative hypothesis: survival distributions not equal

n Score Statistic*
treatment=Rad 46 -9.141846
treatment=RadChem 48 9.141846
* like Obs-Exp, positive implies earlier failures than expected

Because a major part of the calculation of the test statistic is solving the NPMLE under the
null hypothesis (i.e., for the pooled treatment groups), this NPMLE is saved as part of the
output so that we can calculate this NPMLE once and reuse it for the calculation of the other
two score tests. Here is code for the Finklestein logrank formulation:

> ictest(Surv(left, right, type = "interval2") ~ treatment, data = bcos,

+ initfit = icout$fit, scores = "logrank2")

Asymptotic Logrank two-sample test (permutation form), Finkelstein’s
scores

data: Surv(left, right, type = "interval2") by treatment
Z = -2.6839, p-value = 0.007277
alternative hypothesis: survival distributions not equal

n Score Statistic*
treatment=Rad 46 -9.944182
treatment=RadChem 48 9.944182
* like Obs-Exp, positive implies earlier failures than expected

Notice how the two different logrank tests give very similar results. We demonstrate the third
score test, the generalization of the Wilcoxon-Mann-Whitney scores to interval censored data,
and also demonstrate the ictest function in default mode:

> L <- bcos$left

> R <- bcos$right

> trt <- bcos$treatment

> ictest(L, R, trt, scores = "wmw", initfit = icout$fit)

Asymptotic Wilcoxon two-sample test (permutation form)

data: {L,R} by trt
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Z = -2.1672, p-value = 0.03022
alternative hypothesis: survival distributions not equal

n Score Statistic*
Rad 46 -5.656724
RadChem 48 5.656724
* like Obs-Exp, positive implies earlier failures than expected

4.3. K-sample and trend tests

We can perform k − sample tests using the ictest function. We create fake treatment
assignments with four treatment groups to demonstrate.

> set.seed(1232)

> fakeTrtGrps <- sample(letters[1:4], dim(bcos)[[1]], replace = TRUE)

> ictest(L, R, fakeTrtGrps)

Asymptotic Logrank k-sample test (permutation form), Sun’s scores

data: {L,R} by fakeTrtGrps
Chi Square = 1.3685, p-value = 0.7129
alternative hypothesis: survival distributions not equal

n Score Statistic*
d 27 -0.7520431
b 24 1.8821766
c 20 -2.8048270
a 23 1.6746934
* like Obs-Exp, positive implies earlier failures than expected

When scores= ”wmw” and the responses are all non-overlapping intervals then this reduces
to the Kruskal-Wallis test. The function ictest performs a trend test when the covariate is
numeric. The one-sided test with alternative= ”less” rejects when the correlation between
the generalized rank scores (e.g., WMW scores or logrank scores) and the covariate are small.

> set.seed(931)

> fakeZ <- rnorm(dim(bcos)[[1]])

> ictest(L, R, fakeZ, alternative = "less")

Asymptotic Logrank trend test(permutation form), Sun’s scores

data: {L,R} by fakeZ
Z = 0.068, p-value = 0.5271
alternative hypothesis: higher independent variable implies earlier failure times than expected

n Score Statistic*
[1,] 94 0.4421144
* postive so larger covariate values give earlier failures than expected
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4.4. Exact permutation tests

We can also estimate the exact permutation p-value for any score choice in ictest using the
exact argument. Here the logrank test using Sun (1996) scores is redone as an exact test:

> ictest(Surv(left, right, type = "interval2") ~ treatment, data = bcos,

+ exact = TRUE, scores = "logrank1")

Exact Logrank two-sample test (permutation form), Sun’s scores

data: Surv(left, right, type = "interval2") by treatment
p-value = 0.006
alternative hypothesis: survival distributions not equal

n Score Statistic*
treatment=Rad 46 -9.141846
treatment=RadChem 48 9.141846
* like Obs-Exp, positive implies earlier failures than expected
p-value estimated from 999 Monte Carlo replications
99 percent confidence interval on p-value:
0.0002072893 0.0184986927

The exact argument automatically chooses between an exact calculation by network algo-
rithm or an approximation to the exact p-value by Monte Carlo through the methodRuleIC1
function. In this case the network algorithm was expected to take too long and the Monte
Carlo approximation was used. If a more accurate approximation to the exact p-value is
needed then more Monte Carlo simulations could be used and these are changed using the
mcontrol option.

4.5. Other test options

All of the above are permutation based tests, but we may use other methods. Here are the
results from the usual score test for interval censored data:

> ictest(Surv(left, right, type = "interval2") ~ treatment, data = bcos,

+ initfit = icout$fit, method = "scoretest", scores = "logrank2")

Asymptotic Logrank two-sample test (score form), Finkelstein’s scores

data: Surv(left, right, type = "interval2") by treatment
Chi Square = 7.8749, p-value = 0.005012
alternative hypothesis: survival distributions not equal

n Score Statistic*
treatment=Rad 46 -9.944182
treatment=RadChem 48 9.944182
* like Obs-Exp, positive implies earlier failures than expected
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where in this case the nuisance parameters are defined after calculation of the NPMLE as
described in Fay (1996), and the results agree exactly with Fay (1996) and are similar to those
in Finkelstein (1986). The very small differences may be due to differing convergence criteria
in the NPMLE. The imputation method of Huang et al. (2008) may also be employed (note
that scores=”logrank2” are not available for this method):

> ictest(Surv(left, right, type = "interval2") ~ treatment, data = bcos,

+ initfit = icout$fit, method = "wsr.HLY", mcontrol = mControl(nwsr = 99),

+ scores = "logrank1")

Asymptotic Logrank 2-sample test(WSR HLY), Sun’s scores

data: Surv(left, right, type = "interval2") by treatment
Chi Square = 7.1047, p-value = 0.007688
alternative hypothesis: survival distributions not equal

n Score Statistic*
treatment=Rad 46 -9.141846
treatment=RadChem 48 9.141846
* like Obs-Exp, positive implies earlier failures than expected
p-value estimated from Monte Carlo replications

These results agree with Huang et al. (2008) within the error to be expected from such an
imputation method (Huang et al. (2008) had p = 0.0075).

5. Nonparametric Estimator of Survival

For each of the tests in ictest, the NPLME survival function must be obtained. There are
many algorithms for calculating the NPMLE from interval censored data (i.e., Ŝ), including
several options in the Icens package. In our interval package, we provide an internally cal-
culated estimate and give the user the option for an externally obtained estimate, say from
the existing package Icens, to be supplied to ictest. For the internal (default) calculation, we
use a self-consistent algorithm, which is an EM-algorithm applied to interval censored data
(see Turnbull (1976)); however, first there is a primary reduction (see Aragón and Eberly
(1992)). Also, as recommended in Gentleman and Geyer (1994), to speed up computations,
we provisionally set the probability in some intervals to zero if they are below some bound,
then check the Kuhn-Tucker conditions to make sure that those values are really very close
to zero. If those conditions are not met then the small probability is added back on and the
iterations continue. Convergence is defined when the maximum reduced gradient is less than
some minimum error, and the Kuhn-Tucker conditions are approximately met (see Gentleman
and Geyer (1994)).

We test in \demo\npmle.R that the NPMLE from the Icens package match with those from
the interval package. In that file we compare the NPMLE from the cosmesis data set. We ad-
ditionally simulate 30 other data sets and show that the NPMLE’s match for all the simulated
data sets (data not shown).
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To demonstrate the software we take an artificial example with hypothetical data where we
can calculate the NPMLE exactly. We include group membership to validate the logrank
tests in the next section. Consider the data set with:

> L <- c(2, 5, 1, 1, 9, 8, 10)

> R <- c(3, 6, 7, 7, 12, 10, 13)

> group <- c(0, 0, 1, 1, 0, 1, 0)

> example1 <- data.frame(L, R, group)

> example1

L R group
1 2 3 0
2 5 6 0
3 1 7 1
4 1 7 1
5 9 12 0
6 8 10 1
7 10 13 0

The NPMLE using all the data is:
(L R] probability
2 3 2

7
5 6 2

7
9 10 3

14
10 12 3

14

We calculate this with the interval package as

> library(interval)

> summary(icfit(L, R), digits = 12)

Interval Probability
1 (2,3] 0.285714285714
2 (5,6] 0.285714285714
3 (9,10] 0.214285714286
4 (10,12] 0.214285714286

which matches the exact to at least 12 digits:

> print(3/14, digits = 12)

[1] 0.214285714286

Usually the fit will not be this close, and the closeness of the fit is determined by the
icfitControl list (see the help). In Section 7, we provide an example to show how NPMLE
survival estimates from other packages can be used by ictest.



15

6. Permutation tests for interval censored data

The package interval relies on our perm package to perform exact and asymptotic linear
permutation tests of the logrank statistics. Appendix I provides a detailed description of
perm, including validation details for a set of standard statistical tests where the results
from perm are compared to those from the widely used permutation test package coin. In
this section, we present an example which demonstrates a problem with the coin package
that can occur with interval censored data and one that can be addressed appropriately
with the perm package. We consider the example1 data set from Section 5 to elucidate the
issue. The problem relates to the numerical precision of the calculated scores and subsequent
permutation p-value when there is a small number of permuations and ties in the scores
(for interval censoring, stemming from overlapping intervals). While not unique to interval
censored data, this combination of factors may be more common in this setting.

We can calculate the exact scores for the Sun method (Eq (4); i.e. scores=”logrank1”) these
are [

5
7
,
11
35
,
18
35
,
18
35
,−24

35
,−13

70
,−83

70

]

These scores sum to zero (as do all such scores regardless of the model). There are

(
7
3

)
= 35

unique permutations with equal probability. Note that the difference in means of the orig-
inal scores, (with group=[0, 0, 1, 1, 0, 1, 0]), gives equivalent values to the permutation with
group=[1, 1, 0, 0, 0, 1, 0] because the sum of the first and second scores equals the sum of the
third and fourth scores. Thus, we have a tie in the permutation distribution. We need to
make sure the computer treats it as a tie otherwise the p-value will be wrong. Dealing with
ties in computer computations can be tricky (see R FAQ 7.31 at
http://cran.r-project.org/doc/FAQ/R-FAQ.html). To see the details, we completely enu-
merate all the sums of the scores in one group. We use the function chooseMatrix from perm
to generate the full list of permuations of the original group variable. We print out only the
first 9 of the 35 ordered test statistics, placing the difference in means in the 8th column, next
to the permutation of the group allocation:

> score1 <- wlr_trafo(Surv(L, R, type = "interval2"))

> cm <- chooseMatrix(7, 3)

> T <- ((1 - cm) %*% score1)/4 - (cm %*% score1)/3

> cbind(cm, T)[order(T), ][1:9, ]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 1 0 1 1 0 0 0 -1.0166667
[2,] 1 1 1 0 0 0 0 -0.9000000
[3,] 1 1 0 1 0 0 0 -0.9000000
[4,] 0 1 1 1 0 0 0 -0.7833333
[5,] 1 0 1 0 0 1 0 -0.6083333
[6,] 1 0 0 1 0 1 0 -0.6083333
[7,] 1 1 0 0 0 1 0 -0.4916667
[8,] 0 0 1 1 0 1 0 -0.4916667
[9,] 0 1 1 0 0 1 0 -0.3750000

http://cran.r-project.org/doc/FAQ/R-FAQ.html
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The seventh and eighth largest of the 35 test statistics are tied, and the eighth largest is equal
to the original group assignment, so that the one sided p-value is 8/35 = 0.2286. We see
that ictest properly calculates this p-value while the coin package version 1.0-5 used on the
scores does not:

> ictest(L, R, group, alternative = "less")

Exact Logrank two-sample test (permutation form), Sun’s scores

data: {L,R} by group
p-value = 0.2286
alternative hypothesis: 1 has earlier failure times than expected

n Score Statistic*
0 4 -0.8428571
1 3 0.8428571
* like Obs-Exp, positive implies earlier failures than expected

> library(coin)

> packageDescription("coin")$Version

[1] "1.0-5"

> independence_test(score1 ~ as.factor(group), alternative = "less",

+ distribution = exact())

Exact General Independence Test

data: score1 by as.factor(group) (0, 1)
Z = -0.9031, p-value = 0.2
alternative hypothesis: less

The way that perm can directly address the ties issue is to allow the user to specify numerical
precision, i.e. rounding to the nearest permControl()$digits significant digits; and perm
treats values of the permutation distribution that are tied for that many significant digits as
true ties.

7. Interacting with Other Packages

The focus of the interval and perm packages has been accuracy rather than speed; however,
faster calculations can be performed by incorporating some of the fast algorithms available
in other packages. We allow an option for the user to provide the NPMLE for survival as
input, both to increase the calculation speed and also the flexibility of the package to use
other estimates for the NPMLE, such as those provided by the Icens package.

The major computation time for the ictest function when the sample size is large and the
permutational central limit theorem may be used is the calculation of the NPMLE from all
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treatment groups combined. Although the interval package (which requires the perm and
survival packages) can calculate the NPMLE fairly quickly, there are other algorithms which
may be faster available in the Icens package. One algorithm available is the hybrid EM ICM
(Iterative convex minorant) estimator of the distribution function proposed by Wellner and
Zhan (1997). We now show how the EMICM function may be used together with ictest by
employing the initfit opiton and compare this to the icfit function used the same way. We
again use the bcos data, and see the resulting p-value is the same, but the EMICM algorithm
is faster. Note since we use the initfit option within ictest, the method that first calls
EMICM converges is at least as close to the true NPMLE compared to the single call to ictest.
This noninferiority of convergence is due to the fact that both calls to ictest use the same
default icfitControl option, but the EMICM result may have already converged closer to the
NPMLE than required by the convergence criteria of the default icfitControl.

> ictest.alone <- function() {

+ ictest(Surv(left, right, type = "interval2") ~ treatment,

+ data = bcos)$p.value

+ }

> library(Icens)

> emicm.first <- function() {

+ npmle <- EMICM(bcos[, c("left", "right")])

+ ictest(Surv(left, right, type = "interval2") ~ treatment,

+ data = bcos, initfit = npmle)$p.value

+ }

> ictest.alone()

[1] 0.007621637

> emicm.first()

[1] 0.007621638

> system.time(ictest.alone())

user system elapsed
1.30 0.00 1.29

> system.time(emicm.first())

user system elapsed
0.49 0.00 0.48

When an exact test is desired, then there are some algorithms in the coin package which will
likely be faster than the network algorithm in the perm package. We take the first 12 subjects
in each treatment group from bcos in order to compare the exact methods. From interval, we
use the wlr_trafo function to calculate the WLR scores for the interval censored data and
use independence_test from coin, as well as ictest, to calculate the permutation p-value
from the scores.
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> c12 <- bcos[c(1:12, 47:58), ]

> ictest(Surv(left, right, type = "interval2") ~ treatment, data = c12,

+ method = "exact.network", alternative = "less")

Exact Logrank two-sample test (permutation form), Sun’s scores

data: Surv(left, right, type = "interval2") by treatment
p-value = 0.2634
alternative hypothesis: treatment=RadChem has earlier failure times than expected

n Score Statistic*
treatment=Rad 12 -1.191741
treatment=RadChem 12 1.191741
* like Obs-Exp, positive implies earlier failures than expected

> independence_test(wlr_trafo(Surv(left, right, type = "interval2")) ~

+ treatment, data = c12, distribution = exact(), alternative = "less")

Exact General Independence Test

data: wlr_trafo(Surv(left, right, type = "interval2")) by treatment (Rad, RadChem)
Z = -0.6506, p-value = 0.2634
alternative hypothesis: less

> system.time(ictest(Surv(left, right, type = "interval2") ~ treatment,

+ data = c12, method = "exact.network", alternative = "less"))

user system elapsed
2.86 0.00 2.86

> system.time(independence_test(wlr_trafo(Surv(left, right, type = "interval2")) ~

+ treatment, data = c12, distribution = exact(), alternative = "less"))

user system elapsed
0.20 0.00 0.21

We see that in fact, the coin package does give the same answer considerably faster. Note
that the network algorithm in perm was written in R instead of calling faster code in C as was
done in coin using a different algorithm. Though we leave this choice up to the user, if there
are ties in the permutation distribution, the coin package should be used with some caution
(see Section 6).
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Appendix I: Perm Package

The perm package is a stand alone package to perform linear permutation tests, i.e. permu-
tation tests where the test statistic is either of the form,

T (y,x) =
n∑
i=1

cizi

as in equation 2, or of a quadratic version of T (y,x) (e.g., see k-sample tests below). Currently,
there are three permutation tests available in perm: permTS to perform two sample tests,
permKS to perform K-sample tests, permTREND to perform trend tests on numeric values. In
Section 6, we provided an example with interval censored data where the existing permutation
coin was problematic. In this section, we provide more standard examples of these three
classical permutation tests and demonstrate that both perm and the existing coin package
provide identical results.

We consider only the case where ci is a scalar and zi is either a scalar or a k×1 vector (although
more general cases are studied in Sen (1985), see also Hothorn et al. (2006)). Following Sen
(1985), we can write the mean and variance of T under the permutation distribution (i.e.,
permute indices of c1, . . . , cn and recalculate T , where there are n! different permutations with
each equally likely) as,

U = EP (T ) = nc̄z̄

V = V arP (T ) =
1

n− 1

{
n∑
i=1

(ci − c̄)2
}

n∑
j=1

(zi − z̄)(zi − z̄)′
 ,

where c̄ and z̄ are the sample means. Sen (1985) reviews the permutational central limit
theorem (PCLT) which shows that under the permutation distribution with standard regu-
larity conditions on the ci and zi, V −1/2(T −U) is asymptotically approximately multivariate
normal with mean 0 and variance the identity matrix.

In the perm package, if zi is a scalar we define the one-sided p-value when alternative=”greater”
as

pG =
∑n!
i=1 I(Ti ≥ T0)

n!
,
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where I(A) = 1 when A is true and 0 otherwise, Ti is the ith of the n! permutations, and T0 is
the observed value of T . When alternative=”less” then the p-value, say pL, is given as above
except we reverse the direction of the comparison operator in the indicator function. Note
that if you add or multiply by constants which do not change throughout all permutations
then the p-value does not change. Thus, a permutation test on T can represent a test on
the difference in means in the two-sample case, and can represent a test on the correlation
when zi is numeric. When alternative=”two.sided”, then p2 is twice the minimum one-sided
p-value (i.e., p2 = min(1, 2 min(pL, pG))), and when alternative=”two.sidedAbs” then

p2A =
∑n!
i=1 I(|Ti − U | ≥ |T0 − U |)

n!
.

When c̄ = 0 (as is the case with the weighted logrank ci values defined in Section 3) then both
two-sided p-values are equivalent. Here is a two-sample permutation t-test in both perm and
coin giving first the asymptotic, then the exact p-values:

> independence_test(extra ~ group, data = sleep)

Asymptotic General Independence Test

data: extra by group (1, 2)
Z = -1.7508, p-value = 0.07998
alternative hypothesis: two.sided

> permTS(extra ~ group, data = sleep)

Permutation Test using Asymptotic Approximation

data: extra by group
Z = -1.7508, p-value = 0.07998
alternative hypothesis: true mean of group=1 minus mean of group=2 is not equal to 0
sample estimates:
mean of group=1 minus mean of group=2

-1.58

> independence_test(extra ~ group, data = sleep, distribution = exact())

Exact General Independence Test

data: extra by group (1, 2)
Z = -1.7508, p-value = 0.08145
alternative hypothesis: two.sided

> permTS(extra ~ group, data = sleep, method = "exact.network")

Exact Permutation Test (network algorithm)
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data: extra by group
p-value = 0.08145
alternative hypothesis: true mean of group=1 minus mean of group=2 is not equal to 0
sample estimates:
mean of group=1 minus mean of group=2

-1.58

When zi is a k × 1 vector, we consider only the alternative=”two.sided”, and reject when
Q = (T −U)′V −(T −U) is large, where V − is the generalized inverse of V . By the PCLT, Q
is asymptotically chi-squared with k − 1 degrees of freedom. In the perm package, when the
covariate (represented by zi) is a factor, then Q reduces a weighted sum of the squared means
of the scores ci within each group. When ci is a rank, this gives the usual Kruskal-Wallis test.
For example,

> kruskal.test(Ozone ~ Month, data = airquality)

Kruskal-Wallis rank sum test

data: Ozone by Month
Kruskal-Wallis chi-squared = 29.2666, df = 4, p-value = 6.901e-06

> airq <- airquality[!is.na(airquality$Ozone), ]

> permKS(rank(Ozone) ~ Month, data = airq)

K-Sample Asymptotic Permutation Test

data: rank(Ozone) by Month
Chi Square = 29.2666, df = 4, p-value = 6.901e-06

(Note care must be taken when using rank with some missing responses, see help for rank). If
we wanted to take into account the ordering of the months and not rank the Ozone responses,
we could do a trend test, which is a test on the correlation that matches results from coin and
gives very similar results to the asymptotic test for Pearson’s product moment correlation
coefficient in cor.test from the stats package:

> permTREND(Ozone ~ Month, data = airq)

Permutation Test using Asymptotic Approximation

data: Ozone by Month
Z = 1.7643, p-value = 0.07769
alternative hypothesis: true correlation of x and y is not equal to 0
sample estimates:
correlation of x and y

0.1645193

> library(coin)

> independence_test(Ozone ~ Month, data = airq)
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Asymptotic General Independence Test

data: Ozone by Month
Z = 1.7643, p-value = 0.07769
alternative hypothesis: two.sided

> cor.test(airq$Ozone, airq$Month)

Pearson’s product-moment correlation

data: airq$Ozone and airq$Month
t = 1.7809, df = 114, p-value = 0.0776
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.01834762 0.33673567
sample estimates:

cor
0.1645193
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