
The lifecontingencies Package. A Package to Perform

Financial and Actuarial Mathematics Calculations

in R

Giorgio Alfredo Spedicato, Ph.D

Abstract

lifecontingencies R package performs financial and actuarial mathematics calculations
to model life contingencies insurance. Its functions are able to determine both the expected
value and the stochastic distribution of insured benefits. Therefore they can be used
both to price life insurance coverage as long as to assess portfolios’ risk based capital
requirements.

This paper briefly summarizes the theory regarding life contingencies, that is grounded
on concepts of financial mathematics and demography. Then it shows how lifecontingen-
cies package is a useful tool to perform routinary deterministic or stochastic calculations
on life contingencies actuarial mathematics. Applied examples will be shown.
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1. Introduction

As of October 2012, lifecontingencies appears to be the first R package that deals with life
insurance evaluation. R statistical programming environment, R Development Core Team
(2012), has became the reference statistical software for academics. In the industry it is now
considered a valid alternative to affirmed commercial packages for data analysis, like as as
SAS,SAS Institute Inc. (2003), MATLAB, MATLAB (2010), and SPSS, Norusis (2008). With
respect to the insurance industry, some actuarial packages have been already available in R,
however most of these packages mainly focus non-life actuaries. In fact non - life insurance
modeling uses more data analysis and applied statistical modelling than life insurance does.
Functions to fit loss distributions and to perform credibility analysis are provided within the
package actuar, Christophe Dutang, Vincent Goulet, and Mathieu Pigeon (2008). Package
actuar represents the computational side of the classical actuarial textbook Loss Distribu-
tion, Klugman, Panjer, Willmot, and Venter (2009). The package ChainLadder, Gesmann
and Zhang (2011), provides functions to estimate unpaid loss reserves for P&C insurances.
Generalized Linear Models (GLMs), widely used in non - life insurance pricing, can be fit
by functions bundled in the base R distribution. More advanced predictive models used by
actuaries, that are Generalized Additive Models for Location, Shape and Scale (GAMLSS)
and Tweedie Regression, can be fit using specifically developed packages as gamlss, Rigby
and Stasinopoulos (2005), and cplm, Zhang (2011), packages.
Life insurance evaluation models demographic and financial data, mainly. A Finance dedi-
cated view exists on CRAN site that lists packages specifically tailored to financial analysis.
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But, few packages that handle demographic data have been published yet. For examples, rele-
vant packages that perform demographic analysis are demography, Rob J Hyndman, Heather
Booth, Leonie Tickle, and John Maindonald (2011), and LifeTables, Riffe (2011). Packages
YieldCurve, Guirreri (2010), and termstrc, Ferstl and Hayden (2010), can be used to per-
form interest rate analysis. However, no package yet exists that performs life contingencies
calculations, as of May 2012.

Numerous commercial software specifically tailored to actuarial analysis are available in com-
merce, on the other hand. ”Moses” and ”Prophet” are currently the leading actuarial software
for life insurance modelling. lifecontingencies package aims to represent the R computational
side of the concepts exposed in the classical Society of Actuaries actuarial mathematics text-
book, Bowers and of Actuaries (1986). Since life contingencies theory grounds on demography
and classical financial mathematics, we have made an extensive use of Chris Ruckman and
Joe Francis (2006) and Broverman (2008) textbooks as references.

The paper has been structured as follows: Section 2 outlines the statistical and financial
mathematics theory regarding life contingencies, Section 3 overviews the structure of the
lifecontingencies package, Section 4 gives a wide choice of applied lifecontingencies examples,
finally Section 5 discusses package actual and prospective development and known limitations.

2. Life contingencies statistical and financial foundations

Life insurance analysis involves the calculation of statistics regarding occurrences and amounts
of future cash flows. I.e., the insurance pure premium (also known as benefit premium) is
the expected value of the distribution of the insurance benefits future cash flows. Cash flows
probability is based on the occurrence of the policyholder’s life events (life contingencies).
Therefore, life insurance actuarial mathematics grounds itself on concepts derived from de-
mography and the theory of interest.

A life table (also called a mortality table or actuarial table) is a table that shows how mor-
tality affects subject of a cohort across different ages. It reports for each age x, the number
of lx individuals living at the beginning of age x. It represents a sequence of l0, l1, . . . , lω,
where ω, the terminal age, is the farthest age until which a subject of the cohort can sur-
vive. Life table are typically distinguished according to gender, year of birth and nationality.
Life tables are also commonly developed by line of business, assurance vs annuity for example.

Using a statistical perspective, a life table allows the probability distribution of the the future
lifetime for a subject aged x, to be deduced. In particular, a life table allows to derive two
key probability distributions: T̃x, the future lifetime for a subject aged x and its curtate form,
K̃x, that is the number of future years completed before death. Therefore, many statistics
can be derived from the life table. A non exhaustive list follows:

� tpx = lx+t

lx
, the probability that someone living at age x will reach age x+ t.

� tqx, the complementary probability of tpx.

� tdx, the number of deaths between age x and x+ t.
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� tLx =
∫ t

0 lx+ydy, the expected number of years lived by the cohort between ages x and
x+ t.

� tmx = tdx
tLx

, the central mortality rate between ages x and x+ t.

� ex, the curtate expectation of life for a subject aged x, ex = E
[
K̃x

]
=
∞∑
k=1

kpx.

The Keyfitz textbook, Keyfitz and Caswell (2005), provides an exhaustive coverage about life
table theory and practice. Life table are usually published by institutions that have access to
large amount of reliable historical data, like government statistics or social security bureaus.
It is a common practice for actuaries to start from these life tables and to adapt them to the
insurer’s portfolio actual experience.

Classical financial mathematics deals with monetary amount that could be available in dif-
ferent times. The present value of a series of cash flows, reported in Equation 2, is probably
the most important concept. The present value represents the current value of a series of
monetary cash flows, CFt, that will be available in different periods of time.
The interest rate, i, represents the measure of the price of money available in future times.
Parallel to the interest rate, the time value of the money can be expressed by means of discount
rates, d = i

1+i . This paper will use the i symbol to express the effective compound interest,
when money is invested once per period. In case money is invested more frequenty, say m
times per perior, each fractional period represents the interest conversion period. During

each interest conversion period, the real interest rate i(m)

m is earned, where the i(m) expression
defines the nominal rate of interest payable m times per period.

Equation 1 combines interest and discount rates, both on effective and nominal basis, to
express how an amount of $1 growths until time t.

A (t) = (1 + i)t = (1− d)−t =

(
1 +

im

m

)t∗m
=

(
1− dm

m

)−t∗m
(1)

All financial mathematics functions (such annuities, ān , or accumulated values, sn ) can be
written as a particular case of Equation 2. See the classical Broverman (2008) textbook for
further reference on the topic.

PV =
∑
t∈T

CFt(1 + it)
−t (2)

Actuaries use the probabilities inherent the life table to evaluate life contingencies insurances.
Life contingencies are themselves stochastic variables, in fact. A life contingencies insurance
can be represented by a series of one or more payments whose occurrence and timing, and
therefore their present value, are uncertain. In fact both the time and their eventual occur-
rence depend by events regarding the life of the policyholder (that is the reason for which they
are called life contingencies). Since the actuarial analysis focuses on the present value of such
uncertain payments, life contingencies insurances future payments needs to be discounted
using interest rates that may be also considered stochastic. lifecontingencies package pro-
vides functions to model many of such random variables, Z̃, and in particular their expected
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value, the Actuarial Present Value (APV). APV is certainly the most important statistic for
Z̃ variables that actuaries use, since it represents the average cost of the benefits the insurer
guarantees to policyholders. In a P&C context it would be also known as pure premium. The
benefit premiums plus the loading for expense, profits and taxes sum up to the commercial
premium policyholders pay. Life contingencies can be either continue or discrete. lifecontin-
gencies package models only discrete life contingencies, that is insured amounts are supposed
to be due at the end of each year or fraction of year. However most continuous time life
contingencies insurance are easily derived from the discrete form under broad assumptions as
the Bowers and of Actuaries (1986) textbook formulas show.

Few examples of life contingencies follow:

1. An n-year term life insurance provides payment of $ b, if the insured dies within n years
from issue. If the payment is performed at the end of year of death, we can write Z̃ as

Z̃ =

{
vK+1, K = 0, 1, . . . , n− 1
0, K ≥ n Its APV expression is A1

x:n .

2. A life annuity consists in a sequence of benefits paid contingent upon survival of a given
life. In particular, a temporary life annuity due pays a benefit at the beginning of each
period so long as the annuitant (x) survives, for up to a total of n years, or n payments.

We can write Z̃ as Z̃ =

{
ä K+1|, K < n

ä n|, K ≥ n
. Its APV expression is äx:n .

3. An n-year pure endowment insurance grants a benefit payable at the end of n years, if

the insured survives at least n years from issue. The expression of Z̃ is vn ∗I
(
K̃x ≥ n

)
.

Its APV expression is nEx.

4. A n-year endowment insurance will pay a benefit either at the earlier of the year of
death or the end of the n-th year, whichever occurs earlier. We can write Z̃ as Z̃ ={
vK+1, K = 0, 1, . . . , n− 1
vn, K ≥ n . Its APV expression is Ax:n .

We send interested readers to the Bowers and of Actuaries (1986) textbook for formulas
regarding other life contingencies insurances as (DA)1

x:n , the decreasing term life insurance,
(IA)1

x:n , the increasing term life insurance, and common variations on payment form arrange-
ments like deferment and fractional payments. Similarly it is possible to define insurances
and annuities depending on the survival status of two or more lives. Axy and āxy represent re-
spectively the two lives joint-live insurance and the two lives last-survivor annuity immediate
APVs.

The lifecontingencies package provides functions that allows the actuary to evaluate the APV
and to draw random samples from Z̃ distribution. The evaluation of the APV has tradition-
ally followed three approaches: the use of commutation tables, the current payment technique
and the expected value techniques.
Commutation tables extend life table by tabulating special functions of age and rate of inter-
est. Ratios of commutation table functions allow the actuary to evaluate APV for standard
insurances. The interested reader can found a comprehensive overview of this topic in Ander-
son (1999) paper. The lifecontingencies allows underlying commutation table to be printed
out as further described. However, commutation table usage has become useless in computer
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era. In fact they are not enough flexible and their usage is computationally inefficient. There-
fore, commutation table approach has not been used within lifecontingencies.
The current payment technique calculates the APV of a life contingencies insurance, z̄, as the
scalar product of three vectors: z̄ = 〈〈c̄ • v̄〉 • p̄〉. The vector of all possible uncertain cash
flows, c̄, the vector of discount factors, v̄ and the vector of cash flow probability, p̄. Since
the current payment technique is the the most efficient approach from a computationally
side perspective, we have used this approach to evaluate APV. Finally, the expected value

approach models z̄ as the scalar product of two vector: z̄ =
〈
p̄k • x̄

〉
. p̄k is Pr

[
K̃ = k

]
, that

is the probability that the future curtate lifetime to be exactly k years, x̄ is the amount of the
cash flow due under the policy term if K̃ = k. The latter approach has been used to define
the probability distribution of the life contingency Z̃ when performing stochastic analyses.
An example will better clarify this concept. Consider an annuity due lasting n years. Its
APV, äx:n , using the commutation tables approach is reported in Equation 3, while Equa-
tion 4 reports the APV using the current payment technique. Finally, Equation 5 calculates
the APV using the expected value approach.

APV =
Nx −Nx+n

Dx
(3)

APV =

min(ω−x,n)∑
k=0

kpx ∗ vk (4)

APV =

ω−x∑
k=0

Pr
[
K̃x = k

]
∗ ä

min(k,n)| (5)

3. The structure of the package

Package lifecontingencies contains classes and methods to handle life-tables and actuarial ta-
bles conveniently.

The package is loaded within the R command line as follows:

R> library("lifecontingencies")

Two main S4 classes, Chambers (2008), have been defined within the lifecontingencies pack-
age: the lifetable class and the actuarialtable class. The lifetable class is defined as
follows

R> showClass("lifetable")

Class "lifetable" [in ".GlobalEnv"]

Slots:
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Name: x lx name

Class: numeric numeric character

Known Subclasses: "actuarialtable"

Class actuarialtable inherits from lifetable class adding one more slot dedicated to the
interest rate.

R> showClass("actuarialtable")

Class "actuarialtable" [in ".GlobalEnv"]

Slots:

Name: interest x lx name

Class: numeric numeric numeric character

Extends: "lifetable"

Beyond generic S4 classes and method there are three groups of functions, reported in Table 1,
Table 2 and Table 3: demographics functions, financial mathematics functions and actuarial
mathematics functions. Finally, Table 4 shows lifecontingencies package parameters’ conven-
tion.

function purpose

dxt deaths between age x and x+ t, tdx.
pxt survival probability between age x and x+ t, tpx.
pxyzt survival probability for two (or more) lives, tpxy.
qxt death probability between age x and x+ t, tqx.
qxyzt death probability for two (or more) lives, tqxy.
Txt number of person-years lived after exact age x, tTx.
mxt central death rate, tmx.
exn expected lifetime between age x and age x+ n, nex.
rLife sample from the time until death distribution underlying a life table.
rLifexyz sample from the time until death distribution underlying two or more life.
exyz n-year curtate lifetime of the joint-life status.
probs2lifetable life table lx from raw one - year survival / death probabilities.

Table 1: lifecontingencies functions for demographic analysis.
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function purpose

presentValue present value for a series of cash flows.
annuity present value of a annuity - certain, an .
accumulatedValue future value of a series of cash flows, sn .
increasingAnnuity present value of an increasing annuity - certain, IAn.
decreasingAnnuity present value of a decreasing annuity, DAn .
nominal2Real conversion from nominal to real interest (discount) rate.
real2Nominal nominal2Real inverse.
intensity2Interest conversion to intensity of interest from the interest rate.
interest2Intensity intensity2Interest inverse.
duration dollar / Macaulay duration of a series of cash flows
convexity convexity of a series of cash flows.

Table 2: lifecontingencies functions for financial mathematics.

function purpose APV symbol

Axn one life insurance A1
x:n .

AExn the n-year endowment A 1
x:n .

Axyzn two lives life insurances Ā 1
xy:n .

axn one life annuity äx.
axyzn two lives annuities äxy.
Exn pure endowment nEx.
Iaxn increasing annuity Iax.
IAxn increasing life insurance (IA)1

x:n .
DAxn decreasing life insurance (DA)1

x:n .

Table 3: lifecontingencies functions for actuarial mathematics.

parameter significance

x the policyholder’s age.
n the coverage duration or payment duration.
actuarialtable the actuarial table.
i interest rate, that could be varying.
k the frequency of payments.

Table 4: lifecontingencies functions parameters naming conventions.
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4. Code and examples

The example secton of this paper is structured as follows: Section 4.1 deals with classical
financial mathematics, Section 4.2 deals with creating and managing life tables and actuarial
tables, Section 4.3 deals with classical actuarial mathematics while Section 4.4 presents the
lifecontingencies packages functions to perform simulation analysis.

4.1. Classical financial mathematics example

The lifecontingencies package provides functions to perform classical financial mathematics
calculations. Examples that follows show how to handle interest and discount rates with
different compounding frequency, how to perform present value, annuities and future values
analysis calculations as long as loans amortization and bond pricing.

Interest rate functions

Interest rates represent the time - value of the money. However different types of rates can
be found in literature. As a remark, Equation 6 displays the relationship between effective
interest rate, nominal interest rate, force of interest, effective discount rate and nominal
discount rate.

(1 + i)t =

(
1 +

i(m)

m

)t

= exp (δt) = (1− d)−t =

(
1− d(m)

m

)−t
(6)

Functions interest2Discount, discount2Interest, nominal2Real, real2Nominal, interest2Intensity,
intensity2Interest have been based on Equation 6 and inverse formulas implied therein.
Throughout the paper interest rate is deemed effective interest rate unless otherwise stated.

As examples, functions interest2Discount and discount2Interest represent a convenient
way to switch from interest to discount rates and conversely.

R> interest2Discount(0.03)

[1] 0.02912621

R> discount2Interest(interest2Discount(0.03))

[1] 0.03

Function nominal2Real can help to evaluate what is the effective interest rate implied in a
consumer - credit loan that offers 10% nominal interest rate with quarterly compounding.

R> nominal2Real(i=0.10,4)

[1] 0.1038129
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Present value and internal rate of return analysis

Performing a project appraisal means evaluating the net present value (NPV) of all projected
cash flows. Code below shows an example of NPV analysis

R> capitals=c(-1000,200,500,700)

R> times=c(0,1,2,5)

R> presentValue(cashFlows=capitals, timeIds=times,interestRates=0.03)

[1] 269.2989

finally both interest rate varies and cash flows are uncertain the presentValue function
parameter probabilities can be properly set as following example displays.

R> presentValue(cashFlows=capitals, timeIds=times,

+ F interestRates=c( 0.04, 0.02, 0.03, 0.05),

+ F probabilities=c(1,1,1,0.5))

[1] -58.38946

The internal rate of return (IRR) is defined as the interest rate that make the NPV zero. It is
used to rank alternative projects alternatively to NPV. The following example displays how
to compute IRR using lifecontingencies package and R functions.

R> getIrr<-function(p) (presentValue(cashFlows=capitals, timeIds=times,

+ F interestRates=p) - 0)^2

R> nlm(getIrr,0.1)$estimate

[1] 0.1105091

Annuities and future values

An annuity (certain) is a sequence of payments with specified amount that is present - value,
while when it is valued at the end of the term of payment is is called future values. Code
below shows examples of annuities, a n|, and accumulated values, s n|, evaluations.
The PV of an annuity immediate $100 payable at the end of next 5 years at 3% is

R> 100*annuity(i=0.03,n=5)

[1] 457.9707

while the corresponding future value is

R> 100*accumulatedValue(i=0.03,n=5)

[1] 530.9136
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Annuities and future values payable k-thly (where fractional payments of 1/k are received for
each k-th of period) can be evaluated also.

R> ann1<-annuity(i=0.03,n=5,k=1,type="immediate")

R> ann2<-annuity(i=0.03,n=5,k=12,type="immediate")

R> c(ann1,ann2)

[1] 4.579707 4.642342

increasingAnnuity and decreasingAnnuity functions handle increasing and decreasing an-
nuities, whose APV symbols are IAx, DAx respectively. Assuming a ten years term and a
3% interest rate, examples of increasing and decreasing annuities follow.

R> incrAnn<-increasingAnnuity(i=0.03, n=10,type="due")

R> decrAnn<-decreasingAnnuity(i=0.03, n=10,type="immediate")

R> c(incrAnn, decrAnn)

[1] 46.18416 48.99324

The last example of this section exemplifies the calculation of the present value of a geomet-
rically increasing annuity. If amounts increase by 3% and the interest rate is 4% and its term
is 10 years, the implied present value is

R> annuity(i=((1+0.04)/(1+0.03)-1),n=10)

[1] 9.48612

Loan amortization

lifecontingencies financial mathematics functions allow to define the repayments schedule of
any loan arrangement, as this section exemplifies. Let C denote the loaned capital (principal),
then assuming an interest rate i, the amount due to the lender at each installment is R = C

a n|
.

Therefore the Rt amount repays It = Ct−1 ∗ i as interest and Ct = Rt − It as capital at each
installment. The loan installment, R, is initially estimated as follows

R> capital=100000

R> interest=0.05

R> payments_per_year=2

R> rate_per_period=(1+interest)^(1/payments_per_year)-1

R> years=30

R> R=

+ F 1/payments_per_year*capital/annuity(i=interest,

+ F n=years,k=payments_per_year)

R> R

[1] 3212.9
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Figure 1: Loan amortization: EoP balance due.

then the balance due at end of period (EoP) is calculated as follows

R> balanceDue=numeric(years*payments_per_year)

R> balanceDue[1]=capital*(1+rate_per_period)-R

R> for(i in 2:length(balanceDue)) balanceDue[i]=

+ F balanceDue[i-1]*(1+rate_per_period)-R

Figure 1 shows the EoP balance due for a 30 - years duration loan, assuming a 5% interest
rate on a principal of $ 100,000.

Bond pricing

Bond pricing represents another application of present value analysis. A standard bond whose
face value C will be repaid at time T consists in a sequence of equal coupons ct paid at regular
intervals and a final payment of CT + cT . Equation 7 expresses the present value of a bond.

Bt = cta
(k)

n| + CvT (7)
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Perpetuities are financial contracts that offers an indefinite sequence of payments either at
the end (perpetuity-immediate) or at the beginning of the period (perpetuity-due).

Following examples show how lifecontingencies package elementary functions can be combined
to price bond and perpetuities.

R> bond<-function(faceValue, couponRate, couponsPerYear, yield,maturity)

+ F {

+ F out=NULL

+ F numberOfCF=maturity*couponsPerYear

+ F CFs=numeric(numberOfCF)

+ F payments=couponRate*faceValue/couponsPerYear

+ F cf=payments*rep(1,numberOfCF)

+ F cf[numberOfCF]=faceValue+payments

+ F times=seq.int(from=1/couponsPerYear, to=maturity,

+ F by=maturity/numberOfCF)

+ F out=presentValue(cashFlows=cf, interestRates=yield,

+ F timeIds=times)

+ F return(out)

+ F }

R> perpetuity<-function(yield, immediate=TRUE)

+ F {

+ F out=NULL

+ F out=1/yield

+ F out=ifelse(immediate==TRUE,out,out*(1+yield))

+ F return(out)

+ F }

R>

bond and perpetuity functions defined above can be used to price any bond, given face value,
coupon rate and term, as code show displays.

R> bndEx1<-bond(1000,0.06,2,0.05,3)

R> bndEx2<-bond(1000,0.06,2,0.06,3)

R> ppTy1<-perpetuity(0.1)

R> c(bndEx1, bndEx2,ppTy1)

[1] 1029.250 1002.371 10.000

E

Duration and ALM

Duration and convexity formulas are reported in Equation 8 and Equation 9 respectively.
They are used to perform portfolios asset - liability management (ALM). The interested
reader could find details on Chris Ruckman and Joe Francis (2006). However, the example
that follow shows how Macaulay duration (ex1), modified duration (ex2) and convexity (ex3)
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of any series of cash flows can be estimated by lifecontingencies package functions.

D =

T∑
t

t ∗ CFt

(
1 + i

m

)−t∗m
P

(8)

C =
T∑
t

t ∗
(
t+

1

m

)
∗ CFt

(
1 +

y

m

)−m∗t−2
(9)

R> cashFlows=c(100,100,100,600,500,700)

R> timeVector=seq(1:6)

R> interestRate=0.03

R> ex1<-duration(cashFlows=cashFlows, timeIds=timeVector,

+ F i=interestRate, k = 1, macaulay = TRUE)

R> ex2<-duration(cashFlows=cashFlows, timeIds=timeVector,

+ F i=interestRate, k = 1, macaulay = FALSE)

R> ex3<-convexity(cashFlows=cashFlows, timeIds=timeVector,

+ F i=interestRate, k = 1)

R> c(ex1, ex2,ex3)

[1] 4.430218 4.563124 25.746469

The last example works out a small ALM problem. Suppose an insurance company has sold
a guarantee term certificate (GTC) of face value $ 10,000, that will mature in 7 years at a
5% interest rate. Its final value would be:

R> GTCFin=10000*1.05^7

R> GTCFin

[1] 14071

Imagine the company can hedge its liability with two alternative investments:

1. A five year bond, with face value of 100 yearly coupon with coupon rate of 3%.

2. A perpetuity-immediate. As a remark, the formulas for the PV and Duration of the
perpetuity immediate are 1

y and 1+y
y respectively when the yield is y.

In order to solve the ALM problem we need to immunize the porfolio against interest rate
variation. A portfolio is immunized against parallel shift of the yield curve if both the PV
and the duration of asset is set equal to the duration of liabilities. We start to figure out
some parameters:

R> yieldT0=0.04

R> durLiab=7

R> pvLiab=GTCFin/(1+yieldT0)^7
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R> pvBond=bond(100,0.03,1,yieldT0,5)

R> durBond=duration(cashFlows=c(3,3,3,3,103),timeIds=seq(1,5),i=yieldT0)

R> durPpty=(1+yieldT0)/yieldT0

R> pvPpty=perpetuity(yieldT0)

Then the ALM problem is set out in a three steps problem, Chris Ruckman and Joe Francis
(2006):

1. setting initial the present value of cash inflows (asset) to be equal to the present value
of cash outflows (liabilities).

2. setting the interest rate sensitivity (i.e., the duration) of asset to be equal to the interesr
rate sensitivity of liabilities.

R> a=matrix(c(durBond, durPpty,1,1),nrow=2,byrow=TRUE)

R> b=as.vector(c(7,1))

R> weights=solve(a,b)

R> weights

[1] 0.8848879 0.1151121

Vector weights displays the portfolio composition in term of bonds and liabilities respectively.
Therefore the number of bonds and perpetuities that can be purchased is determined by

R> bondNum=weights[1]*pvLiab/pvBond

R> pptyNum=weights[2]*pvLiab/pvPpty

R> bondNum

[1] 99.0279

R> pptyNum

[1] 49.23485

The portfolio is immunized since if interest rates suddently drops to 3% just after, the present
value of assets comes to be greater than the present value of liabilities. The same occurs in
case of upward shift of interest rates.

R> yieldT1low=0.03

R> immunizationTestLow<-(bondNum*bond(100,0.03,1,yieldT1low,5)+

+ F pptyNum*perpetuity(yieldT1low)>GTCFin/(1+yieldT1low)^7)

R> yieldT1high=0.05

R> immunizationTestHigh<-(bondNum*bond(100,0.03,1,yieldT1high,5)+

+ F pptyNum*perpetuity(yieldT1high)>GTCFin/(1+yieldT1high)^7)

R> immunizationTestLow

[1] TRUE
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R> immunizationTestHigh

[1] TRUE

It is worth to remember that the assets allocation within the portfolio should be rebalanced
since both time and changes of interest rates changes elementary securities’ durations.
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4.2. Life tables and actuarial tables analysis

lifetable and actuarialtable classes are designed to handle demographic and actuarial
mathematics calculations. A actuarialtable class inherits from lifetable class. It has one
more slot dedicated to the rate of interest. Both classes have been designed using the S4 R
classes framework.
Following examples show how to initialize these classes, basic survival probabilities and life
table analysis.

Creating lifetable and actuarialtable objects

Life table objects can be created by raw R commands or using existing data.frame objects.
However, to build a lifetable class object three components are needed:

1. The years sequence, that is an integer sequence 0, 1, . . . , ω. It shall start from zero and
going to the terminal, ω, age (the age x that px = 0).

2. The lx vector, that is the number of subjects living at the beginning of age x, that is
the number of subject at risk to die between year x and x+ 1.

3. The name of the life table.

There are three main approaches to create a lifetable object:

1. directly from the x and lx vector.

2. importing x and lx from an existing data.frame object.

3. from raw survival probabilities.

To create a lifetable object directly we can do as code below shows

R> x_example=seq(from=0,to=9, by=1)

R> lx_example=c(1000,950,850,700,680,600,550,400,200,50)

R> exampleLt=new("lifetable",x=x_example, lx=lx_example, name="example lifetable")

while print and show methods tabulate the x, lx, tpx and ex values for a given life table.

R> print(exampleLt)

Life table example lifetable

x lx px ex

1 0 1000 0.9500000 4.742105

2 1 950 0.8947368 4.241176

3 2 850 0.8235294 4.042857

4 3 700 0.9714286 3.147059

5 4 680 0.8823529 2.500000

6 5 600 0.9166667 1.681818

7 6 550 0.7272727 1.125000

8 7 400 0.5000000 0.750000

9 8 200 0.2500000 0.500000
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head and tail methods for data.frame S3 classes have also been implemented on lifetable

classes

R> head(exampleLt)

x lx

1 0 1000

2 1 950

3 2 850

4 3 700

5 4 680

6 5 600

Nevertheless the easiest way to create a lifetable object is to start from a suitable existing
data.frame. This will be probably the most practical approach for working actuaries. Some
tables or mortality rates have been bundled within lifecontingencies package, as Table 5
displays.

data set description

AF92Lt UK AF92 life table object.
AM92Lt UK AF92 life table object.
demoChina China mortality rates from SOA website.
demoIta Various Italian life tables including RG48 and IPS55 projected tables.
demoJapan Japan mortality rates from SOA website.
demoUsa US Social Security life tables.
demoFrance 1990 and 2002 French life tables.
soa08 SOA illustrative life table.
soa08Act SOA illustrative actuarial table at 6%.

Table 5: lifecontingencies bundled life tables.

In the following example the US Social Security life tables are loaded from the existing
demoUsa data set bundled in the lifecontingencies package.

R> data("demoUsa")

R> data("demoIta")

R> usaMale07=demoUsa[,c("age", "USSS2007M")]

R> usaMale00=demoUsa[,c("age", "USSS2000M")]

R> names(usaMale07)=c("x","lx")

R> names(usaMale00)=c("x","lx")

R> usaMale07Lt<-as(usaMale07,"lifetable")

R> usaMale07Lt@name="USA MALES 2007"

R> usaMale00Lt<-as(usaMale00,"lifetable")

R> usaMale00Lt@name="USA MALES 2000"

The same operation can be performed on IPS55 tables bundled in the demoIta data set. The
purpose of following example is to stress that it is important a clean lx series to be given in
input to the coerce method. A ”clean” lx series means that neither 0 nor missing values are
present anywhere and the lx series to be decreasing.
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R> lxIPS55M<-with(demoIta, IPS55M)

R> pos2Remove<-which(lxIPS55M %in% c(0,NA))

R> lxIPS55M<-lxIPS55M[-pos2Remove]

R> xIPS55M<-seq(0,length(lxIPS55M)-1,1)

R> lxIPS55F<-with(demoIta, IPS55F)

R> pos2Remove<-which(lxIPS55F %in% c(0,NA))

R> lxIPS55F<-lxIPS55F[-pos2Remove]

R> xIPS55F<-seq(0,length(lxIPS55F)-1,1)

R> ips55M=new("lifetable",x=xIPS55M, lx=lxIPS55M,

+ F name="IPS 55 Males")

R> ips55F=new("lifetable",x=xIPS55F, lx=lxIPS55F,

+ F name="IPS 55 Females")

The last way a lifetable object can be created is from one year survival or death probabilities
combining the probs2lifetable function and as.data.frame coerce methods. Two potential
applications benefit from this feature: the use of the results of a mortality projection method (
e.g., the Lee - Carter method, Booth, Hyndman, Tickle, and De Jong (2006)) and the creation
of ”cut-down” mortality tables. The latter application is exemplified in the code line that
follow where a itaM2002reduced life table is obtained cutting down the one - year mortality
rates of Italian males aged between 20 and 60 to 20% of its original value.

R> data("demoIta")

R> itaM2002<-demoIta[,c("X","SIM92")]

R> names(itaM2002)=c("x","lx")

R> itaM2002Lt<-as(itaM2002,"lifetable")

removing NA and 0s

R> itaM2002Lt@name="IT 2002 Males"

R> itaM2002<-as(itaM2002Lt,"data.frame")

R> itaM2002$qx<-1-itaM2002$px

R> for(i in 20:60) itaM2002$qx[itaM2002$x==i]=0.2*itaM2002$qx[itaM2002$x==i]

R> itaM2002reduced<-probs2lifetable(probs=itaM2002[,"qx"], radix=100000,

+ F type="qx",name="IT 2002 Males reduced")

An actuarialtable can be easily created from a lifetable existing object.

R> exampleAct=new("actuarialtable",x=exampleLt@x, lx=exampleLt@lx,

+ F interest=0.03, name="example actuarialtable")

Method getOmega for actuarialtable classes returns the terminal age, ω.

R> getOmega(exampleAct)

[1] 9
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Method print behaves differently between lifetable objects and actuarialtable objects.
In fact, one year survival probability and complete expected remaining life until deaths are
reported when print method is applied on a lifetable object. Classical commutation
functions (Dx, Nx, Cx, Mx, Rx) are print out applying print method on an actuarialtable

object.

R> print(exampleLt)

Life table example lifetable

x lx px ex

1 0 1000 0.9500000 4.742105

2 1 950 0.8947368 4.241176

3 2 850 0.8235294 4.042857

4 3 700 0.9714286 3.147059

5 4 680 0.8823529 2.500000

6 5 600 0.9166667 1.681818

7 6 550 0.7272727 1.125000

8 7 400 0.5000000 0.750000

9 8 200 0.2500000 0.500000

R> print(exampleAct)

Actuarial table example actuarialtable interest rate 3 %

x lx Dx Nx Cx Mx Rx

1 0 1000 1000.00000 5467.92787 48.54369 840.7400 4839.7548

2 1 950 922.33010 4467.92787 94.25959 792.1963 3999.0148

3 2 850 801.20652 3545.59778 137.27125 697.9367 3206.8185

4 3 700 640.59916 2744.39125 17.76974 560.6654 2508.8819

5 4 680 604.17119 2103.79209 69.00870 542.8957 1948.2164

6 5 600 517.56527 1499.62090 41.87421 473.8870 1405.3207

7 6 550 460.61634 982.05563 121.96373 432.0128 931.4337

8 7 400 325.23660 521.43929 157.88185 310.0491 499.4210

9 8 200 157.88185 196.20268 114.96251 152.1672 189.3719

10 9 50 38.32084 38.32084 37.20470 37.2047 37.2047

Finally a plot method can be applied to a lifetable or actuarialtable object. The under-
lying survival function (that is the plot of x vs lx) is displayed in both cases. Figure 2 shows
the plot methods applied on the Society of Actuaries (SOA) actuarial object, soa08Act,
bundled in the lifecontingencies package.
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Figure 2: SOA illustrative life table underlying survival function.
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Basic demographic analysis

Basic demographic estimations can be performed on valid lifetable or actuariatable ob-
jects. Code below shows how 1p20, 2q30 and e̊50:20 respectively can be calculated on the IPS55
male population table

R> demoEx1<-pxt(ips55M,20,1)

R> demoEx2<-qxt(ips55M,30,2)

R> demoEx3<-exn(ips55M, 50,20)

R> c(demoEx1,demoEx2,demoEx3)

[1] 0.999595096 0.001332031 19.433217384

Fractional survival probabilities can also be calculated using the linear interpolation (pxtLin),
constant force of mortality (pxtCnst) and hyperbolic Balducci’s assumptions (pxtHyph), as
Bowers and of Actuaries (1986) textbook details. We will show these concepts on the SOA
illustrative life table, assuming insured age to be 80 years old.

R> data("soa08Act")

R> pxtLin=pxt(soa08Act,80,0.5,"linear")

R> pxtCnst=pxt(soa08Act,80,0.5,"constant force")

R> pxtHyph=pxt(soa08Act,80,0.5,"hyperbolic")

R> c(pxtLin,pxtCnst,pxtHyph)

[1] 0.9598496 0.9590094 0.9581701

Survival probabilities calculations on two lives can be performed also. As a remark, two life
status are defined until multiple lives survival analysis: ”joint” survival status and ”last”
survival status. The ”joint” survival status exists until all the members are alive, while the
”last” survival status exists until at least one member survives. Equation 10 defines the time
until death until the joint and last survival status respectively.

T̃xy = min (Tx, Ty)

T̃x̄y = max (Tx, Ty)
(10)

Following code lines show how joint survival probabilities (jps), last survival probabilities
(lsp) and expected joint lifetime (jelt) can be evaluated using lifecontingencies functions.

R> jsp=pxyt(ips55M,ips55F,x=65, y=63, t=2)

R> lsp=pxyt(ips55M,ips55F,x=65, y=63, t=2,status="last")

R> jelt=exyt(ips55M, ips55F, x=65,y=63, status="joint")

R> c(jsp,lsp,jelt)

[1] 0.9813187 0.9999275 19.1982972
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4.3. Classical actuarial mathematics examples

Classical actuarial mathematics examples on life contingencies are presented. The SOA illus-
trative life table assuming a 6% interest rates (the same used in most Bowers and of Actuaries
(1986) examples) will be used, unless otherwise stated. Similarly, the insured amount (or the
annuity term payment) will be $1, unless otherwise stated.

Life insurance examples

Following examples show the APV calculation (that is the lump sum benefit premium) for:

1. lins1: 10-year term life insurance for a policyholder aged 30 assuming 4% interest rate,
A 1

30:10
.

2. lins2: whole life insurance for a policyholder aged 30 with benefit payable at the end

of month of death at 4% interest rate, A
(12)
30 .

3. lins3: whole life insurance for a policyholder aged 40 assuming 4% interest rate, A40.

4. lins4: 5 years deferred 10-years term life insurance for a policyholder aged 40 assuming
5% interest rate, 5|10Ā40.

5. lins5: 5 years annually decreasing term life insurance for a policyholder aged 50 as-
suming 6% interest rate, (DA) 1

50:5
.

6. lins6: 10 years increasing term life insurance, age 40, (IA) 1
40:10

.

R> lins1=Axn(soa08Act, 30,10,i=0.04)

R> lins2=Axn(soa08Act, x=30,i=0.04,k=12)

R> lins3=Axn(soa08Act, 40,i=0.04)

R> lins4=Axn(soa08Act, x=40,n=10,m=5,i=0.05)

R> lins5=DAxn(soa08Act, 50,5)

R> lins6=IAxn(soa08Act, 40,10)

R> c(lins1,lins2,lins3,lins4,lins5,lins6)

[1] 0.01577283 0.20042950 0.27344967 0.03298309 0.08575918 0.15514562

Any APV depends by several parameters: the class of insurance benefit, the policyholder’s
age, the duration of coverage and the interest rate are some of them. Following lines show an
interest rate sensitivity analysis on the APV of a 25E30 pure endowment insurance.

R> puEnd1<-Exn(soa08Act, x=30, n=35, i=0.06)

R> puEnd2<-Exn(soa08Act, x=30, n=35, i=0.03)

R> c(puEnd1,puEnd2)

[1] 0.1031648 0.2817954



Giorgio Alfredo Spedicato, Ph.D 23

Life annuities examples

Life contingencies annuities consist in sequences of payments whose occurrence and duration
depend on K̃x (or T̃x). Different types of annuities exist, of which a selection of examples
follows. The SOA life table and a policyholder age of 65 apply in all following examples.

1. annEx1: annuity immediate, a65.

2. annEx2: annuity due, ä65.

3. annEx3: $ 1,000 annuity due with monthly payment provision, ä
(12)
65 .

4. annEx4: $ 1,000 annuity due with monthly payment provision 20 years term, ä
(12)

65:20
.

5. annEx5: $ 1,000 annuity immediate with monthly payment provision 20 years term,

a
(12)

65:20
.

R> annEx1<-axn(soa08Act, x=65, m=1)

R> annEx2<-axn(soa08Act, x=65)

R> annEx3<-12*1000*axn(soa08Act, x=65,k=12)

R> annEx4<-12*1000*axn(soa08Act, x=65,k=12, n=20)

R> annEx5<-12*1000*axn(soa08Act, x=65,k=12,n=20,m=1/12)

R> c(annEx1,annEx2,annEx3,annEx4,annEx5)

[1] 8.896928e+00 9.896928e+00 1.131791e+05 1.082235e+05 1.073211e+05

Benefit premiums examples

lifecontingencies package functions can be used to evaluate benefit premium, P , for life con-
tingencies insurance. A (level) benefit premium is defined as the actuarial present value of the
provided coverage paid in h installments, P = APV

ä
x:h

. The following example displays yearly,

Pa, and monthly, Pm, level benefit premium calculations for a $ 250,000 35 term life insurance
for a 30 years old policyholder, assuming the payment of premium to occur during the first
15 years.

R> APV=100000*Axn(soa08Act, x=30,n=35,i=0.025)

R> Pa=APV/axn(soa08Act, x=30,n=15,i=0.025)

R> Pm=APV/(12*axn(soa08Act, x=30,n=15,i=0.025,k=12))

R> c(Pa,Pm)

[1] 921.52623 77.74863

Benefit reserves examples

The (prospective) benefit reserve consists in the difference between the APV of future insur-
ers’ benefits payments obligations and the APV of projected inflows (remaining scheduled
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premiums). It represents the outstanding insurer’s obligation to the policyholder for the un-
derwritten insurance policy. An example will better exemplify this concept.
We will evaluate the benefit reserve for a 25 years old 40 years duration life insurance of $
100,000, with benefits payable at the end of year of death, with level benefit premium payable
at the beginning of each year. Assume 3% of interest rate and SOA life table to apply.
The benefit premium and reserve equations for this life contingency insurance are displayed
in Equation 11.

P ä25:40 = 100000A 1
25:40

kV
1

25+t:n−t = 100000A 1
25+t:40−t − P ä25+t:40−t

(11)

R> P=100000*Axn(soa08Act,x=25,n=40,i=0.03)/axn(soa08Act,x=25,n=40,i=0.03)

R> reserveFun=function(t) return(100000*Axn(soa08Act,x=25+t,n=40-t,i=0.03)-P*

+ F axn(soa08Act,x=25+t,n=40-t,i=0.03))

R> for(t in 0:40) {if(t%%5==0) cat("At time ",t,

+ F " benefit reserve is ", reserveFun(t),"\n")}

At time 0 benefit reserve is 0

At time 5 benefit reserve is 1575.179

At time 10 benefit reserve is 3221.986

At time 15 benefit reserve is 4848.873

At time 20 benefit reserve is 6290.505

At time 25 benefit reserve is 7258.187

At time 30 benefit reserve is 7250.61

At time 35 benefit reserve is 5380.243

At time 40 benefit reserve is 0

The calculation of the benefit reserve for a deferred annuity due is the final example of
this section. We assume policyholder’s age to be 25 and the annuity to be deferred at 65.
The reserve equation is n|äx− P̄ (n|āx)äx+k:n−k when x . . . n, äx+k otherwise. The code below
calculates the level premium in the initial part and the reserve function while Figure 3 displays
the reserve function.

R> yearlyRate=12000

R> irate=0.02

R> APV=yearlyRate*axn(soa08Act, x=25, i=irate,m=65-25,k=12)

R> levelPremium=APV/axn(soa08Act, x=25,n=65-25,k=12)

R> annuityReserve<-function(t) {

+ F out<-NULL

+ F if(t<65-25) out=yearlyRate*axn(soa08Act, x=25+t,

+ F i=irate,m=65-(25+t),k=12)-levelPremium*axn(soa08Act,

+ F x=25+t,n=65-(25+t),k=12) else {

+ F out=yearlyRate*axn(soa08Act, x=25+t, i=irate,k=12)

+ F }

+ F return(out)

+ F }
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Figure 3: Benefit reserve for ä65.

R> years=seq(from=0, to=getOmega(soa08Act)-25-1,by=1)

R> annuityRes=numeric(length(years))

R> for(i in years) annuityRes[i+1]=annuityReserve(i)

R> dataAnnuityRes<-data.frame(years=years, reserve=annuityRes)

Expenses considerations

The premium the policyholder is usually charged to contains an allowance for expenses and
profit loading. Those expenses cover the policy servicing, the producers’ commission. In
some case the insurer profit load is explicitly taken into account in the benefit premium as
a flat amount or as a percentage of final premium. In other cases an implicit profit loading
is generated by using demographic and financial assumptions more prudential than would be
necessary when pricing and reserving the policy. The equivalence principle can be extended to
the gross premium, G, and expense augmented reserve, tV

E , considering expenses allowance
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by using Equation 12

G = APV (Benefits) +APV (Expenses)

tV
E = APV (Benefits) +APV (Expenses)−APV (GrossPremium)

(12)

The following example shows how to a expense loaded premium G for a $ 100,000 whole life
insurance on a 35 year old insured 100, 000A35 is calculated assuming the following: 10% of
premium expense per year, 25 per year of policy expense, annual maintenance expense of 2.5
per 1,000 unit of capital.

The equation to be solved is Gä35 = 100000A35 + (2.5 ∗ 100000/1000 + 25 + 0.1G) ä35.

R> G=(100000*Axn(soa08Act, x=35)+ 275)/(1-.1)

R> G

[1] 14607.71

Insurances and annuities on two lives

lifecontingencies package provides functions designed to evaluate life insurance and annuities
on two lives. Following examples check the equality axy = ax + ay − axy.

R> twoLifeTables=list(maleTable=soa08Act, femaleTable=soa08Act)

R> ex1<-axn(soa08Act, x=65,m=1)+axn(soa08Act, x=70,m=1)-

+ F axyn(soa08Act,soa08Act, x=65,y=70,status="joint",m=1)

R> ex2<-axyzn(twoLifeTables, x=c(65,y=70), status="last",m=1)

R> round(ex1-ex2,2)

[1] 0

Reversionary annuities (annuities payable to life y upon death of x), ax|y = ay − axy can also
be evaluate combining lifecontingencies functions.

R> axn(soa08Act, x=60,m=1)-axyzn(twoLifeTables, x=c(65,60),status="joint",m=1)

[1] 2.695232
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4.4. Stochastic analysis

This last section illustrates some stochastic analysis that can be performed by our package,
both in demographic analysis and life insurance evaluation. Section 4.4.1 applies stochastic
analysis on demographic issues, while Section 4.4.2 applies stochastic analysis on insurance
pricing.

Demographic examples

The age-until-death, both in the continuous, T̃x, or curtate form, K̃x, is a stochastic variable
whose distribution is intrinsic in the deaths within a life table. The code below shows how
rLife function can be used to draw sample of size 10 from the continuous and curtate future
lifetime implicit in the SOA life table.

R> sample1<-rLife(n=10,object=soa08Act,x=0,type="Tx")

R> sample2<-rLife(n=10,object=soa08Act,x=0,type="Kx")

Next example shows how the mean of the sampled distribution from the curtate future lifetime
for a 29 year old policyholder, K̃29, is statistically equal to the expected life time, ex when
rLife function is used.

R> exn(soa08Act, x=29,type="curtate")

[1] 45.50066

R> t.test(x=rLife(2000,soa08Act, x=29,type="Kx"),

+ F mu=exn(soa08Act, x=29,type="curtate"))$p.value

[1] 0.3745385

R> deathsIPS55M<-rLife(n=numSim,ips55M, x=0, type="Kx")

Finally, Figure 4 shows the deaths distribution implicit in the ips55M life table generated
with the aid of rLife function.



28 A Package to Perform Financial and Actuarial Mathematics Calculations in R

IPS55M Table Kx Distribution

Age until death

D
en

si
ty

0 20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Figure 4: IPS55 deaths distribution function.

Actuarial mathematics examples

The APV is the present value of a random variable, Z̃. Z̃ represents a composite function
between the discount amount and indicator variables regarding the life status of the insured.
We call Z̃ the present value of benefits random variable, Z̃.
Life contingencies evaluation functions return the APV as default value, since the type pa-
rameter has ”EV” (expected value) as default value. However most life contingencies actuarial
mathematics functions are provided with a ”ST” (stochastic) argument for type parameter.
The ”ST” argument allows to obtain a sample of size one from the underlying Z̃ distribution.
However, when samples of greater dimension are required, the most straightforward approach
is to use the rLifeContingencies function.
Code below will show Z̃ variate generation from term life insurances, increasing life term in-
surances, temporary annuity,and endowment insurances respectively. For each example, the
unbiaseness is verified by comparing the mean of simulated variate with the theoretical APV
using a classical t - test. All examples are referred to an individual aged 20 years old for an
insurance duration of 40 years. Figure 5 shows the resulting Z̃ distributions.
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R> APVAxn=Axn(soa08Act,x=25,n=40,type="EV")

R> APVAxn

[1] 0.0479709

R> sampleAxn=rLifeContingencies(n=numSim, lifecontingency="Axn",

+ F object=soa08Act,x=25,t=40,parallel=TRUE)

R> tt1<-t.test(x=sampleAxn,mu=APVAxn)$p.value

R> APVIAxn=IAxn(soa08Act,x=25,n=40,type="EV")

R> APVIAxn

[1] 1.045507

R> sampleIAxn=rLifeContingencies(n=numSim, lifecontingency="IAxn",

+ F object=soa08Act,x=25,t=40,parallel=TRUE)

R> tt2<-t.test(x=sampleIAxn,mu=APVIAxn)$p.value

R> APVaxn=axn(soa08Act,x=25,n=40,type="EV")

R> APVaxn

[1] 15.46631

R> sampleaxn=rLifeContingencies(n=numSim, lifecontingency="axn",

+ F object=soa08Act,x=25,t=40,parallel=TRUE)

R> tt3<-t.test(x=sampleaxn,mu=APVaxn)$p.value

R> APVAExn=AExn(soa08Act,x=25,n=40,type="EV")

R> APVAExn

[1] 0.1245488

R> sampleAExn=rLifeContingencies(n=numSim, lifecontingency="AExn",

+ F object=soa08Act,x=25,t=40,parallel=TRUE)

R> tt4<-t.test(x=sampleAExn,mu=APVAExn)$p.value

R> c(tt1, tt2,tt3, tt4)

[1] 0.6595602 0.9740868 0.7142625 0.4101805
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Figure 5: Life insurance stochastic variables distributions. Red vertical line represents APV.



Giorgio Alfredo Spedicato, Ph.D 31

The final example shows how the stochastic functions bundled in lifecontingencies can be
used to make an actuarial appraisal of embedded benefits as following example shows.
Suppose a corporation grants its employees a life insurance benefit equal to the annual salary,
payable at the month of death. Suppose moreover that:

1. The expected value and the standard deviation of the salary are $ 50,000 and $ 15,000
respectively and salary distribution follows a log-normal distribution.

2. The employees distribution is uniform in the range 25 - 65. Assume 65 to be retirement
age.

3. The SOA illustrative table represents an unbiased description of the population mor-
tality.

4. Assume no lapse to hold.

5. The policy length is annual.

We evaluated the best estimate, that is the fair value of the insured benefits according to
IAS 19 accounting standards (another word for benefit premium), and a risk margin measure.
As risk margin measure we are using the difference between the 75th percentile and the best
estimate. IFRS standards, Post, Grandl, Schmidl, and Dorfman (2007), define the fair value
of an insurance liability as the sum of its best estimate plus its risk margin.

In the initial part of the example, we set out the parameter of the model and configure the
parallel computation facility available by the package parallel. The code parallelization has
been adapted from examples found in McCallum and Weston (2011) textbook.

R> nsim=100

R> employees=500

R> salaryDistribution=rlnorm(n=employees,m=10.77668944,s=0.086177696)

R> ageDistribution=round(runif(n=employees,min=25, max=65))

R> policyLength=sapply(65-ageDistribution, min,1)

R> getEmployeeBenefit<-function(index,type="EV") {

+ F out=numeric(1)

+ F out=salaryDistribution[index]*Axn(actuarialtable=soa08Act,

+ F x=ageDistribution[index],n=policyLength[index],

+ F i=0.02,m=0,k=1, type=type)

+ F return(out)

+ F }

R> require(parallel)

R> cl <- makeCluster(detectCores())

R> worker.init <- function(packages) {

+ F for (p in packages) {

+ F library(p, character.only=TRUE)

+ F }

+ F invisible(NULL)

+ F }
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R> clusterCall(cl,

+ F worker.init, c('lifecontingencies'))

[[1]]

NULL

[[2]]

NULL

R> clusterExport(cl, varlist=c("employees","getEmployeeBenefit",

+ F "salaryDistribution","policyLength",

+ F "ageDistribution","soa08Act"))

Then we perform best estimate and risk margin calculations.

R> employeeBenefits=numeric(employees)

R> employeeBenefits<- parSapply(cl, 1:employees,getEmployeeBenefit, type="EV")

R> employeeBenefit=sum(employeeBenefits)

R> benefitDistribution=numeric(nsim)

R> yearlyBenefitSimulate<-function(i)

+ F {

+ F out=numeric(1)

+ F expenseSimulation=numeric(employees)

+ F expenseSimulation=sapply(1:employees, getEmployeeBenefit, type="ST")

+ F out=sum(expenseSimulation)

+ F return(out)

+ F }

R> benefitDistribution <- parSapply(cl, 1:nsim,yearlyBenefitSimulate )

R> stopCluster(cl)

R> riskMargin=as.numeric(quantile(benefitDistribution,.75)-employeeBenefit)

R> totalBookedCost=employeeBenefit+riskMargin

R> employeeBenefit

[1] 128586.7

R> riskMargin

[1] 49497.97

R> totalBookedCost

[1] 178084.7

5. Discussion
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5.1. Advantages and limitations

The lifecontingencies package allows actuaries to perform demographic, financial and actuarial
mathematics calculations within R software. Pricing, reserving and stochastic evaluations of
life insurance contract can be therefore performed using R. Moreover, an original feature
of lifecontingencies is the ability to generate samples variate from both life tables and life
insurances stochastic distributions.

One of the most important limitations of lifecontingencies is that it handles only single decre-
ments tables. Another limitation is that currently it does not allow continuous time life
contingencies to be modeled.
We expect to remove such limitations in the future. Similarly, we expect to to provide coerce
methods toward packages specialized in demographic analysis, like demography and LifeTa-
bles packages. Communication with interest rates modelling packages, as termstrcR will be
also explored.

5.2. Accuracy

The accuracy of calculation have been verified by checking with numerical examples reported
in Bowers and of Actuaries (1986) and in the lecture notes of Actuarial Mathematics the
author attended years ago at Catholic University of Milan, Mazzoleni (2000). The numerical
results are identical to those reported in the Bowers and of Actuaries (1986) textbook for
most function, with the exception of fractional payments annuities where the accuracy leads
only to the 5th decimal. The reason of such inaccuracy is due to the fact that the package
calculates the APV by directly sum of fractional survival probabilities, while the formulas
reported in Bowers and of Actuaries (1986) textbook uses an analytical formula.

Finally, it is worth to remember that the package and functions herein are provided as is,
without any guarantee regarding the accuracy of calculations. The author disclaims any lia-
bility arising by eventual losses due to direct or indirect use of this package.
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