
Noncommutative and nonassociative three velocity

in special relativity: introducing the lorentz package

Robin K. S. Hankin
Auckland University of Technology

Abstract

Here I present the lorentz package for working with the Lorentz group for relativistic
physics. The package includes functionality for relativistic velocity addition, which is
noncommutative and nonassociative.

Keywords: Lorentz transform, Lorentz group, Lorentz law, Lorentz velocity addition, special
relativity, relativistic physics, Einstein velocity addition, Wigner rotation, gyrogroup, gy-
romorphism, gyrocommutative, gyroassociative, four velocity, three-velocity, nonassociative,
noncommutative.

1. Introduction

In special relativity, the Lorentz transformations supercede their classical equivalent, the
Galilean transforms. Lorentz transforms are typically expressed in terms of 4 × 4 matrices
that take one set of coordinates to another set which is moving at constant velocity with
respect to the first.

The lorentz package provides functionality for dealing with Lorentz transformations. It deals
with Lorentz boosts, converts between three-velocities and four-velocities, and provides com-
putational support for the gyrogroup structure of three-velocities under successive addition.

2. Lorentz transforms

Consider the following three-velocity:

> u <- as.3vel(c(0.3,-0.4,0.8))

> u

x y z

[1,] 0.3 -0.4 0.8

(note that the package uses units in which c = 1). Velocity u may be expressed as a four-
velocity:

> as.4vel(u)



2 The lorentz package

t x y z

[1,] 3.015113 0.904534 -1.206045 2.412091

The corresponding coordinate transformation is given by boost():

> boost(u)

t x y z

t 3.015113 -0.9045340 1.2060454 -2.4120908

x -0.904534 1.2037755 -0.2717007 0.5434014

y 1.206045 -0.2717007 1.3622676 -0.7245352

z -2.412091 0.5434014 -0.7245352 2.4490703

And then an arbitrary four-vector may be expressed in the boosted coordinates:

> boost(u) %*% c(4,5,-2,3)

[,1]

t -2.110579

x 4.574347

y -1.432463

z 1.864925

Note that coordinate transformation is effected by standard matrix multiplication. Compo-
sition of two Lorentz transforms is also ordinary matrix multiplication:

> v <- as.3vel(c(0.4,0.2,-0.1))

> L <- boost(u) %*% boost(v)

> L

t x y z

t 3.256577 -2.2327055 0.5419596 -2.0800479

x -1.437147 1.6996791 -0.0237489 0.4194255

y 1.091131 -0.7581795 1.1190282 -0.6029155

z -2.519789 1.5878378 -0.2023170 2.1879612

But observe that the resulting transform is not a pure boost, as the matrix is not symmetrical.
We may decompose the matrix into a pure translation composed with an orthogonal matrix,
which represents a coordinate rotation:

> U <- orthog(L)

> P <- pureboost(L)

In the above, U should be orthogonal and L symmetric:

> crossprod(U) - diag(4)



Robin K. S. Hankin 3

[,1] [,2] [,3] [,4]

[1,] -3.907985e-14 -3.010826e-14 7.711957e-15 -3.141176e-14

[2,] -3.010826e-14 -2.575717e-14 6.314393e-15 -2.325917e-14

[3,] 7.711957e-15 6.314393e-15 -1.554312e-15 5.384582e-15

[4,] -3.141176e-14 -2.325917e-14 5.384582e-15 -2.187139e-14

> P - t(P)

[,1] [,2] [,3] [,4]

[1,] 0 0 0 0

[2,] 0 0 0 0

[3,] 0 0 0 0

[4,] 0 0 0 0

(that is, zero to numerical precision).

3. Three velocities

The lorentz package includes functionality to compose three-velocities. Three velocities do
not form a group under composition as the velocity addition law is not associative. As Ungar
(2006) points out: “The nonassociativity of Einstein’s velocity addition is not widely known”.
Ungar shows that the velocity addition law is

u⊕ v =
1

1 + u · v

{
u +

v

γu
+
γu (u · v)u

1 + γu

}
(1)

where γu = (1− u · u)−1/2 and we are assuming c = 1. Ungar shows that, in general,
u ⊕ v 6= v ⊕ u and (u ⊕ v) ⊕ w 6= u ⊕ (v ⊕ w). He also defines the binary operator 	
as u	 v = u⊕ (−v), and implicitly defines 	u⊕ v to be (−u)⊕ v). If we have

gyr [u,v]x = − (u⊕ v)⊕ (u⊕ (v ⊕ x)) (2)

Then Ungar shows that

u⊕ v = gyr [u,v] (v ⊕ u) (3)

gyr [u,v]x · gyr [u,v]y = x · y (4)

gyr [u,v] (x⊕ y) = gyr [u,v]x⊕ gyr [u,v]y (5)

(gyr [u,v])−1 = (gyr [v,u]) (6)

u⊕ (v ⊕w) = (u⊕ v)⊕ gyr [u,v]w (7)

(u⊕ v)⊕w = u⊕ (v ⊕ gyr [v,u]w) (8)

Consider the following R session:



4 The lorentz package

> library(lorentz)

> u <- as.3vel(c(-0.7,+0.2,-0.3))

> v <- as.3vel(c(+0.3,+0.3,+0.4))

> w <- as.3vel(c(+0.1,+0.3,+0.8))

> x <- as.3vel(c(-0.2,-0.1,-0.9))

> u

x y z

[1,] -0.7 0.2 -0.3

Here we have three-vectors u etc. We can see that u and v do not commute:

> u+v

x y z

[1,] -0.5454028 0.4815421 -0.004538856

> v+u

x y z

[1,] -0.4292804 0.5723133 0.1324513

(the results differ). We can use equation 3

> (u+v)-gyr(u,v,v+u)

x y z

[1,] 1.769252e-16 -7.077008e-16 1.230183e-16

showing agreement to within numerical error. It is also possible to use the functional idiom:

> f <- gyrfun(u,v)

> (u+v)-f(v+u) # should be zero

x y z

[1,] 1.769252e-16 -7.077008e-16 1.230183e-16

Function gyrfun() is vectorized, which means that it plays nicely with (R) vectors. Consider

> u9 <- r3vel(9)

> u9

x y z

[1,] 0.4394266 -0.43180089 -0.3808371

[2,] 0.2045785 -0.44122304 0.7810400

[3,] 0.2044740 0.66984515 -0.5631968



Robin K. S. Hankin 5

[4,] 0.4870942 -0.42749684 0.6121989

[5,] -0.0711684 0.05808238 -0.4440446

[6,] -0.5772239 0.51646405 0.3209645

[7,] -0.6791358 0.62645363 0.2250279

[8,] 0.7348901 -0.42616435 0.1924509

[9,] -0.3746674 -0.41068270 -0.5442920

Then we can create a vectorized gyrofunction:

> f <- gyrfun(u9,v)

> f(x)

x y z

[1,] -0.38380965 -0.01258070 -0.8441160

[2,] -0.09431017 0.18863324 -0.9030632

[3,] -0.33144718 -0.40339988 -0.7664276

[4,] -0.20147532 0.15740913 -0.8914202

[5,] -0.25368274 -0.19078619 -0.8713471

[6,] 0.03556765 -0.18704146 -0.9076070

[7,] 0.10356937 -0.24913239 -0.8872465

[8,] -0.34367400 0.10535420 -0.8548618

[9,] -0.21051456 -0.09751487 -0.8978722

Note that the package vectorization is transparent when using syntatic sugar:

> u9+x

x y z

[1,] 0.29201211 -0.44445652 -0.82321642

[2,] 0.07785034 -0.86108127 0.11922266

[3,] 0.12400469 0.58026114 -0.79634410

[4,] 0.49058077 -0.74705469 -0.12849652

[5,] -0.18804552 -0.01314855 -0.95308570

[6,] -0.77703005 0.49904608 -0.27914722

[7,] -0.77403178 0.61291115 -0.08684227

[8,] 0.69191125 -0.54809308 -0.39513229

[9,] -0.39837145 -0.39002104 -0.81716304

(here, the addition operates using R’s standard recycling rules).

3.1. Associativity

Three velocity addition is not associative:

> (u+v)+w

x y z

[1,] -0.4646213 0.655437 0.5008326



6 The lorentz package

> u+(v+w)

x y z

[1,] -0.5489863 0.6672455 0.4160947

But we can use equations 7 and 8:

> (u+(v+w)) - ((u+v)+gyr(u,v,w))

x y z

[1,] 6.916191e-16 -1.383238e-15 -6.916191e-16

> ((u+v)+w) - (u+(v+gyr(v,u,w)))

x y z

[1,] 0 0 5.353251e-16



Robin K. S. Hankin 7

4. Visualization

Consider the following three-velocities:

> u <- as.3vel(c(0.4,0,0))

> v <- seq(as.3vel(c(0.4,-0.2,0)), as.3vel(c(-0.3,0.9,0)),len=20)

> w <- as.3vel(c(0.8,-0.4,0))

Objects v and w are single three-velocities, and object v is a vector of three velocities. We can
see the noncommutativity of three velocity addition in figures 1 and 2, and the nonassociativity
in figures 3.



8 The lorentz package

> comm_fail1(u=u, v=v)

Failure of the parallelogram law

●●●●●●●●●● ● ●
●

●
●

●
●

●

●

●

leg 1
leg 2
leg 3
leg 4
c=1

●

Figure 1: Failure of the commutative law for velocity composition in special relativity. The
arrows show successive velocity boosts of +u (purple), +v (black), −u (red), and −v (blue)
for u,v as defined above. Velocity u is constant, while v takes a sequence of values. If velocity
addition is commutative, the four boosts form a closed quadrilateral; the thick arrows show
a case where the boosts almost close and the boosts nearly form a parallelogram. The blue
dots show the final velocity after four successive boosts; the distance of the blue dot from the
origin measures the combined velocity, equal to zero in the classical limit of low speeds. The
discrepancy becomes larger and larger for the faster elements of the sequence v



Robin K. S. Hankin 9

> comm_fail2(u=u, v=v)

Failure of the parallelogram law

u
v
mismatch
c=1

●

Figure 2: Another view of the failure of the commutative law in special relativity. The black
arrows show velocity boosts of u and the blue arrows show velocity boosts of v, with u,v
as defined above; u is constant while v takes a sequence of values. If velocity addition is
commutative, then u+v = v+u and the two paths end at the same point: the parallelogram
is closed. The red arrows show the difference between u + v and v + u



10 The lorentz package

> ass_fail(u=u, v=v, w=w, bold=10)

Failure of associative property

u+(v+w)
(u+v)+w
mismatch
c=1

●

Figure 3: Failure of the associative law for velocity composition in special relativity. The
arrows show successive boosts of u followed by v + w (black lines), and u + v followed by w
(blue lines), for u, v, w as defined above; u and w are constant while v takes a sequence of
values. The mismatch between u + (v + w) and (u + v) + w is shown in red



Robin K. S. Hankin 11

5. The magrittr package: pipes

The lorentz package works nicely with magrittr. If we define

> u <- as.3vel(c(+0.5,0.1,-0.2))

> v <- as.3vel(c(+0.4,0.3,-0.2))

> w <- as.3vel(c(-0.3,0.2,+0.2))

Then pipe notation operates as expected:

> jj1 <- u %>% add(v)

> jj2 <- u+v

> speed(jj1-jj2)

[1] 2.206363e-16

The pipe operator is left associative:

> jj1 <- u %>% add(v) %>% add(w)

> jj2 <- (u+v)+w

> speed(jj1-jj2)

[1] 7.392965e-17

If we want right associative addition, the pipe operator needs brackets:

> jj1 <- u %>% add(v %>% add(w))

> jj2 <- u+(v+w)

> speed(jj1-jj2)

[1] 3.446154e-17



12 The lorentz package

6. Functional notation

It is possible to replace calls like gyr(u,v,x) with functional notation which can make for
arguably more natural R idiom. If we have

> u <- as.3vel(c(0, 0.8, 0))

> v <- r3vel(5,0.9)

> x <- as.3vel(c(0.7, 0, -0.7))

> y <- as.3vel(c(0.1, 0.3, -0.6))

Then we can define f() which is the map x −→ gyr [u,v]x:

> f <- gyrfun(u,v)

> f(w)

x y z

[1,] -0.3153498 0.13462804 0.2289755

[2,] -0.1492566 0.36419920 0.1228063

[3,] -0.3309149 -0.04045552 0.2426080

[4,] -0.1575003 0.35944952 0.1264504

[5,] -0.3623831 0.14184215 0.1362326

Then numerical verification of equation 4 and 6 is straightforward:

> prod3(f(x),f(y)) - prod3(x,y)

[1] -6.106227e-16 1.110223e-16 -1.554312e-15 -7.771561e-16 2.775558e-16

and

> f <- gyrfun(u,v)

> g <- gyrfun(v,u)

> f(g(x)) - g(f(x))

x y z

[1,] 3.885781e-13 0.000000e+00 -3.885781e-13

[2,] 0.000000e+00 -2.579413e-15 -5.551115e-15

[3,] -9.992007e-14 -2.052550e-14 1.054712e-13

[4,] 3.330669e-14 1.448600e-14 -2.775558e-14

[5,] -1.110223e-14 2.765243e-15 1.110223e-14

(zero to numerical precision). It is possible to use pipes together with the functional notation:

> x %<>% f %>% add(y) # x <- f(x)+y

> x



Robin K. S. Hankin 13

x y z

[1,] 0.6709349 0.20339750 -0.7098525

[2,] 0.5573147 -0.47167034 -0.6784643

[3,] 0.5702050 0.58313783 -0.5747859

[4,] 0.5678568 -0.45282492 -0.6826258

[5,] 0.6819940 0.02342166 -0.7276382

7. SI units

The preceding material used units in which c = 1. Here I show how the package deals with
units such as SI in which c = 299792458 6= 1. For obvious reasons we cannot have a function
called c() so the package gets and sets the package with sol():

> sol(299792458)

[1] 299792458

> sol()

[1] 299792458

(an empty argument queries the speed of light). We can now consider speeds which are fast
by terrestrial standards but involve only a small relativistic correction to the Galilean result:

> u <- as.3vel(c(100,200,300))

> u

x y z

[1,] 100 200 300

The gamma correction term γ is only very slightly larger than 1 and indeed R’s default print
method suppresses the difference:

> gam(u)

[1] 1

However, we can display more significant figures by subtracting one:

> gam(u)-1

[1] 7.789325e-13

or alternatively we can use the gamm1() function which calculates γ − 1 more accurately for
speeds � c:



14 The lorentz package

> gamm1(u)

[1] 7.78855e-13

The Lorentz boost is again calculated by the boost() function

> boost(u)

t x y z

t 1 -1.112650e-15 -2.22530e-15 -3.337950e-15

x -100 1.000000e+00 1.11265e-13 1.668975e-13

y -200 1.112650e-13 1.00000e+00 3.337950e-13

z -300 1.668975e-13 3.33795e-13 1.000000e+00

note how the transformation is essentially the Galilean result.

> v <- as.3vel(c(400,-200,300))

> boost(u) %*% boost(v)

t x y z

t 1.000000e+00 -5.563250e-15 4.704692e-27 -6.675900e-15

x -5.000000e+02 1.000000e+00 -5.563250e-13 1.168283e-12

y -2.559179e-10 5.563250e-13 1.000000e+00 6.675900e-13

z -6.000000e+02 2.169668e-12 -6.675900e-13 1.000000e+00

> boost(v) %*% boost(u)

t x y z

t 1.000000e+00 -5.563250e-15 -2.847319e-27 -6.675900e-15

x -5.000000e+02 1.000000e+00 5.563250e-13 2.169668e-12

y 4.228102e-10 -5.563250e-13 1.000000e+00 -6.675900e-13

z -6.000000e+02 1.168283e-12 6.675900e-13 1.000000e+00

References

Ungar AA (2006). “Thomas precession: a kinematic effect of the algebra of Einstein’s ve-
locity addition law. Comments on ‘Deriving relativistic momentum and energy: II. Three-
dimensional case’.” European Journal of Physics, 27, L17–L20.

Affiliation:

Robin K. S. Hankin
Auckland University of Technology
E-mail: hankin.robin@gmail.com

mailto:hankin.robin@gmail.com

	Introduction
	Lorentz transforms
	Three velocities
	Associativity

	Visualization
	The magrittr package: pipes
	Functional notation
	SI units

