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Introduction

Least-squares means (or LS means), popularized by SAS, are predictions from a linear model at combina-
tions of specified factors. SAS’s documentation describes them as “predicted population margins—that is,
they estimate the marginal means over a balanced population” (SAS Institute 2012). Unspecified factors
and covariates are handled by summarizing the predictions over those factors and variables. This vignette
gives some examples of LS means and the lsmeans package. Some of the finer points of LS means are
explained in the context of these examples.

Like most statistical calculations, it is possible to use least-squares means inappropriately; however,
they are in fact simply predictions from the model. When used with due care, they can provide useful
summaries of a linear model that includes factors.

Split-Plot Example

The nlme package includes a famous dataset Oats that was used in 1935 by Yates as an example of a split-
plot experiment. Here is a summary of the dataset.

R> library(nlme)
R> summary(Oats)

Block Variety nitro yield
VI :12 Golden Rain:24 Min. :0.00 Min. : 53.0
V :12 Marvellous :24 1st Qu.:0.15 1st Qu.: 86.0
III:12 Victory :24 Median :0.30 Median :102.5
IV :12 Mean :0.30 Mean :104.0
II :12 3rd Qu.:0.45 3rd Qu.:121.2
I :12 Max. :0.60 Max. :174.0

The experiment was conducted in six blocks, and each block was divided into three plots, which were
randomly assigned to varieties of oats. With just Variety as a factor, it is a randomized complete-block ex-
periment. However, each plot was subdivided into 4 subplots and the subplots were treated with different
amounts of nitrogen. Thus, Block is a blocking factor, Variety is the whole-plot factor, and nitro is the
split-plot factor. The response variable is yield, the yield of each subplot in bushels per acre.

We now do a basic analysis of these data using the lme function in the nlme package. Our initial model
will treat nitro as a 4-level factor rather than a numeric predictor, and to accommodate a current weakness
in the lsmeans package, we must create a new variable (we’ll name it nitroF) that represents nitro as a fac-
tor. We’ll fit an additive model in the two primary factors, and specify that Block and Variety %in% Block
serve as sources of random variation.
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R> Oats$nitroF = factor(Oats$nitro) # This also creates a copy of 'Oats' in our workspace
R> Oats.lme = lme(yield ~ nitroF + Variety, random = ~1 | Block/Variety, data=Oats)
R> anova(Oats.lme, type="marginal")

numDF denDF F-value p-value
(Intercept) 1 51 94.51352 <.0001
nitroF 3 51 41.05278 <.0001
Variety 2 10 1.48534 0.2724

Least-squares means are predictions

Now, as a follow-up to this analysis, we might want specific information on how the factor levels compare.
One way to approach this is to compute predicted values from the fixed-effects portion of the model for
each combination of Variety and nitroF.

R> grid = with(Oats, expand.grid(Variety=levels(Variety), nitroF=levels(nitroF)))
R> predict(Oats.lme, new = grid, level = 0)

[1] 79.91667 85.20833 73.04167 99.41667 104.70833 92.54167 114.75000
[8] 120.04167 107.87500 123.91667 129.20833 117.04167

attr(,"label")
[1] "Predicted values"

These predictions are also easily obtained from the lsmeans function, simply by specifying the factor
combinations in a formula):1

R> library(lsmeans)
R> lsmeans(Oats.lme, ~ Variety:nitroF)

$`Variety:nitroF lsmeans`
estimate SE t.ratio

Golden Rain,0 79.91667 8.220351 9.721807
Marvellous,0 85.20833 8.220351 10.365534
Victory,0 73.04167 8.220351 8.885468
Golden Rain,0.2 99.41667 8.220351 12.093968
Marvellous,0.2 104.70833 8.220351 12.737695
Victory,0.2 92.54167 8.220351 11.257629
Golden Rain,0.4 114.75000 8.220351 13.959257
Marvellous,0.4 120.04167 8.220351 14.602985
Victory,0.4 107.87500 8.220351 13.122918
Golden Rain,0.6 123.91667 8.220351 15.074376
Marvellous,0.6 129.20833 8.220351 15.718103
Victory,0.6 117.04167 8.220351 14.238037

Often, though, people are interested in marginal results. The LS means are simply the averages of the above
results over the levels of the other factor:

R> lsmeans(Oats.lme, list( ~ Variety, ~ nitroF))

$`Variety lsmeans`
estimate SE t.ratio

Golden Rain 104.5000 7.797492 13.40174
Marvellous 109.7917 7.797492 14.08038
Victory 97.6250 7.797492 12.52005

1Interestingly, an LSMEANS statement in SAS will refuse to output predictions for factor combinations unless the interaction is in the
model. However, they are unambiguously defined.
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$`nitroF lsmeans`
estimate SE t.ratio

0 79.38889 7.132357 11.13081
0.2 98.88889 7.132357 13.86483
0.4 114.22222 7.132357 16.01465
0.6 123.38889 7.132357 17.29987

Comparisons and contrasts

Often, we want comparisons or other contrasts among the LS means. The lsmeans function allows spec-
ifying a family of such contrasts in the left-hand side of the formulas. In this example, we might want to
compare the Variety means with one another, while orthogonal-polynomial contrasts are more in order for
nitroF since it is quantitative. Thus:

R> lsmeans(Oats.lme, list(pairwise ~ Variety, poly ~ nitroF))

$`Variety lsmeans`
estimate SE t.ratio

Golden Rain 104.5000 7.797492 13.40174
Marvellous 109.7917 7.797492 14.08038
Victory 97.6250 7.797492 12.52005

$`Variety pairwise differences`
estimate SE t.ratio

Golden Rain - Marvellous -5.291667 7.07891 -0.7475256
Golden Rain - Victory 6.875000 7.07891 0.9711947
Marvellous - Victory 12.166667 7.07891 1.7187204

$`nitroF lsmeans`
estimate SE t.ratio

0 79.38889 7.132357 11.13081
0.2 98.88889 7.132357 13.86483
0.4 114.22222 7.132357 16.01465
0.6 123.38889 7.132357 17.29987

$`nitroF polynomial contrasts`
estimate SE t.ratio

linear 147.33333 13.439537 10.9626791
quadratic -10.33333 6.010344 -1.7192583
cubic -2.00000 13.439537 -0.1488146

Covariate model

The above results would convince us that the cubic term of nitroF is not needed; some might also toss out
the quadratic term but that decision is less clear. Suppose that we decide to fit a new model treating nitro
as a quantitative variable, and account for both linear and quadratic terms.

R> OatsPoly.lme = lme(yield ~ poly(nitro, 2) + Variety, random = ~ 1 | Block/Variety, data = Oats)
R> lsmeans(OatsPoly.lme, pairwise ~ Variety)

$`Variety lsmeans`
estimate SE t.ratio

Golden Rain 107.7292 8.016378 13.43863
Marvellous 113.0208 8.016378 14.09874
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Victory 100.8542 8.016378 12.58101

$`Variety pairwise differences`
estimate SE t.ratio

Golden Rain - Marvellous -5.291667 7.078916 -0.7475250
Golden Rain - Victory 6.875000 7.078916 0.9711939
Marvellous - Victory 12.166667 7.078916 1.7187188

The LS means obtained are somewhat different than what we had before, but the pairwise comparisons
are very nearly identical. The above model is an example of a model that includes covariates—in this case
the linear and quadratic terms for nitro. In such cases, LS means are comparable to what is often termed
adjusted means: predicted values at each factor level, obtained by substituting the average value of each
covariate. In this case, the LS means are predictions when nitro is set at its average value, 0.30. Noting
that the quadratic effect is negative, the fitted curves are concave in nitro; thus it makes sense that the
predicted values at the average nitro (i.e., the LS means for OatsPoly.lme) are greater than the averages
of the predictions at the four levels of nitroF, which is what we had when we obtained the LS means from
Oats.lme.

As a side note, it is definitely desirable to use basis functions like poly() or ns() rather than man-
ual coding. Had our model specified nitro and I(nitro^2), these covariates would have been aver-
aged separately in the LS means, so we would have obtained the predictions when nitro = 0.30 and
nitro^2 = 0.14 6= 0.302.

lsmeans allows an at argument if prediction at a different covariate value is desired:

R> lsmeans(OatsPoly.lme, ~ Variety, at = c(nitro=0.60))

$`Variety lsmeans`
estimate SE t.ratio

Golden Rain 124.0167 8.185583 15.15062
Marvellous 129.3083 8.185583 15.79708
Victory 117.1417 8.185583 14.31073

Note that these results are quite close to those obtained earlier for Variety:nitroF where nitroF = 0.6.

Model with interaction

Returning momentarily to Oats.lme, suppose that we include the interaction in the model.

R> OatsInt.lme = update(Oats.lme, . ~ . + Variety:nitroF)
R> anova(OatsInt.lme, type="marginal")

numDF denDF F-value p-value
(Intercept) 1 45 77.16728 <.0001
nitroF 3 45 13.02274 <.0001
Variety 2 10 1.22454 0.3344
nitroF:Variety 6 45 0.30282 0.9322

Up to now, I believe that all LS mean examples presented so far are uncontroversial; however, the following
one is:

R> lsmeans(OatsInt.lme, ~ nitroF)

$`nitroF lsmeans`
estimate SE t.ratio

0 79.38889 7.174685 11.06514
0.2 98.88889 7.174685 13.78303
0.4 114.22222 7.174685 15.92017
0.6 123.38889 7.174685 17.19781
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Some would argue that you shouldn’t examine marginal effects when the interaction is in the model; others
would say it’s OK because the interaction is nonsignificant anyway. I will not wade into that argument, and
just say that if you understand what it is you are doing (in this case, averaging three predictions together
to obtain each LS mean), you can decide whether it is appropriate or not to do so. The idea certainly seems
less and less commendable as the strength of the interaction increases.

Returning (I hope) to something people will agree on, when there is an interaction it is fairly common
to want to do comparisons of one factor at each level of the other factor. This may be done by using a
conditioning symbol, |, in the formula, like this:

R> lsmeans(OatsInt.lme, poly ~ nitroF | Variety)

$`nitroF:Variety lsmeans`
estimate SE t.ratio

0,Golden Rain 80.00000 9.106959 8.784491
0.2,Golden Rain 98.50000 9.106959 10.815905
0.4,Golden Rain 114.66667 9.106959 12.591104
0.6,Golden Rain 124.83333 9.106959 13.707466
0,Marvellous 86.66667 9.106959 9.516532
0.2,Marvellous 108.50000 9.106959 11.913966
0.4,Marvellous 117.16667 9.106959 12.865619
0.6,Marvellous 126.83333 9.106959 13.927079
0,Victory 71.50000 9.106959 7.851139
0.2,Victory 89.66667 9.106959 9.845950
0.4,Victory 110.83333 9.106959 12.170180
0.6,Victory 118.50000 9.106959 13.012027

$`nitroF:Variety polynomial contrasts`
estimate SE t.ratio

linear | Golden Rain 150.666667 24.29564 6.2013868
quadratic | Golden Rain -8.333333 10.86534 -0.7669647
cubic | Golden Rain -3.666667 24.29564 -0.1509187
linear | Marvellous 129.166667 24.29564 5.3164544
quadratic | Marvellous -12.166667 10.86534 -1.1197685
cubic | Marvellous 14.166667 24.29564 0.5830950
linear | Victory 162.166667 24.29564 6.6747227
quadratic | Victory -10.500000 10.86534 -0.9663756
cubic | Victory -16.500000 24.29564 -0.6791342

Even nonsignificant interactions can make a big difference

Lest you think that there’s little difference between Oats.lme and OatsInt.lme, that’s not really the case
when you consider comparing the cell LS means. Figure 1 displays the first six comparisons of the Variety:nitroF
LS means with each model. With the interaction in the model (left), and a balanced design, the standard
error of such a comparison can be one of two values, depending on whether the comparison is on the same
whole plot or between different whole plots. With the additive model (right), there are three different stan-
dard errors: one when Variety is the same, one when nitroF is the same, and one when both factors are
at different levels. This seems alarming until you realize that in the first two respective cases, the estimates
and standard errors are the same as for the marginal LS means of nitroF and Variety, respectively.

Custom contrasts

The built-in families of contrasts available in the lsmeans package are pairwise, poly, revpairwise, trt.vs.ctrl,
trt.vs.ctrl1, and trt.vs.ctrlk. The first two have been illustrated here; revpairwise is like pairwise
except the subtractions are done in the reverse direction (higher levels minus lower levels). trt.vs.ctrl
generates comparisons of each level versus a specified level that you need to provide; trt.vs.ctrl1 and
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Figure 1: Selected cell-mean comparisons for the interaction model (left) versus the additive model (right)

R> lsmeans(OatsInt.lme, pairwise~Variety:nitroF
R> ) [[2]] [1:6 ,1:2]

estimate SE
Golden Rain,0 - Marvellous,0 -6.666667 9.715030
Golden Rain,0 - Victory,0 8.500000 9.715030
Golden Rain,0 - Golden Rain,0.2 -18.500000 7.682956
Golden Rain,0 - Marvellous,0.2 -28.500000 9.715030
Golden Rain,0 - Victory,0.2 -9.666667 9.715030
Golden Rain,0 - Golden Rain,0.4 -34.666667 7.682956

R> lsmeans(Oats.lme, pairwise~Variety:nitroF
R> ) [[2]] [1:6 ,1:2]

estimate SE
Golden Rain,0 - Marvellous,0 -5.291667 7.078910
Golden Rain,0 - Victory,0 6.875000 7.078910
Golden Rain,0 - Golden Rain,0.2 -19.500000 4.249955
Golden Rain,0 - Marvellous,0.2 -24.791667 8.256699
Golden Rain,0 - Victory,0.2 -12.625000 8.256699
Golden Rain,0 - Golden Rain,0.4 -34.833333 4.249955

trt.vs.ctrlk are convenience versions of trt.vs.ctrl predefine the control group as the fist and the last
levels, respectively.

If you want to define some other contrast set, you may provide it as a named entry in a list in the contr
argument, and refer to that name in the formula, like this:

R> lsmeans(Oats.lme, my.own ~ Variety,
R> contr = list(my.own = list(G.vs.M = c(1,-1,0), GM.vs.V = c(.5,.5,-1),
R> total = c(1,1,1)))) [[2]]

estimate SE t.ratio
G.vs.M -5.291667 7.078910 -0.7475256
GM.vs.V 9.520833 6.130516 1.5530232
total 311.916667 19.921723 15.6571127

The third one isn’t even a contrast, which is OK—any linear combination is allowed.
There is another way to provide custom contrasts. The built-in families are actually implemented via

functions pairwise.lsmc, poly.lsmc, . . . . You may write your own .lsmc function and use the first part
of its name in a formula. In the following example, we define a function for Helmert contrasts:

R> helmert.lsmc = function(levs, ...) {
R> M = as.data.frame(contr.helmert(levs))
R> names(M) = paste(levs[-1],"vs earlier")
R> attr(M, "desc") = "Helmert contrasts"
R> M
R> }
R> lsmeans(Oats.lme, helmert ~ nitroF)

$`nitroF lsmeans`
estimate SE t.ratio

0 79.38889 7.132357 11.13081
0.2 98.88889 7.132357 13.86483
0.4 114.22222 7.132357 16.01465
0.6 123.38889 7.132357 17.29987

$`nitroF Helmert contrasts`
estimate SE t.ratio

0.2 vs earlier 19.50000 4.249955 4.588284
0.4 vs earlier 50.16667 7.361138 6.815070
0.6 vs earlier 77.66667 10.410221 7.460617

The desc attribute is optional, and used in the labeling of the output list (if not provided, the function name
is used).
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Custom treatment of extraneous variables

You may override the defaults for handling covariates and combining factor levels via the cov.reduce and
fac.reduce arguments. For example, suppose (for some very odd reason) we want our adjusted means to
be at the upper quartile of each covariate; then do this:

R> lsmeans(OatsPoly.lme, ~ Variety,
R> cov.reduce = function(x, name) {
R> q75 = quantile(x,.75)
R> cat(paste("Predictions are made at", name, "=", q75, "\n"))
R> q75
R> })

Predictions are made at nitro = 0.45
$`Variety lsmeans`

estimate SE t.ratio
Golden Rain 117.3260 7.927476 14.79992
Marvellous 122.6177 7.927476 15.46743
Victory 110.4510 7.927476 13.93269

By default, LS means are averaged with equal weight given to levels of extraneous factors. (This is
comparable, more or less, to the “unweighted means” analysis used in the olden days for unbalanced
data.) We can change this by specifying a function in fac.reduce that collapses the rows of a matrix of
coefficients. For example, we could just use the last row:

R> lsmeans(Oats.lme, ~ Variety, fac.reduce = function(X, lev) X[nrow(X), ])

$`Variety lsmeans`
estimate SE t.ratio

Golden Rain 123.9167 8.220351 15.07438
Marvellous 129.2083 8.220351 15.71810
Victory 117.0417 8.220351 14.23804

These are of course just the LS means at nitroF = .6, seen earlier in this vignette.

Reference
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htm, accessed August 14, 2012.
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