
The “mc2d” package.

R. POUILLOT, M.-L. DELIGNETTE-MULLER, D.L. KELLY & J.-B. DENIS

April 2, 2009

Contents

1 Introduction 2

1.1 What is mc2d? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 What is Two-Dimensional Monte-Carlo Simulation (briefly)? . . . . . . . . . . . . . . . . . . 3

1.3 A basic example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 One Dimensional Monte-Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Two dimensional Monte-Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Basic Principles and Functions 9

2.1 Preliminary Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The mcnode Object as an Elementary Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 mcnode Object Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 The mcstoc function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 The mcdata function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Operations on an mcnode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.5 The mcprobtree function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.6 Other functions for constructing an mcnode . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.7 Specifying a correlation between mcnodes . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 The mc Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 The mc Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 The mcmodel and the evalmcmod Functions . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 The mcmodelcut and the evalmccut Functions . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Analysing an mc Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 The summary Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.2 The hist Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.3 The plot function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.4 The tornado function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.5 The tornadounc function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Other Functions and mc Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1



3 Multivariate Nodes 22

3.1 Multivariate Nodes for Multivariate Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Multivariate Nodes as a “Third Dimension” for Multiple Options in a Model . . . . . . . . . . 24

3.3 Multivariate Nodes as a “Third Dimension” for Multiple Vectors/Contaminants . . . . . . . . 26

4 Another Example: A QRA of Waterborne Cryptosporidiosis in France 28

4.1 Tap Water Consumption Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 The Dose-Response Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

This documentation is intended for readers with:� A medium level of experience in R. Please refer to the Manual “An Introduction to R” available with
R distribution if needed;� Some knowledge about Monte-Carlo simulation (its basic principles and its utility) and about Quanti-
tative Risk Assessment (QRA).

This documentation will not describe all arguments of the functions. The definitive reference remains the
documentation associated with the package.

1 Introduction

1.1 What is mc2d?

“mc2d”means Two-Dimensional Monte-Carlo (“Monte-Carlo à Deux Dimensions”). This package :� provides additional probability distributions;� provides tools to construct One-Dimensional and Two-Dimensional Monte-Carlo Simulations;� provides tools to analyse One-Dimensional and Two-Dimensional Monte-Carlo Simulations.

In a previous version, some tools to fit parametric distributions to data were included. Because these functions
are useful for other purposes, they have been moved to a separate package called fitdistrplus. Both
the mc2d and the fitdistrplus packages are available at the URL https://r-forge.r-project.org/

projects/riskassessment/.

mc2d was built for QRA in the Food Safety domain but it can be used in other QRA domains.
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1.2 What is Two-Dimensional Monte-Carlo Simulation (briefly)?

The following text and Figure 1 are adapted from [4] and [5] where this method was used. The principal
reference for Two-Dimensional Monte-Carlo simulation remains [2].

According to international recommendations, a QRA should reflect the “variability” in the risk and calculate
the“uncertainty”associated with the risk estimate. The“variability”represents temporal, geographical and/or
individual heterogeneity of the risk for a given population. The“uncertainty”is understood as stemming from
a lack of perfect knowledge about the QRA model structure and associated parameters1.

In order to estimate the natural“variability”of the risk, a Monte-Carlo simulation approach may be useful: the
empirical distribution of the risk within the population may be estimated from the mathematical combination
of distributions reflecting the variability of parameters across the population.

A two-dimensional (or second-order) Monte-Carlo simulation was proposed to estimate the “uncertainty” in
the risk estimates stemming from parameter uncertainty [2]. A two-dimensional Monte-Carlo simulation is
a Monte-Carlo simulation where the distributions reflecting ”variability” and the distributions representing
”uncertainty” are sampled separately in the simulation, so that ”variability” and ”uncertainty” in the output
may be estinated separately. It may be described as following (see Figure 1):

1. The parameters of the model should be divided into three categories: the parameters whose distri-
butions reflect “variability only”, hereinafter denoted as “variable parameters”, the parameters whose
distributions reflect “uncertainty only”, denoted as “uncertain parameters” and the parameters whose
distributions reflect both uncertainty and variability. For this latter category, a hierarchical structure,
using “hyper-parameters”, should be specified: if a parameter is both uncertain and variable, one should
be able to specify an empirical or parametric distribution representing variability. This distribution is
conditional upon other parameters for which there is some associated uncertainty. As an example, one
should be able to specify a relationship such as X |a, b ∼ N (a, b), where the specified normal distri-
bution represents variability in x conditional upon parameters a and b. Hyperdistributions, such as
a ∼ Unif (la, ua)and b ∼ Unif (lb, ub), represent the uncertainty in the parameters a and b;

2. A set of uncertain parameters are randomly sampled from their respective distributions;

3. The QRA is performed using a classical (one-dimensional) Monte-Carlo simulation of size Nv, treating
the uncertain parameters as fixed. This QRA takes into account the variability in all variable param-
eters, and leads to an empirical density function reflecting the variability of exposure/risk across the
population, conditional upon the uncertain parameters. Various statistics (e.g. the mean, the standard
deviation, percentiles) of the resulting empirical density function are evaluated and stored;

4. Steps 2) and 3) are performed a large number (Nu) of times , leading to Nu sets of statistics;

5. As output, the 50th percentile (median) of each statistic is used as a point estimate of this statistic; the
2.5th and 97.5th percentiles of each statistic are used to establish a 95% credible interval (CI95) of this
statistic. The median of the Nu estimated values for each of the 101 estimated percentiles allows us to
display a “variability cumulative distribution” via a graph. This curve is surrounded by the 2.5th and
97.5th percentiles obtained from the Nu estimates of each of the 101 percentiles.

”mc2d” is a set of R functions that will help to develop such two-dimensional Monte-Carlo simulations. The
main difference from the procedure described above is that mc2d uses arrays of (at least) two dimensions
to derive the results: the first dimension will reflect variability, the second will reflect uncertainty. This
document will not develop the method further, but will illustrate the practical application of mc2d, using a
fictitious example.

1In the engineering risk community, these concepts are refered as ”aleatoric uncertainty” for ”variability” and ”epistemic
uncertainty” for ”uncertainty”.
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Figure 1: Shematic Representation of a Two-Dimensional Monte-Carlo Simulation.
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1.3 A basic example

Quantitative Risk Assessment: Escherichia coli O157:H7 infection linked to the consumption

of frozen ground beef in <3 year old children.� We assume that, in a given batch of ground beef, E. coli O157:H7 are randomly distributed with a
mean concentration of c = 10 bacteria (cfu) per gram of product;� We assume that no bacterial growth occurs in storage, since the product is kept frozen until it is cooked,
just before consumption;� 2.7% of consumers cook their beef “rare”, 37.3% “medium” and 60.0% “well done”;� The following bacterial inactivation i is associated with these cooking practices:

– No inactivation for “rare” cooking;

– 1/5 surviving bacteria for a “medium” cooking;

– 1/50 surviving bacteria for a “well done” cooking.� The variability in steak serving sizes s for <3 year children was estimated in a consumption survey.
The “best fit” to the data was a gamma distribution with parameters: shape = 3.93, rate = 0.0806.� The dose-response relationship, describing the probability of illness, P, according to the dose is a one-hit
model. The probability of illness per hit r is assumed to be constant with r = 0.001.

The question is: “What is the distribution of the risk of illness in the population that consumed the contami-

nated lot?”

This distribution will be estimated using Monte-Carlo simulations performed with R via the “mc2d” pack-
age. First, the model will be developed in a one dimensional framework. Then, in order to include some
uncertainties in the model, it will be derived in a two dimensional framework.

1.3.1 One Dimensional Monte-Carlo Simulation

As a first step, we assume that no uncertainty exists in our model. All distributions represent variability
only. The model may be written as:

c = 10.

i ∼ emp ({1, 1/5, 1/50} , {0.027, 0.373, 0.600})

s ∼ gamma (3.93, 0.0806)

n ∼ Poisson (c × i × s)

P = 1 − (1 − 0.001)
n

where emp (X, P ) is an empirical distribution wherein each value Xi is associated with a probability Pi.We
will use a ”classical”one dimensional Monte-Carlo simulation, with 1,000 iterations. Using the“mc2d”package,
the model may be written as:

> library(mc2d)

> ndvar(1000)

[1] 1000
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> conc <- 10

> cook <- mcstoc(rempiricalD, values = c(1, 1/5, 1/50), prob = c(0.027,

+ 0.373, 0.6))

> serving <- mcstoc(rgamma, shape = 3.93, rate = 0.0806)

> expo <- conc * cook * serving

> dose <- mcstoc(rpois, lambda = expo)

> r <- 0.001

> risk <- 1 - (1 - r)^dose

> EC1 <- mc(cook, serving, expo, dose, risk)

> print(EC1)

node mode nsv nsu nva variate min mean median max Nas type

1 cook numeric 1000 1 1 1 0.02 0.1165 0.0200 1.000 0 V

2 serving numeric 1000 1 1 1 5.17 48.4451 44.0195 219.976 0 V

3 expo numeric 1000 1 1 1 1.03 56.2452 14.1530 935.189 0 V

4 dose numeric 1000 1 1 1 0.00 56.0520 15.0000 938.000 0 V

5 risk numeric 1000 1 1 1 0.00 0.0507 0.0149 0.609 0 V

outm

1 each

2 each

3 each

4 each

5 each

> summary(EC1)

cook :

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
NoUnc 0.116 0.176 0.02 0.02 0.02 0.02 0.2 1 1 1000 0

serving :

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
NoUnc 48.4 24.3 5.17 14.5 29.8 44 62.6 103 220 1000 0

expo :

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
NoUnc 56.2 96.8 1.03 3.5 8.11 14.2 79.1 229 935 1000 0

dose :

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
NoUnc 56 96.3 0 2 7 15 79 226 938 1000 0

risk :

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
NoUnc 0.0507 0.0755 0 0.002 0.00698 0.0149 0.076 0.203 0.609 1000 0

This One-Dimensional Monte-Carlo simulation provides an estimate of the mean risk (approximately 5%),
as well as some quantiles of the risk distribution (2.5% of the population has a risk of illness greater than
20.3%).

1.3.2 Two dimensional Monte-Carlo Simulation

Assume now that:
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� The mean concentration of bacteria in the batch is not known with certainty, but was only a point
estimate. Microbiologists think that the uncertainty around this estimate can be represented via a
normal distribution with parameters µ = 10 and σ = 2;� Epidemiological studies suggest that the r parameter is also uncertain. The uncertainty around the
mean value of 0.001 can be represented with a uniform distribution between 0.0005 and 0.0015.

The model could then be written as:

c ∼ N (10, 2)

i ∼ emp ({1, 1/5, 1/50} , {0.027, 0.373, 0.600})

s ∼ gamma (3.93, 0.0806)

n ∼ Poisson (c × i × s)

r ∼ Unif (0.0005, 0.0015)

P = 1 − (1 − r)n

Note that the distributions of r and c represent uncertainty, while the distributions of i and s represent
variability. n, which is a function of c, i and s, will be both variable and uncertain.

We will use a two-dimensional Monte-Carlo simulation, with 1,000 iterations in the variability dimension and
100 iterations in the uncertainty dimension. Using the “mc2d” package, the model may be written as:

> ndunc(100)

[1] 100

> conc <- mcstoc(rnorm, type = "U", mean = 10, sd = 2)

> cook <- mcstoc(rempiricalD, type = "V", values = c(1, 1/5, 1/50),

+ prob = c(0.027, 0.373, 0.6))

> serving <- mcstoc(rgamma, type = "V", shape = 3.93, rate = 0.0806)

> expo <- conc * cook * serving

> dose <- mcstoc(rpois, type = "VU", lambda = expo)

> r <- mcstoc(runif, type = "U", min = 5e-04, max = 0.0015)

> risk <- 1 - (1 - r)^dose

> EC2 <- mc(conc, cook, serving, expo, dose, r, risk)

> print(EC2, digits = 2)

node mode nsv nsu nva variate min mean median max Nas type

1 conc numeric 1 100 1 1 5.55771 9.9e+00 9.7214 1.7e+01 0 U

2 cook numeric 1000 1 1 1 0.02000 1.1e-01 0.0200 1.0e+00 0 V

3 serving numeric 1000 1 1 1 2.66586 5.0e+01 45.0430 1.6e+02 0 V

4 expo numeric 1000 100 1 1 0.70535 5.3e+01 13.7118 1.7e+03 0 VU

5 dose numeric 1000 100 1 1 0.00000 5.3e+01 14.0000 1.7e+03 0 VU

6 r numeric 1 100 1 1 0.00051 9.6e-04 0.0009 1.5e-03 0 U

7 risk numeric 1000 100 1 1 0.00000 4.6e-02 0.0136 8.4e-01 0 VU

outm

1 each

2 each

3 each

4 each

5 each

6 each

7 each
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> summary(EC2)

conc :

NoVar

median 9.72

mean 9.94

2.5% 5.96

97.5% 14.46

cook :

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
NoUnc 0.107 0.166 0.02 0.02 0.02 0.02 0.2 0.22 1 1000 0

serving :

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
NoUnc 49.7 24.9 2.67 13.6 31 45 64.2 110 161 1000 0

expo :

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
median 51.9 94.2 1.234 3.06 7.87 13.58 71.8 240 938 1000 0

mean 53.1 96.3 1.261 3.12 8.04 13.89 73.4 245 959 1000 0

2.5% 31.8 57.8 0.756 1.87 4.82 8.33 44.0 147 575 1000 0

97.5% 77.2 140.2 1.836 4.55 11.71 20.21 106.8 357 1396 1000 0

dose :

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
median 51.9 94.7 0.00 2 7.00 14.0 71.8 242 958 1000 0

mean 53.1 96.7 0.04 2 7.53 14.2 73.4 245 964 1000 0

2.5% 31.7 57.8 0.00 1 4.47 9.0 43.5 146 573 1000 0

97.5% 77.6 140.7 1.00 3 11.00 20.5 107.8 355 1379 1000 0

r :

NoVar

median 0.000902

mean 0.000962

2.5% 0.000525

97.5% 0.001459

risk :

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv

median 0.0445 0.0703 0.00e+00 0.001713 0.00687 0.01298 0.0645 0.2027 0.589 1000

mean 0.0455 0.0706 3.88e-05 0.001902 0.00717 0.01347 0.0674 0.2061 0.582 1000

2.5% 0.0191 0.0324 0.00e+00 0.000583 0.00282 0.00538 0.0271 0.0841 0.290 1000

97.5% 0.0730 0.1057 7.08e-04 0.004115 0.01226 0.02242 0.1116 0.3259 0.788 1000

Na's
median 0

mean 0

2.5% 0

97.5% 0

Note that the syntax is similar to the earlier model. However, a “type” argument is provided for each
distribution, indicating whether the parameter distribution represents uncertainty (type=”U”), variability
(type=”V”), or both (type=”VU”).
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The summary provides estimates of the variability distributions (in rows) but with a measure of their uncer-
tainty, linked to the uncertainty around conc and r. The estimate of the mean risk is now uncertain. The
median of the 100 simulations leads to a ”best estimate”of 0.0445, with a 95% ”credible interval” of [0.191,
0.0730].

2 Basic Principles and Functions

A typical session of R using “mc2d” is as follows:� From data, expert knowledge, etc. an empirical or parametric distribution is chosen for each “par-
ent” parameter. For developing an empirical distribution from data , the “fitdistrplus” package is
recommended;� For each parameter, an mcnode object is constructed (key functions: mcdata, mcstoc);� Various mcnode objects are grouped into an mc object (key function: mc).� The mc object is studied through summaries, graphs, and sensitivity analysis (key functions: sum-

mary.mc, plot.mc, tornado, tornadounc).

2.1 Preliminary Step

The “mc2d” library should be loaded at the beginning of your R session (”library(mc2d)”).

The default size of the Monte-Carlo Simulation should be defined using the ndvar() function (dimension of
variability) and the ndunc() function (dimension of uncertainty).

2.2 The mcnode Object as an Elementary Object.

2.2.1 mcnode Object Structure

An mcnode object is the basic element of an mc object. It is an array of dimension (nsv × nsu × nvariates)
where nsv is the dimension of variability, nsu is the dimension of uncertainty and nvariates is the number
of variates of the mcnode2. Four types of mcnode exist:� ”V” mcnode, for ”Variability”, is an array of dimension (nsv × 1 × nvariates). The distribution repre-

sents variability in the parameter;� ”U” mcnode, for ”Uncertainty”, is an array of dimension (1 × nsu × nvariates). The distribution repre-
sents uncertainty in the parameter.� ”VU” mcnode, for ”Variability and Uncertainty”, is an array of dimension (nsv × nsu × nvariates). The
distribution represents both variability (in the first dimension) and uncertainty (in the second dimen-
sion) in the parameter.� Additionally, a ”0” mcnode is also defined . ”0” stands for ”Neither Variability or Uncertainty”. Such
nodes are arrays of dimension (1 × 1 × nvariates). No uncertainty or variability is considered for these
nodes. A ”0” mcnode is not necessary in the univariate context (use a scalar instead) but is useful in
constructing multivariate nodes (See section 3).

There are 5 ways to construct an mcnode object:

2In this section, we will only consider mcnodes with nvariates = 1.
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Figure 2: Structure of the various mcnode objects.

1. The mcstoc function constructs an mcnode from random number generating functions;

2. The mcdata function constructs an mcnode from data sets;

3. An mcnode can be constructed directly from operations on mcnode objects;

4. mcprobtree is a special function that constructs an mcnode from other mcnodes using a probability
tree;

5. Some functions, such as “==” or “>” , is.na, is.finite generate a new mcnode when applied to an
existing mcnode.

2.2.2 The mcstoc function

The mcstoc function is written as3:

mcstoc(func=runif, type=c("V", "U", "VU", "0"), ..., nsv=ndvar(), nsu=ndunc(),

nvariates=1, outm="each", nsample="n", seed=NULL, rtrunc=FALSE, linf=-Inf, lsup=Inf,

lhs=FALSE)� func is a function providing random data or its name as a character. The table 1 provides available
distributions from the stats and the mc2d libraries that can be used in mcstoc;� type is the type of requested mcnode. By default, mcstoc constructs a “V” mcnode;

3as is standard in R, most arguments have logical default values and will be infrequently modified.
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Table 1: Available distributions
Package Distribution function Parameter n Other Parameters trunc lhs

stats beta rbeta n shape1, shape2, ncp Y Y
binomial rbinom n size, prob Y Y
Cauchy rcauchy n location, scale Y Y

chi-squared rchisq n df, ncp Y Y
exponential rexp n rate Y Y

F rf n df1, df2, ncp Y Y
gamma rgamma n shape, rate (or scale) Y Y

geometric rgeom n prob Y Y
hypergeometric rhyper nn m, n, k Y Y

lognormal rlnorm n meanlog, sdlog Y Y
logistic rlogis n location, scale Y Y

negative binomial rnbinom n size, prob (or mu) Y Y
normal rnorm n mean, sd Y Y
Poisson rpois n lambda Y Y

Student’s t rt n df, ncp Y Y
uniform runif n min, max Y Y
Weibull rweibull n shape, scale Y Y

Wilcoxon rwilcox nn m,n Y Y
mc2d Bernoulli rbern n prob Y Y

empirical discrete rempiricalD n values, prob Y Y
empirical continuous rempiricalC n min, max, values, prob Y Y

PERT rpert n min, mode, max, shape Y Y
triangular rtriang n min, mode, max Y Y

generalised beta rbetagen n shape1,shape2,min,max,ncp Y Y
multinomial rmultinomial n n, size, prob N N

Dirichlet rdirichlet n alpha N N
multivariate normal rmultinormal n mean, sigma N N� . . . are the arguments to be passed to the function func, with the exception of the argument providing

the size of the sample. This latter is calculated by the function according to func, type, nsv, nsu and
nvariates. If the name of the argument specifying the size of the sample is not n (e.g. functions rhyper
and rwilcox, see table 1), the name of this parameter should be provided in the nsample argument.
Note that all of the following arguments should be named ;� nsv and nsu are the number of samples needed in the variability and uncertainty dimension, respectively.
By default, these values are the ones provided by ndvar() and ndunc(), respectively;� nvariates is the desired number of variates in the mcnode;� outm is the default output for multivariate nodes;� seed optionally specifies a seed for the random number generator;� rtrunc allows truncation of a distribution between linf and lsup. This function is not valid for every
distribution (see table 1). See the rtrunc function help for further details;� lhs allows Latin hypercube sampling of the node . This function is not valid for every distribution (see
table 1). See the lhs function help for further details.

In our basic example, mcstoc was used to specify conc (a normal distribution), cook (an empirical discrete
distribution), serving (a gamma distribution), and dose (a Poisson distribution). Note that the argument
lambda of the Poisson distribution (node dose) is itself an mcnode.
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> conc <- mcstoc(rnorm, type = "U", mean = 10, sd = 2)

> cook <- mcstoc(rempiricalD, type = "V", values = c(1, 1/5, 1/50),

+ prob = c(0.027, 0.373, 0.6))

> serving <- mcstoc(rgamma, type = "V", shape = 3.93, rate = 0.0806)

> ...

> dose <- mcstoc(rpois, type = "VU", lambda = expo)

> r <- mcstoc(runif, type = "U", min = 5e-04, max = 0.0015)

> ...

A normal distribution with parameters mean = 2, sd = 3, truncated on the interval [1.5, 2], with samples
generated via Latin hypercube sampling could be written4:

> x <- mcstoc(rnorm, mean = 2, sd = 3, rtrunc = TRUE, linf = 1.5,

+ lsup = 2, lhs = TRUE)

> summary(x)

node :

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
NoUnc 1.75 0.144 1.5 1.51 1.63 1.75 1.88 1.99 2 1000 0

For convenience in using mcstoc, the following additional distributions have been implemented: the Bernoulli
distribution (rbern), the empirical discrete distribution (rempiricalD), the PERT distribution (rpert)[6],
the triangular distribution (rtriang), the Dirichlet distribution (rdirichlet) and the multivariate normal
distribution (rmultinormal). The multinomial distribution has been adapted (vectorized): rmultinomial

(library mc2d) should be used in place of rmultinom (library stats). The empirical discrete (e.g. for
bootstrap), the Dirichlet, the multinomial and the multivariate normal may be used with uncertain and/or
variable parameters by specifying multivariate nodes. See section 3.

2.2.3 The mcdata function

Another way to construct an mcnode object is via the mcdata function, when data are available.

mcdata(data, type=c("V", "U", "VU", "0"), nsv=ndvar(), nsu=ndunc(), nvariates=1,

outm="each")

See the documentation associated with this function to see the size/type of data that can be used to
construct an mcnode. The following example places a TRUE value in a ”U” node in half of the simulations:

> nu <- ndunc()

> tmp <- (1:nu) > (nu/2)

> mcdata(tmp, type = "U")

node mode nsv nsu nva variate min mean median max Nas type outm

1 x logical 1 100 1 1 0 0.5 0.5 1 0 U each

4Note that the mean and the standard deviation of the untruncatednormal distribution are not preserved in the truncated
distribution.
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2.2.4 Operations on an mcnode

mcnodes can be automatically constructed using operations on other mcnodes. Rules are used to transfer
uncertainty and variability coherently within the model. Logically, the rules are as follows (illustrated here
with a “+”)5:� ”0” + ”0” = ”0”;� ”0” + ”V” = ”V”� ”0” + ”U” = ”U”;� ”0” + ”VU” = ”VU”;� ”V” + ”V” = ”V”;� ”V”+ ”U”= ”VU”: the “U”mcnode is recycled by row, the ”V”mcnode is recycled in the standard manner

by column;� ”V” + ”VU” = ”VU”: the “V” mcnode is recycled in the standard manner by column;� ”U” + ”U” = ”U”;� ”U” + ”VU” = ”VU”: the “U” mcnode is recycled by row;� ”VU” + ”VU” = ”VU”

Thus, in our example:

> ...

> expo <- conc * cook * serving

> ...

> risk <- 1 - (1 - r)^dose

expo is a function of a “U” and two “V” mcnodes: it is a “VU” mcnode with variability in the row dimension
and uncertainty in the column dimension . risk is a function of a “U” and a “VU” mcnode: it is therefore a
“VU” mcnode.

2.2.5 The mcprobtree function

The mcprobtree function can be used if a “probability tree” is needed to construct an mcnode. Assume that
the distribution representing the uncertainty on conc was not itself certain, and that the microbiologists
suggest that they are 75% sure that conc ∼ N (10, 2) but that they are 25% sure that conc ∼ U (8, 12). This
could be written using mcprobtree as6:

> conc1 <- mcstoc(rnorm, type = "U", mean = 10, sd = 2)

> conc2 <- mcstoc(runif, type = "U", min = 8, max = 12)

> whichdist <- c(0.75, 0.25)

> concbis <- mcprobtree(whichdist, list(`0` = conc1, `1` = conc2),

+ type = "U")

mcprobtree can also be used to generate samples from a mixture distribution for variability .

5These rules are not the standard R rules for recycling.
6two alternatives for whichdist are whichdist <- mcstoc(rempiricalD, type="U", values=c(0,1), prob=c(75,25)) or

whichdist <- mcstoc(rbern,type="U",prob=0.25)
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2.2.6 Other functions for constructing an mcnode

The functions “==”, ”<”, ”<=”, ”>=”, “>”, generate an mcnode when applied to another mcnode.

Special functions is.na(x), is.nan(x), is.finite(x), is.infinite(x) are implemented to test if any
values are NA (missing data), NaN (“Not A Number”), or finite .

> cook < 1

node mode nsv nsu nva variate min mean median max Nas type outm

1 x logical 1000 1 1 1 0 0.975 1 1 0 V each

> tmp <- log(mcstoc(runif, min = -1, max = 1))

> tmp

node mode nsv nsu nva variate min mean median max Nas type outm

1 x numeric 1000 1 1 1 -8.19 -1.03 -0.699 -0.00167 512 V each

> is.na(tmp)

node mode nsv nsu nva variate min mean median max Nas type outm

1 x logical 1000 1 1 1 0 0.512 1 1 0 V each

2.2.7 Specifying a correlation between mcnodes

Structural links between sets of parameters may be very important in QRA. In mc2d, a Spearman rank
correlation structure for 2 or more nodes may be specified with the cornode function. This function uses the
method of Iman & Conover to generate correlated samples [3]. Assume that a study suggests that people
who consume rare ground beef alsoconsume larger serving sizes. We could specify this relation using:

> cornode(cook, serving, target = 0.5, result = TRUE)

output Rank Correlation per variates

variates: 1

[1] 1.0000000 0.3796997 0.3796997 1.0000000

$cook

node mode nsv nsu nva variate min mean median max Nas type outm

1 x numeric 1000 1 1 1 0.02 0.107 0.02 1 0 V each

$serving

node mode nsv nsu nva variate min mean median max Nas type outm

1 x numeric 1000 1 1 1 2.67 49.7 45 161 0 V each

Note that the resulting correlation (around 0.4) is obviously an approximation to the desired value of 0.5,
because a discrete distribution (cook: 3 categories) is correlated with a continuous distribution (serving).

It is possible to create such correlations between “V” nodes, between “ U” nodes, between “VU” nodes, or
between one “V” node and multiple “VU” nodes.

The use of a multivariate normal distribution (rmultinormal) is another way to specify correlations among
nodes, assuming that the individual nodes are normally distributed.
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2.3 The mc Object

Once the mcnode objects are constructed, one should group them into a single object in order to analyse the
Monte-Carlo results. The “mc” object is a list of mcnodes. There are three ways to construct an mc object:
using the mc function, using the evalmcmod function, or within the evalmccut function.

2.3.1 The mc Function

mc(..., name=NULL, devname=FALSE)

. . . are mcnodes or mc objects to be gathered into an mc object. mc value is an mc object with specific
methods, e.g. print or summary. In our example, we used:

> ...

> EC2 <- mc(conc, cook, serving, expo, dose, r, risk)

> print(EC2)

> summary(EC2)

2.3.2 The mcmodel and the evalmcmod Functions

A model may be written in one step using mcmodel (just a wrapper of your model in a function), and then
evaluated using evalmcmod. These functions may be used once your model is correct and has been tested
using a small number of iterations. For our example:

> modelEC3 <- mcmodel({

+ conc <- mcstoc(rnorm, type = "U", mean = 10, sd = 2)

+ cook <- mcstoc(rempiricalD, type = "V", values = c(1, 1/5,

+ 1/50), prob = c(0.027, 0.373, 0.6))

+ serving <- mcstoc(rgamma, type = "V", shape = 3.93, rate = 0.0806)

+ r <- mcstoc(runif, type = "U", min = 5e-04, max = 0.0015)

+ expo <- conc * cook * serving

+ dose <- mcstoc(rpois, type = "VU", lambda = expo)

+ risk <- 1 - (1 - r)^dose

+ mc(conc, cook, serving, expo, dose, r, risk)

+ })

> modelEC3

expression({

conc <- mcstoc(rnorm, type = "U", mean = 10, sd = 2)

cook <- mcstoc(rempiricalD, type = "V", values = c(1, 1/5,

1/50), prob = c(0.027, 0.373, 0.6))

serving <- mcstoc(rgamma, type = "V", shape = 3.93, rate = 0.0806)

r <- mcstoc(runif, type = "U", min = 5e-04, max = 0.0015)

expo <- conc * cook * serving

dose <- mcstoc(rpois, type = "VU", lambda = expo)

risk <- 1 - (1 - r)^dose

mc(conc, cook, serving, expo, dose, r, risk)

})

attr(,"class")

[1] "mcmodel"

Note that:
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� the model is wrapped between “{” and “}”;� any (valid) R code may be placed in the model7;� The model should end with an mc() function.

The model is then evaluated using the evalmcmod function:

evalmcmod(expr, nsv=ndvar(), nsu=ndunc(), seed=NULL)

One can re-run the model with various dimensions or random seeds in one line:

> EC3 <- evalmcmod(modelEC3, nsv = 100, nsu = 10, seed = 666)

> EC4 <- evalmcmod(modelEC3, nsv = 100, nsu = 1000, seed = 666)

2.3.3 The mcmodelcut and the evalmccut Functions

If evaluating a high-dimensional model, R may exceed its memory limit. evalmccut evaluates a 2-dimensional
Monte-Carlo model (written with the mcmodelcut function) using a loop, and calculates and stores statistics
in the uncertainty dimension for further analysis. Readers should refer to the corresponding documentation
for further details. Our example would be written as:

> modEC4 <- mcmodelcut({

+ {

+ cook <- mcstoc(rempiricalD, type = "V", values = c(0,

+ 1/5, 1/50), prob = c(0.027, 0.373, 0.6))

+ serving <- mcstoc(rgamma, type = "V", shape = 3.93, rate = 0.0806)

+ conc <- mcstoc(rnorm, type = "U", mean = 10, sd = 2)

+ r <- mcstoc(runif, type = "U", min = 5e-04, max = 0.0015)

+ }

+ {

+ expo <- conc * cook * serving

+ dose <- mcstoc(rpois, type = "VU", lambda = expo)

+ risk <- 1 - (1 - r)^dose

+ res <- mc(zero, conc, cook, serving, expo, dose, r, risk)

+ }

+ {

+ list(sum = summary(res), plot = plot(res, draw = FALSE),

+ minmax = lapply(res, range), tor = tornado(res),

+ et = sapply(res, sd))

+ }

+ })

> evalmccut(modEC4, nsv = 10001, nsu = 101, seed = 666)

Note that the use of a tornado function in the model should be avoided as it slows the evalmccut function
considerably. The tornado function will be rewritten in the near future to improve its performance.

2.4 Analysing an mc Object

As a reminder, the print function provides a very basic summary of the mc object. It has a digits argument
(default: 3). Obviously, other more informative functions are provided in the mc2d package.

7If needed, it is possible to make reference to the simulation dimensions using ndvar() and/or ndunc().

16



2.4.1 The summary Function

The summary function provides statistics on an mc object:

summary(object, probs=c(0,0.025,0.25,0.5,0.75,0.975,1), lim=c(0.025,0.975), ...)

The mean, the standard deviation and the quantiles provided in the probs arguments are evaluated on the
variability dimension. Then, the median and the quantiles provided in the lim argument are evaluated on
these statistics. Of course, these arguments should be changed if other quantiles are needed.

> tmp <- summary(EC2, probs = c(0.995, 0.999), digits = 12)

> tmp$risk

mean sd 99.5% 99.9% nsv Na's
median 0.04446930 0.07028198 0.5016035 0.5573356 1000 0

mean 0.04554518 0.07058057 0.4979376 0.5522955 1000 0

2.5% 0.01914973 0.03243724 0.2380268 0.2771793 1000 0

97.5% 0.07297994 0.10573336 0.7113664 0.7565299 1000 0

attr(,"type")

[1] "VU"

2.4.2 The hist Function

The hist provides a histogram of the different mcnodes making up the mc object (cf. Figure 3).

hist (x, griddim = NULL, xlab = names(x), ylab = "Frequency", main = "", ...)

In the current version, uncertainty and variability distributions are collapsed. Thus, the resulting histogram
may be meaningless.

> hist(EC2)

2.4.3 The plot function

The plot function provides a graph of the empirical distribution function of the estimate (mean or median)
of the quantiles.

plot (x, prec = 0.01, stat = c("median", "mean"), lim = c(0.025,0.975), na.rm = TRUE,

griddim = NULL, xlab = NULL, ylab = "Fn(x)", main = "", draw = TRUE, ...)

For our example, see Figure 4, a default graph.

> plot(EC2)

Note that mcnode objects have the same methods print, summary, plot, and hist.
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Figure 4: plot Function .
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Figure 5: plot.tornado Function .
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2.4.4 The tornado function

The tornado function calculates the Spearman (default) rank correlation between nodes of the mc object.

tornado(x, output=length(x), use="all.obs", method=c("spearman", "kendall","pearson"),

lim=c(0.025, 0.975))

where output is the mcnode (name or rank) of the output (default: the last mcnode). Missing data are treated
using the use arguments (see the reference documentation). tornado creates a tornado object with a plot

method (cf. Figure 5).

> torEC2 <- tornado(EC2)

> plot(torEC2)

2.4.5 The tornadounc function

The tornadounc function examines the impact of the uncertainty on the estimate of an output. It calculates
the Spearman (default) rank correlation between statistics of the mc object in the variability dimension.
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tornadounc(mc,output = length(mc), quant=c(0.5,0.75,0.975), use = "all.obs",

method=c("spearman","kendall","pearson"), ...)

The quant argument indicates which quantiles should be used in the variability dimension. tornadounc

creates a tornadounc object with a plot method

> tornadounc(EC2, output = "risk", quant = 0.99)

Tornado on uncertainty

Spearman's rho statistic

Output: risk

$risk

conc mean expo sd expo 99% expo mean dose sd dose 99% dose

mean risk 0.5244044 0.5244044 0.5244044 0.5244044 0.5220402 0.5235644 0.4966712

sd risk 0.5233123 0.5233123 0.5233123 0.5233123 0.5210321 0.5229043 0.4958971

99% risk 0.5233603 0.5233603 0.5233603 0.5233603 0.5214761 0.5233003 0.5088284

r

mean risk 0.7727933

sd risk 0.7728413

99% risk 0.7607921

The output shows the impact of the uncertain nodes (type ”U” nodes) and some statistics (mean, median
and, here, the 99thpercentile) calculated on the variability dimension (type ”V”and type ”VU”nodes) of some
output statistics .

2.5 Other Functions and mc Objects

mc objects are simply lists of three dimensional arrays; within each array, values in a given column represent
variability in the parameter.

Knowing the structure of the mc and the structure of the mcnode objects, it is straightforward to apply any R
function to these objects. The ”$” function is helpful for extracting an mcnode from an mc object. The unmc

function removes all attributes, classes, and dimensions equal to one, providing a list of vectors, matrices
and/or arrays.

Here is a (silly) example building a linear model (in fact ndunc() linear models) between the risk and the
dose within each uncertainty dimension and estimating some statistics for the coefficients. This example is
here only to illustrate that the entire spectrum of R functionality is available for your analysis.

> tmp <- unmc(EC2, drop = TRUE)

> dimu <- ncol(tmp$risk)

> coef <- sapply(1:dimu, function(x) lm(tmp$risk[, x] ~ tmp$dose[,

+ x])$coef)

> apply(coef, 1, summary)

(Intercept) tmp$dose[, x]

Min. 0.0007991 0.0004028

1st Qu. 0.0038060 0.0005948

Median 0.0064130 0.0007084

Mean 0.0072600 0.0007334

3rd Qu. 0.0092290 0.0008837

Max. 0.0206100 0.0011200
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3 Multivariate Nodes

The dimension nvariates is the third dimension of the mcnode. One can ignore it while using mc2d .
Nevertheless, its use is mandatory to handle some multivariate distributions, and it may be useful in other
circumstances. Constructing multivariate nodes is straightforward. We note that the following code:

> mcstoc(runif, nvariates = 3, min = c(1, 2, 3), max = 4)

will logically not provide a node with 3 variates, each having a different limit. The recycling rule says that
c(1, 2, 3) will be used in the first dimension, i.e. the variability dimension. Use instead:

> lim <- mcdata(c(1, 2, 3), type = "0", nvariates = 3)

> mcstoc(runif, nvariates = 3, min = lim, max = 4)

node mode nsv nsu nva variate min mean median max Nas type outm

1 x numeric 1000 1 3 1 1.00 2.54 2.58 4 0 V each

2 x numeric 1000 1 3 2 2.00 3.00 3.00 4 0 V each

3 x numeric 1000 1 3 3 3.00 3.52 3.52 4 0 V each

3.1 Multivariate Nodes for Multivariate Distributions

The basic usage of multivariate nodes (and the reason why they have been implemented) is for multivari-
ate distributions such as the Dirichlet distribution, the multinomial distribution, the multivariate normal
distribution and, possibly, the empirical distribution

As an example, assume that 3-member families buy 500 g of ground beef. The proportions of steak eaten
by the baby, his older brother and his mother follow a Dirichlet (uncertainty) distribution with (vector)
parameter α = (2, 3, 5). We want to derive the distribution (variability) of steak eaten by 500 babies sampled
from these 500 families.

> (p <- mcstoc(rdirichlet, type = "U", nsu = 100, nvariates = 3,

+ alpha = c(2, 3, 5)))

node mode nsv nsu nva variate min mean median max Nas type outm

1 x numeric 1 100 3 1 0.0198 0.196 0.170 0.647 0 U each

2 x numeric 1 100 3 2 0.0389 0.297 0.283 0.685 0 U each

3 x numeric 1 100 3 3 0.1968 0.507 0.512 0.846 0 U each

> s <- mcstoc(rmultinomial, type = "VU", nsv = 500, nsu = 100,

+ nvariates = 3, size = 500, prob = p)

> summary(s)

node :

[[1]]

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
median 85.0 8.34 60.50 69.00 79.0 85.0 90.5 101.8 109.5 500 0

mean 98.1 8.16 74.28 82.60 92.5 98.0 103.5 114.2 123.8 500 0

2.5% 15.7 3.68 6.47 8.95 13.4 15.4 17.9 23.4 28.3 500 0

97.5% 249.1 11.29 216.65 226.78 241.5 249.0 256.5 270.8 281.0 500 0

[[2]]

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
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median 141.3 10.06 113.0 121.7 135.0 141.5 148.0 160.3 173.5 500 0

mean 148.5 9.55 120.2 130.3 141.9 148.5 154.9 167.1 178.2 500 0

2.5% 24.4 4.89 11.4 15.6 20.9 23.9 27.4 34.4 38.3 500 0

97.5% 319.8 11.34 289.8 298.9 311.9 320.4 327.9 341.6 351.7 500 0

[[3]]

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
median 256 10.78 221.0 234.7 248 256 264 278 290 500 0

mean 253 10.70 221.5 232.7 246 253 261 274 286 500 0

2.5% 114 9.04 88.8 96.7 108 114 121 134 148 500 0

97.5% 380 11.67 347.0 360.3 374 381 387 399 409 500 0

Assume that each member of these families eats a “normal”distribution (variability) of steak with mean 100,
150 and 250 g. There is a positive correlation between the servings of the children, and a negative one with
the serving of the mother. We want to derive the distribution (variability) of steak eaten by 500 babies.

> (x <- mcstoc(rmultinormal, type = "V", nvariates = 3, mean = c(100,

+ 150, 250), sigma = c(10, 2, -5, 2, 10, -5, -5, -5, 10)))

node mode nsv nsu nva variate min mean median max Nas type outm

1 x numeric 1000 1 3 1 88.4 100 100 110 0 V each

2 x numeric 1000 1 3 2 141.3 150 150 160 0 V each

3 x numeric 1000 1 3 3 239.0 250 250 260 0 V each

> cor(x[, 1, ])

[,1] [,2] [,3]

[1,] 1.0000000 0.1822931 -0.4950757

[2,] 0.1822931 1.0000000 -0.4884462

[3,] -0.4950757 -0.4884462 1.0000000

In this example, mean could be variable or uncertain, as well as sigma8. You could have used, for an uncertain
mean:

> m <- mcdata(c(100, 150, 250), type = "0", nvariates = 3)

> mun <- mcstoc(rnorm, type = "U", nvariates = 3, mean = m, sd = 20)

> x <- mcstoc(rmultinormal, type = "VU", nvariates = 3, mean = mun,

+ sigma = c(10, 2, -5, 2, 10, -5, -5, -5, 10))

> cor(x[, 1, ])

[,1] [,2] [,3]

[1,] 1.0000000 0.1817660 -0.5168595

[2,] 0.1817660 1.0000000 -0.4903274

[3,] -0.5168595 -0.4903274 1.0000000

The correlation is preserved, but the mean of each category is uncertain.

Finally, multivariate nodes may be useful to derive a nonparametric bootstrap. Assume that, based on a
study, you obtained 6 individuals who eat 100 g, 12 individuals who eat 150 g, 6 individuals who eat 170
g and 6 individuals who eat 200 g of ground beef. You want to use a nonparametric bootstrap to derive
uncertainty [2], and then select samples from the empirical distribution.

8Caution: the use of a varying sigma can make the analysis very slow.
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> (x <- mcstoc(rempiricalD, type = "U", outm = c("min", "mean",

+ "max"), nvariates = 30, values = c(100, 150, 170, 200), prob = c(6,

+ 12, 6, 6)))

node mode nsv nsu nva variate min mean median max Nas type outm

1 x numeric 1 100 30 NA 100 100 100 100 0 U min

2 x numeric 1 100 30 NA 143 154 154 168 0 U mean

3 x numeric 1 100 30 NA 200 200 200 200 0 U max

> mcstoc(rempiricalD, type = "VU", values = x)

node mode nsv nsu nva variate min mean median max Nas type outm

1 x numeric 1000 100 1 1 100 154 150 200 0 VU each

Printing the statistics of the 30 variates of x is of no interest. Instead, we use the “outm”option, which allows
us to specify which output we want (“none” for none, “each”, the default, for a series of statistics for each
variate, or, as in the example, a vector of functions that are applied over all the 30 variates).

3.2 Multivariate Nodes as a “Third Dimension” for Multiple Options in a Model

The recycling rules in mc2d regarding the nvariate dimension are as follows: the recycling will be done from
nvariates=1 to nvariates=n with n > 1. This allows you to use multivariates nodes as a third dimension,
in case you want to test various alternatives.

Assume, as in section 2.2.5, that the distribution representing uncertainty in conc was not certain, and that
the microbiologists suggest that conc ∼ N (10, 2) is possible, but that conc ∼ U (8, 12) is also possible. We can
i) build a “bivariate” node reflecting these two options; ii) transfer these options into the final risk estimate.
We obtain a bivariate node for the risk, one using the first hypothesis, the second the second hypothesis.

> conc1 <- mcstoc(rnorm, type = "U", mean = 10, sd = 2)

> conc2 <- mcstoc(runif, type = "U", min = 8, max = 12)

> conc <- mcdata(c(conc1, conc2), type = "U", nvariates = 2)

> cook <- mcstoc(rempiricalD, type = "V", values = c(1, 1/5, 1/50),

+ prob = c(0.027, 0.373, 0.6))

> serving <- mcstoc(rgamma, type = "V", shape = 3.93, rate = 0.0806)

> expo <- conc * cook * serving

> dose <- mcstoc(rpois, type = "VU", nvariates = 2, lambda = expo)

> r <- mcstoc(runif, type = "U", min = 5e-04, max = 0.0015)

> risk <- 1 - (1 - r)^dose

> EC5 <- mc(conc, cook, serving, expo, dose, r, risk)

> summary(EC5)

conc :

[[1]]

NoVar

median 9.96

mean 9.86

2.5% 6.12

97.5% 13.65

[[2]]

NoVar
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median 9.95

mean 9.92

2.5% 8.08

97.5% 11.82

cook :

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
NoUnc 0.122 0.182 0.02 0.02 0.02 0.02 0.2 1 1 1000 0

serving :

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
NoUnc 48.8 25.9 5.88 13.2 29.5 44.3 61.9 112 169 1000 0

expo :

[[1]]

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
median 59.3 100.7 1.17 3.16 7.95 15.00 83.0 312 1000 1000 0

mean 58.7 99.7 1.16 3.13 7.87 14.85 82.1 309 990 1000 0

2.5% 36.5 61.9 0.72 1.94 4.89 9.22 51.0 192 615 1000 0

97.5% 81.3 138.0 1.60 4.33 10.90 20.56 113.7 428 1370 1000 0

[[2]]

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
median 59.3 100.7 1.17 3.16 7.95 15.0 82.9 312 999 1000 0

mean 59.1 100.4 1.17 3.15 7.92 14.9 82.7 311 996 1000 0

2.5% 48.1 81.7 0.95 2.56 6.45 12.2 67.3 253 811 1000 0

97.5% 70.4 119.5 1.39 3.75 9.44 17.8 98.5 370 1187 1000 0

dose :

[[1]]

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
median 59.4 101.4 0.00 2.00 8.00 16.0 82.0 312 998 1000 0

mean 58.7 100.1 0.04 1.88 7.61 15.8 81.1 314 990 1000 0

2.5% 36.3 62.1 0.00 1.00 5.00 10.0 49.1 198 633 1000 0

97.5% 81.2 138.0 1.00 3.00 11.00 22.0 110.8 426 1363 1000 0

[[2]]

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
median 59.3 101.0 0.00 2.00 8.00 16.0 82.2 317 1020 1000 0

mean 59.1 100.7 0.02 1.95 7.63 16.0 81.4 316 1002 1000 0

2.5% 47.8 81.8 0.00 1.00 6.00 13.0 66.1 255 791 1000 0

97.5% 70.7 120.4 0.00 3.00 9.00 19.0 97.0 378 1196 1000 0

r :

NoVar

median 0.001004

mean 0.001036

2.5% 0.000568

97.5% 0.001435

risk :
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[[1]]

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv

median 0.0546 0.0808 0.000000 0.001936 0.00752 0.0162 0.0811 0.278 0.630 1000

mean 0.0543 0.0796 0.000042 0.001968 0.00787 0.0163 0.0805 0.274 0.622 1000

2.5% 0.0257 0.0408 0.000000 0.000604 0.00357 0.0074 0.0362 0.131 0.358 1000

97.5% 0.0854 0.1175 0.000858 0.003666 0.01292 0.0263 0.1325 0.413 0.812 1000

Na's
median 0

mean 0

2.5% 0

97.5% 0

[[2]]

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv

median 0.0538 0.0796 0.00e+00 0.001948 0.00763 0.01598 0.0795 0.272 0.638 1000

mean 0.0544 0.0799 2.37e-05 0.001999 0.00783 0.01639 0.0803 0.276 0.630 1000

2.5% 0.0308 0.0483 0.00e+00 0.000896 0.00411 0.00882 0.0439 0.159 0.429 1000

97.5% 0.0802 0.1120 0.00e+00 0.003280 0.01230 0.02501 0.1220 0.394 0.801 1000

Na's
median 0

mean 0

2.5% 0

97.5% 0

(Do not forget to transfer the number of variates you want in mcstoc... (see the definition of dose). mc2d

cannot guess...)

3.3 Multivariate Nodes as a“Third Dimension” for Multiple Vectors/Contaminants

The recycling rules in mc2d also allow you to use multivariate nodes as a third dimension for multiple
vectors/Contaminants.

Assume in our ground beef example that we have two contaminants: one has a mean concentration that
follows an uncertainty distribution conc ∼ N (10, 2), the second one follows conc ∼ N (14, 2). We can i) build
a “bivariate”node reflecting these two concentrations9 ; ii) transfer these options into the final dose; iii) sum
the dose over the variates (using mcapply). The behavior of contaminants is transferred in the model.

> mconc <- mcdata(c(10, 14), type = "0", nvariates = 2)

> conc <- mcstoc(rnorm, nvariates = 2, type = "U", mean = mconc,

+ sd = 2)

> cook <- mcstoc(rempiricalD, type = "V", values = c(1, 1/5, 1/50),

+ prob = c(0.027, 0.373, 0.6))

> serving <- mcstoc(rgamma, type = "V", shape = 3.93, rate = 0.0806)

> expo <- conc * cook * serving

> dose <- mcstoc(rpois, type = "VU", nvariates = 2, lambda = expo)

> dosetot <- mcapply(dose, margin = "variates", fun = sum)

> r <- mcstoc(runif, type = "U", min = 5e-04, max = 0.0015)

> risk <- 1 - (1 - r)^dosetot

> EC6 <- mc(conc, cook, serving, expo, dose, dosetot, r, risk)

> summary(EC6)

9Note that we could simulate a correlation between both contaminants using a multivariate normal distribution.
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conc :

[[1]]

NoVar

median 9.79

mean 9.77

2.5% 5.96

97.5% 14.83

[[2]]

NoVar

median 14.0

mean 14.1

2.5% 10.8

97.5% 18.3

cook :

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
NoUnc 0.112 0.169 0.02 0.02 0.02 0.02 0.2 1 1 1000 0

serving :

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
NoUnc 49 24.7 5.58 13.3 30.9 45.5 61.8 108 171 1000 0

expo :

[[1]]

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
median 55.6 94.2 1.092 2.74 7.76 13.1 77.4 258 1031 1000 0

mean 55.5 93.9 1.090 2.74 7.75 13.1 77.2 257 1028 1000 0

2.5% 33.8 57.3 0.665 1.67 4.72 8.0 47.1 157 627 1000 0

97.5% 84.2 142.6 1.654 4.16 11.76 19.9 117.2 390 1561 1000 0

[[2]]

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
median 79.4 134 1.56 3.92 11.08 18.8 110.5 368 1471 1000 0

mean 80.0 135 1.57 3.95 11.17 18.9 111.4 371 1483 1000 0

2.5% 61.6 104 1.21 3.04 8.59 14.5 85.7 285 1141 1000 0

97.5% 103.9 176 2.04 5.13 14.51 24.6 144.6 482 1926 1000 0

dose :

[[1]]

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
median 55.4 94.1 0.000 2.00 7.00 14.0 78.5 262 1038 1000 0

mean 55.5 94.2 0.030 1.76 7.29 14.2 78.5 263 1029 1000 0

2.5% 33.7 57.3 0.000 1.00 4.00 9.0 48.0 158 614 1000 0

97.5% 84.0 142.5 0.525 3.00 11.00 21.0 118.0 400 1539 1000 0

[[2]]

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
median 79.5 135 0.00 3.00 10.5 20.0 112 372 1478 1000 0

mean 80.1 136 0.23 2.88 10.7 20.0 113 377 1484 1000 0

2.5% 61.8 105 0.00 2.00 8.0 15.7 86 285 1120 1000 0

97.5% 104.3 177 1.00 4.00 14.0 25.3 146 493 1941 1000 0
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dosetot :

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
median 136 230 1.00 6.00 18.0 33.2 192 635 2491 1000 0

mean 136 230 1.10 5.69 18.3 33.3 191 634 2514 1000 0

2.5% 107 181 0.00 4.00 15.0 27.0 152 510 1972 1000 0

97.5% 164 279 2.52 7.52 23.0 40.0 234 779 3075 1000 0

r :

NoVar

median 0.001000

mean 0.000994

2.5% 0.000546

97.5% 0.001452

risk :

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
median 0.1050 0.138 0.00104 0.00564 0.01750 0.0311 0.1647 0.450 0.909 1000 0

mean 0.1076 0.139 0.00110 0.00563 0.01806 0.0326 0.1721 0.459 0.894 1000 0

2.5% 0.0633 0.091 0.00000 0.00292 0.00936 0.0171 0.0954 0.289 0.729 1000 0

97.5% 0.1582 0.188 0.00293 0.00893 0.02943 0.0514 0.2613 0.634 0.981 1000 0

As a conclusion, this ”third” dimension is highly flexible...

4 Another Example: A QRA of Waterborne Cryptosporidiosis in

France

This example is adapted from [4]. The aim is to evaluate the risk of infection with Cryptosporidium parvum

from consumption of tap water, given that n oocysts /100 l. have been observed in a storage reservoir.

4.1 Tap Water Consumption Model

We have raw data of daily consumption of tap water from 1,180 tap water consumers (var inca, see Figure 6).
We could choose to use this empirical distribution to evaluate the variability in the tap water consumption:

> ndvar(1001)

[1] 1001

> ndunc(1001)

[1] 1001

> mcstoc(rempiricalD, type = "V", values = inca)

node mode nsv nsu nva variate min mean median max Nas type outm

1 x numeric 1001 1 1 1 0 0.41 0.36 3 0 V each
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Figure 6: Histogram of daily tap water intake
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but we will use the ”fitdistrplus” library. inca includes a lot of 0 nodes, corresponding to days when
individuals do not drink tap water (possibly they drink bottled water on those days). We could try a mixture
of distributions, with ”0”and ”non-0” data.

> library(fitdistrplus)

> pzero <- sum(inca == 0)/length(inca)

> inca_non_0 <- inca[inca != 0]

> descdist(inca_non_0)

summary statistics

------

min: 0.0221 max: 3.2

median: 0.48

mean: 0.566

sample sd: 0.385

sample skewness: 1.75

sample kurtosis: 7.98

Following the descdist function (See figure 7), let us try the lognormal distribution.

> Adj_water <- fitdist(inca_non_0, "lnorm", method = "mle")

> meanlog <- Adj_water$est[1]

> sdlog <- Adj_water$est[2]

> summary(Adj_water)

FITTING OF THE DISTRIBUTION ' lnorm ' BY MAXIMUM LIKELIHOOD

PARAMETERS

estimate Std. Error

meanlog -0.784 0.00891

sdlog 0.674 0.00630

Loglikelihood: -1374

Correlation matrix:

meanlog sdlog

meanlog 1 0

sdlog 0 1

------

GOODNESS-OF-FIT STATISTICS

_____________ Chi-squared_____________

Chi-squared statistic: 3081

Degree of freedom of the Chi-squared distribution: 23

Chi-squared p-value: 0

!!! For continuous distributions, Kolmogorov-Smirnov and

Anderson-Darling statistics should be prefered !!!

_____________ Kolmogorov-Smirnov_____________

Kolmogorov-Smirnov statistic: 0.0643

Kolmogorov-Smirnov test: rejected

!!! The result of this test may be too conservative as it

assumes that the distribution parameters are known !!!
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Figure 7: Graph from the descdist function.
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Figure 8: Graph from the fitdist function.
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_____________ Anderson-Darling_____________

Anderson-Darling statistic: 18.8

Anderson-Darling test: rejected

> plot(Adj_water)

Not so bad (See Figure 8), and better than a gamma distribution (results not shown). We can now rebuild
our mixture. We could consider uncertainty around the maximum likelihood estimates using the bootdist

function of the fitdistrplus package, using something like:

> Boot <- bootdist(Ajust_lnorm, bootmethod = "param", niter = ndunc())

> Mean_conso <- mcdata(Boot$estim$meanlog, type = "U")

> Sd_conso <- mcdata(Boot$estim$sdlog, type = "U")

> conso1 <- mcstoc(rlnorm, type = "VU", meanlog = Mean_conso, sdlog = Sd_conso)

But for simplicity, we will not consider uncertainty around the estimates.

We will use the mcprobtree function to construct a mixture of ”0”and ”non-0” distributions:
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> conso0 <- mcdata(0, type = "V")

> conso1 <- mcstoc(rlnorm, type = "V", meanlog = meanlog, sdlog = sdlog)

> v <- mcprobtree(c(pzero, 1 - pzero), list(`0` = conso0, `1` = conso1),

+ type = "V")

> summary(v)

node :

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
NoUnc 0.418 0.496 0 0 0 0.31 0.624 1.64 7.08 1001 0

4.2 The Dose-Response Model

We propose a boostrap from data (datDR) derived from [1]. We first define a function ”DR”with an n argument
for the size of the sample to draw. This function may then be used in a mcstoc function:

> datDR <- list(dose = c(30, 100, 300, 500, 1000, 10000, 1e+05,

+ 1e+06), pi = c(2, 4, 2, 5, 2, 3, 1, 1), ni = c(5, 8, 3, 6,

+ 2, 3, 1, 1))

> estDR <- function(pos, ref) {

+ -glm(cbind(ref$ni - pos, pos) ~ ref$dose + 0, binomial(link = "log"))$coefficients

+ }

> ml <- 1 - exp(-estDR(datDR$pi, datDR) * datDR$dose)

> DR <- function(n) {

+ boot <- matrix(rbinom(length(datDR$dose) * n, datDR$ni, ml),

+ nrow = length(datDR$dose))

+ apply(boot, 2, estDR, ref = datDR)

+ }

> r <- mcstoc(DR, type = "U")

> summary(r)

node :

NoVar

median 0.00532

mean 0.00571

2.5% 0.00296

97.5% 0.01031

4.3 The Model

Deriving the final model is straightforward. We construct the mcnode corresponding to the recovery rate
(Uncertainty, Rr), the probability for an oocyst to be infective (Variability, w):

> Rr <- mcstoc(rbeta, type = "U", shape1 = 2.65, shape2 = 3.64)

> w <- mcstoc(rbeta, type = "V", shape1 = 2.6, shape2 = 3.4)

Given that Oo = 2 oocysts are observed in 100 l of water, the expected number of oocysts in the sample is l:

> Oo <- 2

> l <- (Oo + mcstoc(rnbinom, type = "U", size = Oo + 1, prob = Rr))/100

The expected number of oocysts drunk by the individuals is Or and the risk (×10000) is estimated by:
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> Or <- l * v * w

> P <- 10000 * (1 - exp(-r * Or))

> summary(P)

node :

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
median 0.558 0.787 0 0 0 0.3411 0.789 2.39 12.13 1001 0

mean 0.883 1.244 0 0 0 0.5396 1.248 3.79 19.15 1001 0

2.5% 0.142 0.200 0 0 0 0.0868 0.201 0.61 3.09 1001 0

97.5% 3.349 4.714 0 0 0 2.0463 4.732 14.36 72.54 1001 0

This result can be compared (roughly since there is some differences in the modelsvariability) to the results
shown in Table 2 in [4].

Improvement: the results for Oo = {0, 1, 2, 5, 10, 20, 50, 100, 1000} can be obtained in one step using:

> Oo <- mcdata(c(0, 1, 2, 5, 10, 20, 50, 100, 1000), type = "0",

+ nvariates = 9)

As a Conclusion

We think and hope that “mc2d” could help risk assessors to constuct and analyse their models, and that it
may help in developing ”two-dimensional” simulations. Nevertheless, ”mc2d” is currently under development:

CHECK YOUR MODEL CAREFULLY AND EXAMINE RESULTS TO DETECT BUGS

and, if you would like to improve it, join us at

http:// riskassessment.r-forge.r-project.org/

Please refer any comments or bugs to rpouillot@yahoo.fr.
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