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Introduction

The package meteR is designed to facilitate fitting the models for the Maximum Entropy Theory of Ecology
(METE) from data. For an overview of METE, see Harte et al. (2008), Harte (2011), and Harte and
Newman (2014). Note that throughout this tutorial we use the notation from these sources without extensive
explanation (Figure 1). meteR can use data input in multiple formats and predict all the fundamental
distributions and relationships of the theory. Our objective is to facilitate tests of METE with empirical data
sets.

Figure 1 was taken from Harte and Newman (2014) TREE 29: 384–389 and illustrates the derivation of, and
connection between, different METE distributions and relationships.
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Case Study 1 - Abundance and Power Distributions

We begin illustrating the capabilities of meteR with data from an arthropod community (Gruner 2007)
collected via canopy fogging in Hawaii and including individual body mass measurements for each individual
collected. These data are distributed as part of meteR. We will use it to illustrate the construction of
distributions related to abundance and metabolic rate. Notably, these data do not contain any spatial
information so we illustrate spatial predictions with a different data set in the next section.

library(meteR)
data(arth)
dim(arth)

## [1] 547 3

head(arth)

## spp count mass
## 1 blacchel 1 4.7480
## 2 mecyocul 1 1.6490
## 3 eurynsp1 1 0.2584
## 4 eurynsp1 1 0.2584
## 5 eurynsp1 1 0.2584
## 6 eurynsp1 1 0.2584

This data set illustrates one data format used by meteR; each row represents an individual, with an observation
of its metabolic rate (note that we convert mass to metabolic rate using the usual relationship of Metabolic
Scaling Theory such that metabolic rateM ∝ mass3/4). If multiple individuals of the same size from the same
species are observed (and lumped into one record), these can be specified as well, i.e., by letting arth$count
be something other than 1. For an example of such formatting see the data set anbo, included with meteR,
discussed in the next section. There are two main reasons to provide data to meteR: (1) meteR will calculate
the state variables N0 (number of individuals), S0 (number of species), E0 (total metabolic rate) and relevant
summary statistics automatically; (2) these data are used by meter to compare against predictions. If data
are not provided, the values for the state variables can be directly specified by the user (see Case Study 3).

Analysis begins by building the ecosystem structure function (ESF; R(n, e)) from which all non-spatial
macroecological metrics can be derived. R(n, e) describes the joint probability of observing a species with n
individuals and a randomly chosen member of that species having metabolic rate e. METE computes this
distribution by maximizing information entropy relative to the constraints of N0/S0 and E0/S0 using the
method of Lagrange multipliers. In meteR we achieve this as follows:

esf1 <- meteESF(spp=arth$spp,
abund=arth$count,
power=arth$mass^(3/4),
minE=min(arth$mass^(3/4)))

esf1

## METE object with state variables:
## S0 N0 E0
## 76.00 547.00 15868.26
##
## with Lagrange multipliers:
## la1 la2
## 0.037929267 0.004960427
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str(esf1)

## List of 6
## $ La : Named num [1:2] 0.03793 0.00496
## ..- attr(*, "names")= chr [1:2] "la1" "la2"
## $ La.info :List of 5
## ..$ syst.vals: num [1:2] 5.99e-12 5.97e-12
## ..$ converg : int 1
## ..$ mesage : chr "Function criterion near zero"
## ..$ nFn.calc : int 13
## ..$ nJac.calc: int 1
## $ Z : Named num 639
## ..- attr(*, "names")= chr "la2"
## $ state.var: Named num [1:3] 76 547 15868
## ..- attr(*, "names")= chr [1:3] "S0" "N0" "E0"
## $ emin : num 0.0344
## $ data :'data.frame': 547 obs. of 3 variables:
## ..$ s: Factor w/ 76 levels "alapspu1","anagnigr",..: 8 38 27 27 27 27 27 27 54 21 ...
## ..$ n: int [1:547] 1 1 1 1 1 1 1 1 1 1 ...
## ..$ e: num [1:547] 93.4 42.3 10.5 10.5 10.5 ...
## - attr(*, "class")= chr "meteESF"

Note that we use the terms ‘power’ and ‘metabolic rate’ interchangeably (units of power are energy/time
and thus an energetic rate). Further, note that we specified the minimum value for the metabolic rate, but
that the minimum observed value will be taken by default. Without loss of generality, metabolic rates are
re-scaled by this minimum such that the minimum possible observable metabolic rate is 1. This is necessary
for the underlying mathematics as discussed in Harte (2011).

The returned object (of class meteESF) contains useful information. In addition to returning the inputs (in
analogy, e.g., to common model fitting functions such as lm), it returns the Lagrange multipliers from entropy
maximization as well as information about the fitting procedure.

Species Abundance Distribution (SAD)

From the ESF, we can predict macroecological patterns. We begin with the species abundance distribution
(SAD).

sad1 <- sad(esf1)
sad1

## Species abundance distribution predicted using raw data
## with parameters:
## S0 N0 E0
## 76.00 547.00 15868.26
## la1 la2
## 0.03793 0.00496

The S3 method sad for class meteESF extracts the SAD and provides density (d), probability (p) and quantile
(q) functions, as well as random number generation (r) for the distribution (see these with str(sad1)). This
specification follows the conventions used by statistical distributions in the stats package (e.g. see ?rnorm).
These distributions allow us to use the model in a number of ways. You can access these functions directly as
follows; e.g. randomly generating samples from the fitted distribution or determining the quantiles.
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sad1$r(20)

## [1] 17 6 1 6 2 2 1 7 7 2 1 4 2 1 3 1 2 1 11 1

sad1$q(seq(0,1,length=10))

## [1] 1 1 1 2 2 4 6 9 17 547

meteR readily plots the SAD as either a rank-abundance distribution (ptype=rad) or a cumulative distribution
(ptype=cdf) (and other predicted distributions):

par(mfrow=c(1,2))
plot(sad1, ptype='rad', log='y')
plot(sad1, ptype='cdf', log='x')
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meter provides functions to assess model fit based on likelihood and residuals. First, we illustrate likelihood
methods:

#== calculate the liklihood of the data, given the fitted model
logLik(sad1)

## 'log Lik.' -201.8189 (df=2)

#== randomly generate 100 data sets from the fitted distribution and calculate
#== the z-score of the data w.r.t. these simulations
llz <- logLikZ(sad1, nrep=100, return.sim=TRUE)
llz$z

## 'log Lik.' 0.3801939 (df=2)
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#== plot the distributions
plot(density(llz$sim),

xlim=range(c(llz$sim,llz$obs)),
xlab='log(likelihood)',col='red')

#== add 95% quantile region
abline(v=quantile(llz$sim, c(0.025, 0.975)), col='red')
#== add observed likelihood
abline(v=llz$obs,lty=2)
legend('top',legend=c('data','simulated\nfrom METE'),

col=c('black','red'), lty=c(1,1),bty='n')
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Because the likelihood of the observed data falls within the 95% quantile region of the simulated likelihoods,
we have confidence that the model provides a good fit.

Note that other utilities that extract liklihoods from model objects are also useful, including AIC, thus
opening up all model comparison capabilities in R and its contributed packages:

AIC(sad1)

## [1] 407.6378

Next, we illustrate methods relying on residuals to assess model fit. Residuals can be calculated either on the
rank abundance (type='rank') or cumulative (type='cumulative') distribution and can be calculated as
relative residuals ((xi−x̂)/x̂) or absolute (xi−x̂) by setting argument relative to TRUE or FALSE, respectively.
Relative residuals can be thought of as the proportional difference between observed and expected abundance
or probability. From the residuals, mean squared error can be calculated and used to evaluate model fit.
Although both rank abundance and cumulative density options are available, we recommend only using rank
abundance as cumulative density is constrained at upper and lower bounds and so its residuals will not be as
reliable.

5



#== calculate the residuals from the fitted distribution
head(residuals(sad1))

## blacfrau eurynsp1 mecymolo sierspuM anysgsu1 oligspu1
## 0.19672131 0.20930233 -0.02941176 -0.03448276 -0.03846154 0.04347826

head(residuals(sad1, type='cumulative', relative=FALSE))

## [1] 0.003392984 -0.002220492 0.008352198 0.008744914 0.006623537
## [6] -0.002216539

#== calculate the mean-squared error
mse(sad1, type='rank', relative=FALSE)

## [1] 3.881579

#== randomly generate 100 data sets from the fitted distribution and calculate
#== the z-score of the data w.r.t. these simulations
msez.rank=mseZ(sad1, nrep=100, return.sim=TRUE, type='rank')
msez.rank$z

## [1] -0.8087068

#== plot the distributions
plot(density(msez.rank$sim),

xlim=range(c(msez.rank$sim,msez.rank$obs)),
xlab='Mean squared error',col='red')

#== add 95% quantile region
abline(v=quantile(msez.rank$sim, c(0.025, 0.975)), col='red')
#== add observed likelihood
abline(v=msez.rank$obs,lty=2)
legend('top',legend=c('data','simulated\nfrom METE'),

col=c('black','red'), lty=c(1,1),bty='n')
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Here again we fail to reject METE as the model that generated the observed data (the observed MSE is
below the 95% quantile region). We can also see that the distribution of errors is not as Gaussian shaped
as the distribution of likelihoods. Thus although residuals can be useful (specifically we can see whether,
e.g., common species are more or less common than predicted by METE) we recommend using likelihood for
evaluating model fit.

Individual Power Distribution (IPD)

Similarly to the analyses illustrated above for the SAD, one can examine the individual power distribution
(IPD; the distribution of metabolic rates, or power, over individuals in the community). We illustrate with
an abbreviated version of the analyses above. First, fit and plot the IPD.

ipd1 <- ipd(esf1)
ipd1

## Individual metabolic rate distribution predicted using raw data
## with parameters:
## S0 N0 E0
## 76.00 547.00 15868.26
## la1 la2
## 0.03793 0.00496

str(ipd1) # analogous structure to sad1 above

## List of 8
## $ type : chr "ipd"
## $ data : num [1:547] 178 178 153 129 119 ...
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## $ d :function (epsilon, log = FALSE)
## $ p :function (epsilon, lower.tail = TRUE, log.p = FALSE)
## $ q :function (p, lower.tail = TRUE, log.p = FALSE)
## $ r :function (n)
## $ state.var: Named num [1:3] 76 547 15868
## ..- attr(*, "names")= chr [1:3] "S0" "N0" "E0"
## $ La : Named num [1:2] 0.03793 0.00496
## ..- attr(*, "names")= chr [1:2] "la1" "la2"
## - attr(*, "class")= chr [1:2] "ipd" "meteDist"

ipd1$r(8) # random number generation from fitted distribution

## [1] 1.000000 13.891139 23.464900 132.423880 3.991503 10.784774
## [7] 10.075315 1.000000

par(mfrow=c(1,2))
plot(ipd1, ptype='cdf', log='x')
plot(ipd1, ptype='rad', log='y')
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Next, assess the fit of the IPD.

head(residuals(ipd1))

## [1] -0.7704100 -0.6834322 -0.6735546 -0.6831649 -0.6739396 -0.6409254

logLik(ipd1)

## 'log Lik.' -2289.101 (df=2)
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logLikZ(ipd1, nrep=100)

## $z
## 'log Lik.' -2.819916 (df=2)
##
## $obs
## 'log Lik.' -2289.101 (df=2)
##
## $sim
## NULL

llz <- logLikZ(ipd1, nrep=100, return.sim=TRUE)
plot(density(llz$sim),xlim=range(c(llz$sim,llz$obs)),xlab='log(likelihood)',col='red')
abline(v=llz$obs,lty=2)
llz$z

## 'log Lik.' -3.48191 (df=2)

legend('top',legend=c('data','simulated\nfrom METE'),col=c('black','red'),
lty=c(1,1),bty='n')
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Interestingly, although it appears that the data are unlikely to have been drawn from the METE distribution
based on the z-score of the likelihood, the mean squared error suggests otherwise.

mse(ipd1, type='rank', relative=FALSE)

## [1] 1914.784
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mseZ <- mseZ(ipd1, nrep=100, return.sim=TRUE)

## Warning in if (type == "rank") {: the condition has length > 1 and only the
## first element will be used

mseZ$z

## [1] -1.204185

plot(density(mseZ$sim),xlim=range(c(mseZ$sim,mseZ$obs)),xlab='mse',col='red')
abline(v=mseZ$obs,lty=2)
legend('top',legend=c('data','simulated\nfrom METE'),col=c('black','red'),

lty=c(1,1),bty='n')
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METE predicts two other distributions relating to metabolic rates: the distribution of metabolic rates across
individuals within a species with n total individuals (the sipd, Θ(e|n) in the notation of Harte 2011) and the
species level distribution of average metabolic rates (the spd, ν(e) in the notation of Harte 2011).

We can obtain the SIPD with S3 method sipd which requires either a species ID be specified or the total
abundance of a hypothetical species:

sipd1 <- sipd(esf1, sppID=5)
plot(sipd1, log='x')
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## sipd based on total abundance of a hypothetical species
sipd2 <- sipd(esf1, n=25)

We can obtain the SPD with S3 method spd:

spd1 <- spd(esf1)
plot(spd1, log='x')
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Because the distribution of within species metabolic rates depends on the total abundance of that species, it
makes sense that there should be a relationship between the mean metabolic rate and the abundance of a
species. This relationship has been widely studied (Damuth 1998; White et al. 2007) and if mean metabolic
rate is independent of n this is known as energy equivalence. To explore this relationship we introduce a new
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S3 class meteRelat which acts like meteDist to house both observed and theoretical predictions. meteRelat
objects represent a deterministic relationship, in contrast to the probabilistic distributions represented by
meteDist objects. To obtain the relationship between abundance and mean metabolic rate we use the ebar
function:

ebar1 <- ebar(esf1)
plot(ebar1)
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Case Study 2 - Spatial distributions

Next, we illustrate spatial analyses with data from a survey of a desert annual grassland community at the
Anza Borrego Preserve (Harte and Harte, unpub. data). The survey recorded every herbaceous plant within
a 4x4m plot gridded to ever square meter (resulting in 16 total cells). Thus spatial data take the form of the
row and column identity where each plant was recorded. This dataset is distributed as part of meteR. We
will use it to illustrate the construction of distributions related to abundance and area. Note that metabolic
rate/body mass information are not available, but that we can still analyze many of METE’s predictions
related to abundance and spatial distribution. As shown in case study 1 above, we can build the ESF and
investigate the SAD.

data(anbo)
head(anbo)

## row column spp count
## 1 3 3 cabr 3
## 2 3 3 caspi1 20
## 3 3 3 crcr 3
## 4 3 3 crsp2 1
## 5 3 3 gnwe 11
## 6 3 3 grass 11
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esf2 <- meteESF(spp=anbo$spp,
abund=anbo$count)

str(esf2)

## List of 6
## $ La : Named num [1:2] 0.00037 0.00109
## ..- attr(*, "names")= chr [1:2] "la1" "la2"
## $ La.info :List of 5
## ..$ syst.vals: num [1:2] 1.30e-11 1.31e-11
## ..$ converg : int 1
## ..$ mesage : chr "Function criterion near zero"
## ..$ nFn.calc : int 7
## ..$ nJac.calc: int 1
## $ Z : Named num 5973
## ..- attr(*, "names")= chr "la2"
## $ state.var: Named num [1:3] 24 2445 NA
## ..- attr(*, "names")= chr [1:3] "S0" "N0" "E0"
## $ emin : num 1
## $ data :'data.frame': 2445 obs. of 2 variables:
## ..$ s: Factor w/ 24 levels "arsp1","cabr",..: 2 2 2 3 3 3 3 3 3 3 ...
## ..$ n: num [1:2445] 1 1 1 1 1 1 1 1 1 1 ...
## - attr(*, "class")= chr "meteESF"

Note that when metabolic rate data are absent, meteR assumes a very large value for the state variable E0,
such that terms involving E0 can be safely ignored in distributions and relationships involving abundance
following Harte (2011).

(sad2=sad(esf2))

## Species abundance distribution predicted using raw data
## with parameters:
## S0 N0 E0
## 24 2445 NA
## la1 la2
## 0.00037 0.00109

par(mfrow=c(1,2))
plot(sad2, ptype='rad')
plot(sad2, ptype='cdf')
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Analogous to the construction of the ESF above, we construct the Spatial Structure Function (SSF) (denoted
Π(n|n0, A,A0) in Harte 2011). Π depends on the total abundance n0 of the species of interest as well as
the the total area of the study system A0 and the scale for which the SSF is to be calculated (A). Again,
in analogy to how the SAD is constructed from the ESF, we can obtain the Species Spatial Abundance
Distribution (SSAD) from the SSF, but here must specify the species for which the SSF and SSAD are to be
constructed as well as the spatial state variables (both the area of interest A and the total area A0).

## note we are calculating SSF for the species crcr
pi1 <- meteSSF(anbo$spp, 'crcr', anbo$count, row=anbo$row, col=anbo$column, A=1, A0=16)
pi1

## METE object with state variables:
## n0 A A0
## 65 1 16
##
## with Lagrange multipliers:
## [1] 0.2200619

plot(ssad(pi1))
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Areas greater than the minimum can also be explored:

pi2 <- meteSSF(anbo$spp, 'crcr', anbo$count, row=anbo$row, col=anbo$column, A=2, A0=16)
pi2

## METE object with state variables:
## n0 A A0
## 65 2 16
##
## with Lagrange multipliers:
## [1] 0.1156423

plot(ssad(pi2)) # theory is not looking too good for this case
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This is done by aggregating cells internally in meteSSF.
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We will examine the case where spatial data are given in the form of x and y coordinates for each abundance
measure by simulating such data.

## jitter abundance records within each cell
anbo$x <- runif(nrow(anbo), 0, 1) + anbo$column
anbo$y <- runif(nrow(anbo), 0, 1) + anbo$row

pi3 <- meteSSF(anbo$spp, 'crcr', anbo$count, x=anbo$x, y=anbo$y, A=1, A0=16)
plot(ssad(pi3)) # the plot has naturally changed slightly due to the jittering
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Next we predict the Species Area Relationship and Endemics Area Relationship (SAR and EAR). We begin by
predicting the number of species at scales smaller than the total plot size. For this we need to combine the ESF
and the SSF. Note the the EAR is obtained in all functions by specifying argument EAR=TRUE. Downscaling
assumes that METE holds at the largest spatial scale and smaller scales are spatially nested subsamples of
this larger scale. As such this approach makes intuitive sense for small-scale plot data. Conversely upscaling
allows one to use plot-level data to predict species richness at scales much larger than the surveyed plot. This
is achieved by iteratively solving for the larger spatial scale that would yield the observed smaller scale under
nested subsampling. This iterative process can be carried out to indefinite scales.
The METE-predicted SAR can be obtained in two ways, one directly and one recalling the meteDist objects
explored earlier.

## first the direct method
anbo.esf <- meteESF(spp=anbo$spp, abund=anbo$count)
anbo.thr.downscale <- downscaleSAR(anbo.esf, 2^(seq(-3, 4, length=17)), 16)
anbo.thr.downscale

## theoretical species area relationship ranging from
## A: [0.125, 16]
## S: [5.63177023121869, 24.0000000000065]

anbo.thr.downscaleEAR <- downscaleSAR(anbo.esf, 2^(seq(-3, 4, length=17)), 16, EAR=TRUE)

## upscaling
anbo.thr.upscale <- upscaleSAR(anbo.esf, 16, 2^6)
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## plotting
plot(anbo.thr.downscale, xlim=c(1, 2^6), ylim=c(0, 35))
plot(anbo.thr.downscaleEAR, col='blue', add=TRUE)
plot(anbo.thr.upscale, col='red', add=TRUE)

0 10 20 30 40 50 60

0
5

10
15

20
25

30
35

Area

N
um

be
r 

of
 s

pe
ci

es

In this example, there are 24 species distributed across 16 quadrats, hence the downscaled SAR (black) and
EAR (blue) converge at 24 species at an area of 16. Endemics here must be interpreted as local endemics,
thus all 24 species are “endemic” to the 16m2 plot. Upscale species richness is shown in red. Note that for
mathematical convenience (discussed in Harte 2011) we only consider doublings of area when computing
upscaled species richness. For intermediate areas one can simply interpolate.

To compare the mete prediction with data we use meteSAR to obtain a meteRelat object that stores both
observed data and theoretical predictions:

anbo.sar <- meteSAR(anbo$spp, anbo$count, anbo$row, anbo$col, Amin=1, A0=16)
anbo.sar

## Species area relationship predicted using raw data
## theoretical species area relationship ranging from
## A: [1, 16]
## S: [11.9430422387401, 23.9998014395882]
## empirical species area relationship ranging from
## A: [1, 16]
## S: [3, 24]

plot(anbo.sar, log='xy')
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Note that we can also calculate the SAR or EAR using x, y data instead of rows and columns similarly to
how we did this with the SSF:

anbo.sar.sim <- meteSAR(anbo$spp, anbo$count, x=anbo$x, y=anbo$x, Amin=1, A0=16)
anbo.sar.sim

## Species area relationship predicted using raw data
## theoretical species area relationship ranging from
## A: [1.04899920833018, 8.39199366664141]
## S: [12.1586298772241, 20.7089430528329]
## empirical species area relationship ranging from
## A: [1.04899920833018, 8.39199366664141]
## S: [2, 22]

The empirical SAR (or EAR) can also be directly obtained from the data without jointly calculating the
theoretical predictions:

## empirical SAR and EAR
anbo.obs.sar <- empiricalSAR(anbo$spp, anbo$count, anbo$row, anbo$col, Amin=1, A0=16)
plot(anbo.obs.sar)

18



5 10 15

5
10

15
20

Area

N
um

be
r 

of
 s

pe
ci

es

anbo.obs.ear <- empiricalSAR(anbo$spp, anbo$count, anbo$row, anbo$col, Amin=1, A0=16, EAR=TRUE)
plot(anbo.obs.ear)
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Case Study 3 - Specifying the state variables

meteR allows the user to manually specify the state variables, which can be useful to explore how METE
predictions vary as a function of state variables without regard to specific datasets.
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esf3 <- meteESF(N0=4000, S0=50, E0=1e5, minE=1)
sad3 <- sad(esf3)
ipd3 <- ipd(esf3)
par(mfrow=c(1,2))
plot(sad3)
plot(ipd3)
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Similarly, one can predict spatial distributions from the state variables. First, we downscale the species area
relationship.

## theoretical SARs from state variables only
thr.downscale <- downscaleSAR(meteESF(S0=40, N0=400), 2^seq(-1, 4, by=0.25), 16)
thr.downscaleEAR <- downscaleSAR(meteESF(S0=40, N0=400), 2^seq(-1, 4, by=0.25), 16, EAR=TRUE)
plot(thr.downscale, ylim=c(0, 40), col='red')
plot(thr.downscaleEAR, add=TRUE, col='blue')
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We can also upscale the SAR.

thr.upscale <- upscaleSAR(meteESF(S0=40, N0=400), 2^(-1:4), 16)
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