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Abstract

The Constant-Elasticity-of-Substitution (CES) function is popular in several areas of
economics but it is rarely used in econometric analysis, because it cannot be estimated
by standard linear regression techniques. We discuss several approaches to estimate the
CES function and demonstrate how they can be applied in R using the add-on pack-
age micEconCES. Furthermore, we describe how we implemented the various estimation
approaches in the micEconCES package and we compare them in a Monte Carlo study.
Given the data generating process used in our analysis, all estimation approaches provided

satisfying results.
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1. Introduction

The Constant-Elasticity-of-Substitution (CES) function was developed as a generalisation of
the Cobb-Douglas function by the Stanford group around Arrow, Chenery, Minhas, and Solow
(1961). In recent years the CES has gained in importance in macroeconomics (e.g. Amras
2004; Bentolila and Gilles 2006) and growth theory (e.g. Caselli 2005; Caselli and Coleman
2006) as an alternative to the Cobb-Douglas function and it can be applied in many other
fields. In microeconomics the CES function gained less popularity most likely because of its
restrictive assumptions, especially in the case of more than two explanatory variables.

The formal specification of a CES production function! with two inputs is

y=7 (62" +(1-d)a") *, (1)

where y is the output quantity, 1 and xs are the input quantities, and ~, 4, p, and v are

parameters. Parameter v € (0,00) determines the productivity, 6 € (0,1) determines the

!The CES functional form can be used to model different economic relationships (e.g. as production function
or utility function). However, as the CES functional form is mostly used to model production technology, we
name the independent (right-hand side) variables “inputs” and the dependent (left-hand side) variable “output”
to keep the notation simple.
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optimal distribution of the inputs, p € (—1,0) U (0, c0) determines the (constant) elasticity of
substitution, which is ¢ = 1 /(14 p), and v € (0,00) is equal to the elasticity of scale.?

The CES function includes three special cases: for p — 0, o approaches 1 and the CES turns
to the Cobb-Douglas form; for very large p, o approaches 0 and the CES turns to the Leontief
production function; and for p — —1, ¢ approaches infinity and the CES turns to a linear

function if v is equal to 1.

As the CES function is non-linear in parameters and cannot be linearised analytically, it
is not possible to estimate it with the usual linear estimation techniques. Therefore, the
CES is usually approximated by the so-called “Kmenta approximation” (Kmenta 1967) or
estimated by non-linear least-squares using different optimization algorithms. In this paper,
we describe and compare these estimation approaches, explain how we implemented them in
the R package micEconCES (Henningsen and Henningsen 2010), and show how they can be
used for economic analysis and modelling. The micEconCES package is developed as part of
the “micEcon” project on R-Forge (http://r-forge.r-project.org/projects/micecon/).
Stable versions of this package are available for download from the Comprehensive R Archive
Network (CRAN, http://CRAN.R-Project.org/package=micEconCES).

The paper is structured as follows. In the next section we discuss several approaches to
estimate the CES production function and show how they can be applied in R. The third
section describes the implementation of these methods in the R package micEconCES. Section
four presents the results of a Monte Carlo study to compare the various estimation approaches,

and the last section concludes.

2. Estimation of the CES production function

Tools for economic analysis with CES function are available in the R package micEconCES
(Henningsen and Henningsen 2010). If this package is installed, it can be loaded with the

command
> library("micEconCES")

We demonstrate the usage of this package by estimating a CES model with an artifical data

set, because this avoids several problems that usually occur with real-world data.

set.seed(123)
cesData <- data.frame(x1l = rchisq(200, 10), x2 = rchisq(200,
10))

cesData$y <- cesCalc(xNames = c("x1", "x2"), data = cesData,

vV + Vv Vv

2Originally, the CES function of Arrow et al. (1961) could model only constant returns to scale but later
Kmenta (1967) added the parameter v, which allows for variable returns to scale if v # 1.


http://r-forge.r-project.org/projects/micecon/
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+ coef = c(gamma = 1, delta = 0.6, rho = 0.5, nu = 1.1))
> cesData$y <- cesData$y + 2.5 * rnorm(200)

The first line sets the “seed” for the random number generator so that these examples can
be replicated with exactly the same data set. The second line creates a data set with two
input variables (called x1 and x2) that have 200 observations each and are generated from a
random x? distribution with 10 degrees of freedom. The third line uses the command cesCalc
that is included in the micEconCES package and calculates the deterministic output variable
(called y) given the CES production function with the two input variables x1 and x2 and the
coefficients y =1, § = 0.6, p = 0.5, and v = 1.1. The last line generates the stochastic output

variable by adding normally distributed random errors to the deterministic output variable.

As the CES function is non-linear in its parameters, the most straightforward way to es-
timate the CES function in R would be to use nls, which performs non-linear least-squares

estimations.

> cesNls <- nls(y ~ gamma * (delta * x1~(-rho) + (1 - delta) *

+ x27 (-rho)) ~(-phi/rho), data = cesData, start = c(gamma = 0.5,
+ delta = 0.5, rho = 0.25, phi = 1))

> print(cesNls)

Nonlinear regression model
model: y ~ gamma * (delta * x17(-rho) + (1 - delta) * x27(-rho))~(-phi/rho)
data: cesData
gamma delta rho phi
1.0102 0.6271 0.6398 1.0955

residual sum-of-squares: 1175

Number of iterations to convergence: 6

Achieved convergence tolerance: 4.147e-07

While the nls routine works well in this ideal artificial example, it does not perform well in
many applications with real data, either because of non-convergence, convergence to a local
minimum, or theoretically unreasonable parameter estimates. Therefore, we show alternative

ways of estimating the CES function in the following subsections.

2.1. Kmenta approximation

Given that non-linear estimation methods are often troublesome—particularly during the
1960s and 1970s when computing power was very limited—Kmenta (1967) derived an ap-

proximation of the classical two-input CES production function that can be estimated by
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ordinary least-squares techniques.

logy =log~y+ v dlogzy + v (1 —0)log s (2)
PY g

5 (1—9) (logz1 — logafg)2

While Kmenta (1967) obtained this formula by logarithmising the CES function and applying
a second-order Taylor series expansion to log (53:{” +(1- 5):55”) at the point p = 0, the
same formula can be obtained by applying a first-order Taylor series expansion to the entire
logarithmized CES function at the point p = 0 (Uebe 2000). As the authors consider the
latter approach as more straight-forward, the Kmenta approximation is called—in contrast

to Kmenta (1967, p. 180)—first-order Taylor series expansion in the remainder of this paper.

The Kmenta approximation can be written also as a restricted translog function (Hoff 2004):

logy =ag + a1 log x1 + as log T (3)

1 1
+ 3 811 (logz1)? + 5 Bas (log 2)* + iz log 1 log 2,

where the two restrictions are

B12 = _Bll = _BZZ- (4)

If constant resturns to scale should be imposed, a third restriction
o] +ag =1 (5)

must be enforced. These restrictions can be utilised to test whether the linear Kmenta
approximation of the CES (2) is an acceptable simplification of the translog functional form.?
If this is the case, a simple t-test for the coefficient 812 = —f11 = —/f22 can be used to
check if the Cobb-Douglas functional form is an acceptable simplification of the Kmenta

approximation of the CES.*

The parameters of the CES function can be calculated from the parameters of the restricted

translog function by

~v = exp(ap) (6)
V=1 + a2 (7)
aq

0= ———
Q]+ ag

3Note that this test does not check whether the non-linear CES function (1) is an acceptable simplification
of the translog functional form or whether the non-linear CES function can be approximated by the Kmenta
approximation.

“Note that this test does not compare the Cobb-Douglas function with the (non-linear) CES function but
only with its linear approximation.
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_ P2 (aa + o)
p a1 * (9

(9)

The Kmenta approximation of the CES function can be estimated by the function cesEst,
which is included in the micEconCES package. If argument method of this function is set to
"Kmenta", it (a) estimates an unrestricted translog function (3), (b) carries out a Wald test
of the parameter restrictions defined in equation (4) and eventually also in equation (5) using
the (finite sample) F' statistic, (c) estimates the restricted translog function (3, 4), and finally,
(d) calculates the parameters of the CES using equations (6—9) as well as their covariance

matrix using the delta method.

The following code estimates a CES function with the endogenous variable y (specified in
argument yName), the two explanatory variables x1 and x2 (argument xNames), the artificial
data set cesData that we generated above (argument data) using the Kmenta approximation

(argument method) and allowing for variable returns to scale (argument vrs).

> cesKmenta <- cesEst(yName = "y", xNames = c("x1", "x2"), data = cesData,

+ method = "Kmenta", vrs = TRUE)
Summary results can be obtained applying the summary method to the returned object.

> summary (cesKmenta)
Estimated CES function with variable returns to scale

Call:
cesEst(yName = "y", xNames = c("x1", "x2"), data = cesData, vrs = TRUE,

method = "Kmenta")

Estimation by the linear Kmenta approximation

Test of the null hypothesis that the restrictions of the Translog
function required by the Kmenta approximation are true:

P-value = 0.6135929

Coefficients:

Estimate Std. Error t value Pr(>|tl|)
gamma 0.74252 0.11009 6.745 1.53e-11 *x*x
delta 0.60864 0.03373 18.043 < 2e-16 *x*x*
rho 0.71527 0.31722 2.255 0.0241 *
nu 1.21865 0.06617 18.416 < 2e-16 *x*x*
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Signif. codes: O “*x**’ 0.001 ‘**’ 0.01 ‘x> 0.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 2.481868
Multiple R-squared: 0.7643218

The Wald test indicates that the restrictions on the Translog function implied by the Kmenta

approximation cannot be rejected at any reasonable significance level.

To see whether the underlying technology is of the Cobb-Douglas form, we can check if the
coefficient 519 = — (311 = — 99 significantly differs from zero. As the estimation of the Kmenta
approximation is stored in component kmenta of the object returned by cesEst, we can obtain

summary information on the estimated coefficients of the Kmenta approximation by

> coef (summary (cesKmenta$kmenta))

Estimate Std. Error t value Pr(>ltl)

eql_(Intercept) -0.2977003 0.14826207 -2.007933 0.04602347
eql_a_1 0.7417197 0.05337124 13.897367 0.00000000
eql_a_2 0.4769324 0.05156227 9.249638 0.00000000
eql_b_1_1 -0.2076294 0.08907193 -2.331030 0.02076840
eql_b_1_2 0.2076294 0.08907193 2.331030 0.02076840
eql_b_2_2 -0.2076294 0.08907193 -2.331030 0.02076840
Given that 12 = —(11 = —B2o significantly differs from zero at the 5% level, we can con-

clude that the underlying technology is not of the Cobb-Douglas form. Alternatively, we can
check if the parameter p of the CES, which is calculated from the coefficients of the Kmenta
approximation, significantly differs from zero. This should—as in our case—deliver similar

results (see above).

Finally, we plot the fitted values against the actual endogenous variable (y) to check whether

the parameter estimates are reasonable.

> compPlot(cesData$y, fitted(cesKmenta), xlab = "actual values",
+ ylab = "fitted values")

Figure 1 shows that the parameters produce reasonable fitted values.

However, the Kmenta approximation encounters several problems. First, it is a truncated
Taylor series, whose remainder term must be seen as an omitted variable. Second, the Kmenta
approximation converges to the underlying CES function only in a region of convergence, that

is depending of the true parameters of the CES function (Thursby and Lovell 1978).
Although, Maddala and Kadane (1967) and Thursby and Lovell (1978) find estimates for v

and ¢ with small bias and MSE, results for v and p are estimated with generally large bias and
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Figure 1: Fittet values from the Kmenta approximation against y

MSE (Thursby and Lovell 1978; Thursby 1980). More reliable results can only be obtained
if p — 0, and thus, ¢ — 1 which increases the convergence region, i.e. if the underlying CES
is of the Cobb-Douglas form. This is a major drawback of the Kmenta approximation as its

purpose is to facilitate the estimation of functions with non-unitary o.

2.2. Levenberg-Marquard algorithm

Initially, the Levenberg-Marquardt algorithm (Marquardt 1963) was most commonly used
for estimating the parameters of the CES function by non-linear least-squares. This iterative
algorithm is done by using an optimum interpolation between the Gauss-Newton method that
involves a linearisation by a first-order Taylor series approximation and the gradient method

(steepest-descent method).
In a Monte Carlo study by Thursby (1980) the Levenberg-Marquardt algorithm outper-

forms the other methods and gives the best estimates of the CES parameters. However,
the Levenberg-Marquardt algorithm performs as poorly as the other methods in estimating
the elasticity of substitution (o), meaning that the estimated o tends to be biased towards

infinity, unity, or zero.

Although the Levenberg-Marquardt algorithm does not live up to modern standards, we in-
clude it for reasons of completeness, as it is has proven to be a standard method to estimate
the CES technology. The Levenberg-Marquardt algorithm can be seen as a maximum neigh-
bourhood method which performs an optimum interpolation between a first-order Taylor ap-
proximation (Gauss-Newton) and a steepest descend method (gradient method) (Marquardt
1963). By combining these two non-linear optimization algorithms, the developers want to

increase conversion probability by reducing the weaknesses of each of the two methods.
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The objective function ® = ||Y — Y||? of a non-linear least-squares estimation does not
fulfill the theoretical criteria of a well behaved function, unless the function value is close
to its minimum. This feature becomes the more severe the more the function is non-linear.
Therefore, it is crucial to find starting values close to the minimum. However, this is not always
possible in practice. Choosing non-optimal starting values, the Gauss-Newton as well as the
steepest descend method show a tendency to failure to convergence. If the starting values
are too far from the minimum, the Gauss-Newton algorithm has difficulties to determine an
appropriate step size, which can lead to step sizes either too big (cutting across the minimum)
or too small (slow rates of convergence). On the other hand, the steepest descent method can
handle suboptimal starting values very well, but shows a failure to convergence mostly due

to very slow convergence when it gets close to the minimum (Kelley 1999).

In contrast to the Gauss-Newton and the steepest descend algorithms, the Levenberg-Marquardt
algorithm determines the direction and the step size simultaneously, and thus, the algorithm
proves to be more robust with higher rates of convergence, even if starting values are not
optimal. If the Levenberg-Marquardt parameter A is set to zero the algorithm turns to
Gauss-Newton, for A — oo on the other hand it turns to steepest descent. Hence, as A is
defined in every iteration, the Levenberg-Marquardt algorithm uses the good global prop-
erties of the steepest descent method and—by approaching the minimum of the objective

function—recovers the Gauss-Newton’s fast convergence for small residual problems.

In the following we will give a rough outline of the algorithm.® We let

k
Yi(Xi, B+7)) = f(Xi,8) + Z (2;;) (10)

or shorter
(Y) = fo+ P, (11)

be the first-order Taylor series approximation, where Y; is the ith value of the dependend
variable, here output, X; is the ith vector of covariates, 8 is a vector of parameters to be
estimated, ~ is a vector of small correction parameters to 8 calculated from a Taylor series
with jth element v;, f is a differentiable function, £ is the number of parameters to be
estimated, fj is a vector of the first terms of the Taylor series, and P = df/0f is a Jacobian
matrix. Then « can be found by

(A+ Ay =g, (12)

where [ is an identity matrix and
A=P'P (13)

5For a more detailed introduction into the Levenberg-Marquardt algorithm see Marquardt (1963) or Soda
and Vichi (1976).
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and
g=P"(Y - fo). (14)

Finally, let
o(y) =Y — fo— Pl (15)

The algorithm is then as follows: marquardt (u, A, ®,r)

1. Let i > 1 be a tolerance parameter
2. Let A"~V be the value from the previous iteration. Initially let A(®) =102,
3. Compute &A1) and &A1) /1)

(a) if @AY /) < @), et A = AC=D /.
(b) if ®(ACY/p) > @), and SATY) < @), Jet AT = AD,

(c) if ®ATD/p) > &) and ®(ATD) > &) increase A by successive multiplication
by 1 until for some smallest w ®(AT~Dp?) < &), Let A7) = \0=1D v,

To estimate a CES function by non-linear least-squares using the Levenberg-Marquardt al-
gorithm, one can call the cesEst function with argument method set to "LM" or without this
argument, as the Levenberg-Marquardt algorithm is the default estimation method used by
cesEst. The user can modify a few details of this algorithm (e.g. different criterions for conver-
gence) by adding argument control as described in the documentation of nls.1m.control.
Argument start can be used to specify a vecor of starting values, where the order must be
v, &, p (only if p is not fixed, e.g. during grid search), and v (only if the model has vari-
able returns to scale). If no starting values are provided, they are determined automatically
(see section 3.7). We estimate the same example as before now by the Levenberg-Marquardt

algorithm.

> cesLm <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE)

> summary (cesLm)

Estimated CES function with variable returns to scale

Call:

cesEst(yName = "y", xNames = c("x1", "x2"), data = cesData, vrs = TRUE)

Estimation by non-linear least-squares using the 'LM' optimizer
Convergence achieved after 4 iterations

Message: Relative error in the sum of squares is at most “ftol'.
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Coefficients:

Estimate Std. Error t value Pr(>|tl)
gamma 1.01020 0.11244 8.984 <2e-16 *x*x
delta 0.62711 0.02834 22.126 <2e-16 **x
rho 0.63975 0.29705 2.154 0.0313 =
nu 1.09545 0.04500 24.346 <2e-16 *x*x

Signif. codes: 0O ‘*xx’ 0.001 ‘*x’ 0.01 ‘x> 0.05 ‘.” 0.1 ¢ ’ 1

Residual standard error: 2.424083
Multiple R-squared: 0.7751686

Finally we plot the fitted values against the actual values y to see whether the estimated

parameters are reasonable. The result is presented in figure 2.

> compPlot (cesData$y, fitted(cesLm), xlab = "actual values", ylab = "fitted values")
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Figure 2: Fitted values from the LM algorithm against y

2.3. Alternative gradient-based optimisation algorithms

Several further gradient-based optimization algorithms that are suitable for non-linear least-
squares estimations are implemented in R. Function cesEst can use some of them to estimate a
CES function by non-linear least-squares. As a proper application of these estimation methods
requires the user to be familiar with the main characteristics of the different algorithms, we

will briefly discuss some practical issues of the algorithms that will be used to estimate the
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CES function. However, it is not the aim of this paper to thoroughly discuss these algorithms.
A detailed discussion of iterative optimisation algorithms is available, e.g., in Kelley (1999)
or Mishra (2007).

One of the gradient-based optimization algorithms that can be used by cesEst is the “Con-
jugate Gradients” method based on Fletcher and Reeves (1964). This iterative method is
mostly applied to optimization problems with many parameters and a large and possibly
sparse Hessian matrix, because this algorithms requires neither storing nor inverting the Hes-
sian matrix. The “Conjugated Gradient” method works best for objective functions that are
approximately quadratic and it is sensitive to objective functions that are not well-behaved
and have a non-positive semidefinite Hessian, i.e. convergence within the given number of
iterations is less likely the more the level surface of the objective function differs from spher-
ical (Kelley 1999). Given that the CES function has only few parameters and the objective
function is not approximately quadratic and shows a tendency to “flat surfaces” around the
minimum, the “Conjugated Gradient” method is probably less suitable than other algorithms
for estimating a CES function. Setting argument method of cesEst to "CG" selects the “Con-
jugate Gradients” method for estimating the CES function by non-linear least-squares. The
user can modify this algorithm (e.g. replacing the update formula of Fletcher and Reeves
(1964) by the formula of Polak and Ribiére (1969) or the one based on Sorenson (1969) and
Beale (1972)) or some details (e.g. convergence tolerance level) by adding a further argument

control as described in the “Details” section of the documentation of optim.

> cesCg <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE, method = "CG")

> summary (cesCg)
Estimated CES function with variable returns to scale

Call:
cesEst(yName = "y", xNames = c("x1", "x2"), data = cesData, vrs = TRUE,
method = "CG")

Estimation by non-linear least-squares using the 'CG' optimizer

Convergence NOT achieved after 406 function and 101 gradient calls

Coefficients:

Estimate Std. Error t value Pr(>ltl)
gamma 0.99847 0.11124 8.976 <2e-16 *x*x
delta 0.62574 0.02807 22.294  <2e-16 ***
rho 0.60680 0.29187 2.079 0.0376 *
nu 1.09985 0.04503 24.427 <2e-16 x*xx

11
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Signif. codes: 0O ‘*xx’ 0.001 ‘*x’ 0.01 ‘x> 0.05 “.” 0.1 ¢ ’ 1

Residual standard error: 2.424191
Multiple R-squared: 0.7751486

Although the estimated parameters are similar to the estimates from the Levenberg-Marquardt
algorithm, the “Conjugated Gradient” algorithm reports that it did not converge. Increas-
ing the maximum number of iterations and the tolerance level leads to convergence. This
indicates a slow convergence of the Conjugate Gradients algorithm for estimating the CES

function.

> cesCg2 <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE, method = "CG",
+ control = list(maxit = 1000, reltol = 1le-05))
> summary (cesCg2)

Estimated CES function with variable returns to scale

Call:

cesEst(yName = "y", xNames c("x1", "x2"), data = cesData, vrs = TRUE,

method = "CG", control = list(maxit = 1000, reltol = 1e-05))

Estimation by non-linear least-squares using the 'CG' optimizer

Convergence achieved after 1559 function and 387 gradient calls

Coefficients:

Estimate Std. Error t value Pr(>|tl)
gamma 1.01020 0.11244 8.984 <2e-16 *x*x
delta 0.62711 0.02834 22.126 <2e-16 *x*x
rho 0.63975 0.29705 2.154 0.0313 =
nu 1.09545 0.04500 24.346 <2e-16 *x*x

Signif. codes: 0O ‘“*xx’> 0.001 ‘*x’ 0.01 ‘x> 0.05 ‘.” 0.1 ¢ ’ 1

Residual standard error: 2.424083
Multiple R-squared: 0.7751686

Another algorithm supported by cesEst that is probably more suitable for estimating a
CES function is an improved Newton-type method. As the original Newton method, this

algorithm uses first and second derivatives of the objective function to determine the direction
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of the shift vector and searches for a stationary point until the gradients are (almost) zero.
However, in contrast to the original Newton method, this algorithm does a line search at each
iteration to determine the optimal length of the shift vector (step size) as described in Dennis
and Schnabel (1983) and Schnabel, Koontz, and Weiss (1985). Setting argument method of
cesEst to "Newton" selects this improved Newton-type method. The user can modify a few
details of this algorithm (e.g. the maximum step length) by adding further arguments that
are described in the documentation of nlm. The following commands estimate a CES function

by non-linear least-squares using this algorithm and print summary results.

> cesNewton <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE,
+ method = "Newton")

> summary (cesNewton)

Estimated CES function with variable returns to scale

Call:
cesEst(yName = "y", xNames = c("x1", "x2"), data = cesData, vrs = TRUE,
method = "Newton")

Estimation by non-linear least-squares using the 'Newton' optimizer

Convergence achieved after 27 iterations

Coefficients:

Estimate Std. Error t value Pr(>|tl|)
gamma 1.01020 0.11244 8.984 <2e-16 *x*x
delta 0.62711 0.02834 22.126 <2e-16 *x*x*
rho 0.63975 0.29705 2.154 0.0313 =
nu 1.09545 0.04500 24.346 <2e-16 *x*x*

Signif. codes: 0O ‘*xx’ 0.001 ‘*x’ 0.01 ‘x> 0.05 ‘.” 0.1 ¢ ’ 1

Residual standard error: 2.424083
Multiple R-squared: 0.7751686

Furthermore, a quasi-Newton method developed independently by Broyden (1970), Fletcher
(1970), Goldfarb (1970), and Shanno (1970) can be used by cesEst. This so-called BFGS
algorithm also uses first and second derivatives and searches for a stationary point of the
objective function where the gradients are (almost) zero. In contrast to the original Newton
method, the BFGS method does a line search for the best step size and uses a special pro-

cedure to approximate and update the Hessian matrix in every iteration. The problem with

13
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BFGS can be that although the current parameters are close to the minimum, the algorithm
does not converge because the Hessian matrix at the current parameters is not close to the
Hessian matrix at the minimum. However, in practice BFGS proves robust convergence (often
superlinear) (Kelley 1999). If argument method of cesEst is "BFGS", the BFGS algorithm
is used for the estimation. The user can modify a few details of the BFGS algorithm (e.g.
the convergence tolerance level) by adding the further argument control as described in the

“Details” section of the documentation of optim.

> cesBfgs <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE, method = "BFGS")

> summary (cesBfgs)
Estimated CES function with variable returns to scale

Call:
cesEst(yName = "y", xNames = c("x1", "x2"), data = cesData, vrs = TRUE,
method = "BFGS")

Estimation by non-linear least-squares using the 'BFGS' optimizer

Convergence achieved after 71 function and 15 gradient calls

Coefficients:

Estimate Std. Error t value Pr(>|t|)
gamma 1.01020 0.11244 8.984 <2e-16 *x*x
delta 0.62711 0.02834 22.126 <2e-16 **x*
rho 0.63975 0.29705 2.154 0.0313 =*
nu 1.09545 0.04500 24.346 <2e-16 **x*

Signif. codes: 0 ‘“*xx’ 0.001 ‘*x’ 0.01 ‘x> 0.05 ‘.” 0.1 ¢ ’ 1

Residual standard error: 2.424083
Multiple R-squared: 0.7751686

2.4. Global optimization algorithms

While the gradient-based (local) optimization algorithms described above are designed to find
local minima, global optimization algorithms, which are also known as direct search methods,
are designed to find the global minimum. They are more tolerant to not well-behaved objective
functions but they usually converge more slowly than the gradient-based methods. However,

increasing computing power has made these algorithms suitable for day-to-day use.
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One of these global optimization routines is the so-called Nelder-Mead algorithm (Nelder and
Mead 1965), which is a downbhill simplex algorithm. In every iteration n+1 vertices are defined
in the n-dimensional parameter space. The algorithm converges by successively replacing the
“worst” point by a new vertice in the n-dimensional parameter space. The Nelder-Mead
algorithm has the advantage of a simple and robust algorithm, and is especially suitable for
residual problems with non-differentiable objective functions. However, the heuristic nature
of the algorithm causes slow convergence, especially close to the minimum, and can lead
to convergence to non-stationary points. As the CES function is easily twice differentiable
the advantage of the Nelder-Mead algorithm reduces to its robustness. As a consequence
of the heuristic optimisation technique the results should be handled with care. However,
the Nelder-Mead algorithm is much faster than the other global optimization algorithms
described below. Function cesEst estimates a CES function with the Nelder-Mead algorithm
if argument method is set to "NM". The user can tweak this algorithm (e.g. the reflection factor,
contraction factor, or expansion factor) or change some details (e.g. convergence tolerance
level) by adding a further argument control as described in the “Details” section of the

documentation of optim.

> cesNm <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE, method = "NM")

> summary (cesNm)

Estimated CES function with variable returns to scale

Call:
cesEst(yName = "y", xNames = c("x1", "x2"), data = cesData, vrs = TRUE,
method = "NM")

Estimation by non-linear least-squares using the 'Nelder-Mead' optimizer

Convergence achieved after 359 iterations

Coefficients:

Estimate Std. Error t value Pr(>|t|)
gamma 1.01024 0.11244 8.984 <2e-16 **x*
delta 0.62710 0.02834 22.126 <2e-16 ***
rho 0.63961 0.29703 2.153 0.0313 *
nu 1.09544 0.04499 24.346 <2e-16 ***

Signif. codes: O “x**’ 0.001 ‘**’ 0.01 ‘x> 0.05 .’ 0.1 ¢ * 1

Residual standard error: 2.424083

15
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Multiple R-squared: 0.7751686

The Simulated Annealing algorithm was initially proposed by Kirkpatrick, Gelatt, and Vecchi
(1983) and Cerny (1985) and is a modification of the Metropolis-Hastings algorithm. Every
iteration chooses a random solution close to the current solution, while the probability of
the choice is driven by a global parameter T° which decreases as the algorithm moves on.
Unlike other iterative optimisation algorithms, Simulated Annealing also allows T to increase
which makes it possible to leave local minima. Therefore, Simulated Annealing is a robust
global optimiser and can be applied to a large search space, where it provides fast and reliable
solutions. Setting argument method to "SANN" selects a variant of the “Simulated Anneal-
ing” algorithm given in Bélisle (1992). The user can modify some details of the “Simulated
Annealing” algorithm (e.g. the starting temperature or the number of function evaluations
at each temperature) by adding a further argument control as described in the “Details”
section of the documentation of optim. The only criterion for stopping this iterative process

is the number of iterations and it does not indicate whether it converged or not.

> cesSann <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE, method = "SANN")

> summary (cesSann)

Estimated CES function with variable returns to scale

Call:
cesEst(yName = "y", xNames = c("x1", "x2"), data = cesData, vrs = TRUE,
method = "SANN")

Estimation by non-linear least-squares using the 'SANN' optimizer

Coefficients:

Estimate Std. Error t value Pr(>|tl)
gamma 0.98474 0.10942 9.000 <2e-16 *x*x
delta 0.63192 0.02822 22.395 <2e-16 **x*
rho 0.67107 0.29777 2.254 0.0242 *
nu 1.10819 0.04488 24.693 <2e-16 *x*x*

Signif. codes: 0O ‘“*xx’ 0.001 ‘*x’ 0.01 ‘x> 0.05 ‘.” 0.1 ¢ ’ 1

Residual standard error: 2.425541
Multiple R-squared: 0.774898

As the Simulated Annealing algorithm makes use of random numbers, the solution generally
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depends on the initial “state” of R’s random number generator. To ensure replicability, cesEst
“seeds” the random number generator before it starts the “Simulated Annealing” algorithm
with the value of argument random.seed, which defaults to 123. Hence, the estimation of
the same model using this algorithm always returns the same estimates as long as argument

random.seed is not altered (at least using the same software and hardware components).

> cesSann2 <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE, method = "SANN")

> all.equal(cesSann, cesSann2)
[1] TRUE

It is recommended to start this algorithm with different values of argument random. seed and

check whether the estimates differ considerably.

> cesSann3 <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE, method = "SANN",
+ random.seed = 1234)

> cesSann4 <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE, method = "SANN",
+ random.seed = 12345)

> cesSann5 <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE, method = "SANN",
+ random.seed = 123456)

> m <- rbind(cesSann = coef(cesSann), cesSann3 = coef (cesSann3),

+ cesSann4 = coef(cesSann4), cesSann5 = coef (cesSann5))

> rbind(m, stdDev = sd(m))

gamma delta rho nu
cesSann 0.98473949 0.631924860 0.67107287 1.10818592
cesSann3 1.03244315 0.638666280 0.80004041 1.08781915
cesSannd 1.09853191 0.640687668 0.74022400 1.06285986
cesSannb 1.03797816 0.633285471 0.63724351 1.08296884
stdDev  0.04665818 0.004202345 0.07259749 0.01861008

If the estimates differ remarkably, the user might try to increase the number of iterations,
which is 10,000 by default. Now we re-estimate the model a few times with 100,000 iterations

each.

> cesSannB <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE, method = "SANN",
+ control = list(maxit = 1e+05))

> cesSannB3 <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE,

+ method = "SANN", random.seed = 1234, control = list(maxit = 1e+05))

> cesSannB4 <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE,
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+ method = "SANN", random.seed = 12345, control = list(maxit = 1e+05))
> cesSannB5 <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE,
+ method = "SANN", random.seed = 123456, control = list(maxit = 1e+05))

> m <- rbind(cesSannB = coef(cesSannB), cesSannB3 = coef(cesSannB3),
+ cesSannB4 = coef (cesSannB4), cesSannB5 = coef (cesSannB5))

> rbind(m, stdDev = sd(m))

gamma delta rho nu
cesSannB 1.019018933 0.626396980 0.62656297 1.091731388
cesSannB3 1.012203547 0.629279618 0.66705294 1.094746865
cesSannB4 1.017438463 0.630137829 0.65935962 1.092449539
cesSannB5 1.000831695 0.634353090 0.64772478 1.099822550
stdDev 0.008227146 0.003289482 0.01763287 0.003656927

The estimates are much more similar now—only the estimates of p still differ somewhat.

In contrary to the other algorithms described in this paper, the Differential Evolution al-
gorithm (Storn and Price 1997) belongs to the class of evolution strategy optimisers and
convergence cannot be proven analytically. However, the algorithm has proven to be effective
and accurate on a large range of optimisation problems, inter alia the CES function (Mishra
2007). For some problems it has proven to be more accurate and more efficient than Simulated
Annealing, Quasi-Newton, or other genetic algorithms (Storn and Price 1997; Ali and Té6rn
2004; Mishra 2007). Function cesEst uses a Differential Evolution optimizer for the non-
linear least-squares estimation of the CES function, if argument method is set to "DE". The
user can modify the Differential Evolution algorithm (e.g. the differential evolution strategy
or selection method) or change some details (e.g. the number of population members) by
adding a further argument control as described in the documentation of DEoptim.control.
In contrary to the other ompimisation algorithms, the Differential Evolution method requires
finite boundaries of the parameters. By default, the bounds are 0 < v < 1019, 0<6 <1,
-1 <p <10, and 0 < v <10. Of course, the user can specify own lower and upper bounds

by setting arguments lower and upper to numeric vectors.

> cesDe <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE, method = "DE",
+ control = list(trace = FALSE))

> summary (cesDe)
Estimated CES function with variable returns to scale

Call:

cesEst(yName = "y", xNames = c("x1", "x2"), data = cesData, vrs = TRUE,
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method = "DE", control = list(trace = FALSE))

Estimation by non-linear least-squares using the 'DE' optimizer

Coefficients:

Estimate Std. Error t value Pr(>|t])
gamma 1.01012 0.11256 8.974 <2e-16 *x*x
delta 0.62777 0.02841 22.094 <2e-16 *x*x*
rho 0.64216 0.29785 2.156 0.0311 =
nu 1.09500 0.04505 24.307 <2e-16 **x*

Signif. codes: 0O ‘“*xx’ 0.001 ‘*%’ 0.01 ‘x> 0.05 ‘.” 0.1 ¢ ’ 1

Residual standard error: 2.424131
Multiple R-squared: 0.7751597

Likewise the “Simulated Annealing” algorithm, the Differential Evolution algorithm makes
use of random numbers and cesEst “seeds” the random number generator with the value of

argument random.seed before it starts this algorithm to ensure replicability.

> cesDe2 <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE, method = "DE",
+ control = list(trace = FALSE))
> all.equal(cesDe, cesDe2)

(1] TRUE

It is recommended also for this algorithm to check if different values of argument random. seed

result in remarkably different estimates.

> cesDe3 <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE, method "DE",

+ random.seed = 1234, control = list(trace = FALSE))

> cesDe4 <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE, method = "DE",
+ random.seed = 12345, control = list(trace = FALSE))

> cesDe5 <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE, method = "DE",

+ random.seed = 123456, control = list(trace = FALSE))

> m <- rbind(cesDe = coef(cesDe), cesDe3 = coef(cesDe3), cesDe4d = coef(cesDe4),
+ cesDe5 = coef (cesDeb))

>

rbind(m, stdDev = sd(m))

gamma delta rho nu
cesDe 1.010119217 0.6277687357 0.642157064 1.095001892



20 Estimating the CES Function in R

cesDe3 1.008841004 0.6287090120 0.637607137 1.096142323
cesDe4 1.011146256 0.6273823595 0.641914728 1.094396769
cesDe5 1.000593563 0.6268241309 0.640145999 1.098865426
stdDev 0.004814219 0.0007932049 0.002100288 0.001979579

These estimates are rather similar, which generally indicates that all estimates are close to
the optimum (minimum of the sum of squared residuals). However, if the user wants to get
more precise estimates than obtained with the default settings of this algorithm, e.g. if the
estimates differ considerably, the user might try to increase the number of iterations, which

is 200 by default. Now we re-estimate this model a few times with 1,000 iterations each.

cesDeB <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE, method = "DE",
control = list(trace = FALSE, itermax = 1000))

cesDeB3 <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE, method = "DE",
random.seed = 1234, control = list(trace = FALSE, itermax = 1000))

random.seed = 12345, control = list(trace = FALSE, itermax = 1000))
cesDeB5 <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE, method = "DE",
random.seed = 123456, control = list(trace = FALSE, itermax = 1000))

rbind(cesDeB = coef(cesDeB), cesDeB3 = coef(cesDeB3), cesDeB4 = coef(cesDeB4),

>
+
>
+
> cesDeB4 <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE, method = "DE",
+
>
+
>
+

cesDeB5 = coef(cesDeB5))

gamma delta rho nu
cesDeB 1.0102 0.6271122 0.6397527 1.095452
cesDeB3 1.0102 0.6271122 0.6397527 1.095452
cesDeB4 1.0102 0.6271122 0.6397527 1.095452
cesDeB5 1.0102 0.6271122 0.6397527 1.095452

The estimates are virtually identical now.

2.5. Constraint parameters

As a meaningful analysis based on a CES function requires that this function is consistent with
economic theory, it is often desirable to constrain the parameter space to the economically

meaningful region.

Function cesEst can estimate a CES function under parameter constraints using a modifica-
tion of the BFGS algorithm suggested by Byrd, Lu, Nocedal, and Zhu (1995). In contrary to
the ordinary BFGS algorithm summarized above, the so-called L-BFGS-B algorithm allows
for box-constraints on the parameters and also does not explicitly form or store the Hessian

matrix but instead relies on the past (often less than 10) values of the parameters and the
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gradient vector. Therefore, the L-BFGS-B algorithm is especially suitable for high dimen-
sional optimisation problems but—of course—it can be also used for optimisation problems
with only a few parameters (as the CES function). Function cesEst estimates a CES func-
tion with parameter constraints using the L-BFGS-B algorithm if argument method is set to
"L-BFGS-B". The user can tweak some details of this algorithm (e.g. the number of BFGS
updates) by adding a further argument control as described in the “Details” section of the
documentation of optim. By default, the restrictions on the parameters are 0 < v < oo,
0<6<1,-1<p<oo,and 0 < v < oco. The user can specify own lower and upper bounds

by setting arguments lower and upper to numeric vectors.

> cesLbfgsb <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE,
+ method = "L-BFGS-B")
> summary (cesLbfgsb)

Estimated CES function with variable returns to scale

Call:
cesEst(yName = "y", xNames = c("x1", "x2"), data = cesData, vrs = TRUE,
method = "L-BFGS-B")

Estimation by non-linear least-squares using the 'L-BFGS-B' optimizer
Convergence achieved after 36 function and 36 gradient calls
Message: CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH

Coefficients:

Estimate Std. Error t value Pr(>|t|)
gamma 1.01020 0.11244 8.984 <2e-16 **x*
delta 0.62711 0.02834 22.126 <2e-16 **x*
rho 0.63975 0.29705 2.154 0.0313 =*
nu 1.09545 0.04500 24.346 <2e-16 **x*

Signif. codes: 0O ‘*xx’ 0.001 ‘*x’ 0.01 ‘x> 0.05 ‘.” 0.1 ¢ ’ 1

Residual standard error: 2.424083
Multiple R-squared: 0.7751686

The so-called PORT routines (Gay 1990) include a quasi-Newton optimisation algorithm
that allows for box constraints on the parameters and has several advantages over traditional

Newton routines, e.g. trust regions and reverse communication. Setting argument method to
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"PORT" selects a the optimisation algorithm of the PORT routines. The user can modify a few
details of the Newton algorithm (e.g. the minimum step size) by adding a further argument
control as described in section “Control parameters” of the documentation of nlminb. The
lower and upper bounds of the parameters have the same default values as for the L-BFGS-B
method.

> cesPort <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE, method = "PORT")

> summary (cesPort)

Estimated CES function with variable returns to scale

Call:
cesEst(yName = "y", xNames = c("x1", "x2"), data = cesData, vrs = TRUE,
method = "PORT")

Estimation by non-linear least-squares using the 'PORT' optimizer
Convergence achieved after 27 iterations

Message: relative convergence (4)

Coefficients:

Estimate Std. Error t value Pr(>|t|)
gamma 1.01020 0.11244 8.984 <2e-16 **x*
delta 0.62711 0.02834 22.126 <2e-16 **x*
rho 0.63975 0.29705 2.154  0.0313 *
nu 1.09545 0.04500 24.346 <2e-16 ***

Signif. codes: O “x**’ 0.001 ‘**’ 0.01 ‘x> 0.05 ‘.’ 0.1 ¢ * 1

Residual standard error: 2.424083
Multiple R-squared: 0.7751686

2.6. Grid search for p

As the objective function for estimating the CES by non-linear least-squares shows a tendency
to “flat surfaces” around the minimum—in particular for a wide range of values for p— many
optimization algorithms have problems in finding the minimum of the objective function. This
problem can be alleviated by performing a one-dimensional grid search, where a sequence of
values for p is pre-selected and the remaining parameters are estimated by non-linear least-
squares holding p fixed at each of the pre-defined values. Later, the estimation with the value

of p that results in the smallest sum of squared residuals is chosen.
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The function cesEst carries out this grid search procedure, if the user sets its argument rho
to a numeric vector containing the values of p that should be used in the grid search. The
estimation of the other parameters during the grid search can use all non-linear optimization
algorithms described above. Since the “best” value of p that was found in the grid search is not
known but estimated (as the other parameters but with a different method), the covariance
matrix of the estimated parameters includes p and is calculated as if p was estimated as usual.
The following command estimates the CES function by a one-dimensional grid search for p,
where the pre-selected values for p are the values from —0.3 to 1.5 with an increment of 0.1
and the default optimisation method, the Levenberg-Marquardt algorithm is used to estimate

the remaining parameters.

> cesGrid <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE, rho = seq(from =
+ to = 1.5, by = 0.1))

> summary (cesGrid)

Estimated CES function with variable returns to scale

Call:
cesEst(yName = "y", xNames = c("x1", "x2"), data = cesData, vrs = TRUE,
rho = seq(from = -0.3, to = 1.5, by = 0.1))

Estimation by non-linear least-squares using the 'LM' optimizer
and a one-dimensional grid search for coefficient 'rho'
Convergence achieved after 4 iterations

Message: Relative error in the sum of squares is at most “ftol'.

Coefficients:

Estimate Std. Error t value Pr(>|t|)
gamma 1.00527 0.11192 8.982 <2e-16 *x*x
delta 0.62568 0.02809 22.272 <2e-16 **x*
rho 0.60000 0.29151 2.058 0.0396 x*
nu 1.09699 0.04501 24.374 <2e-16 **x*

Signif. codes: 0O ‘*xx’ 0.001 ‘*x’ 0.01 ‘x> 0.05 ‘.” 0.1 ¢ ’ 1

Residual standard error: 2.424194
Multiple R-squared: 0.775148

An overview of the relationship between the pre-selected values of p and the corresponding
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sums of the squared residuals can be obtained by applying the plot method.®
> plot(cesGrid)

This overview is shown in figure 3.
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Figure 3: Values of p and corresponding sums of squared residuals

The results of this grid search algorithm can be either used directly or used as starting values
for a non-linear least-squares estimation so that also p values between the grid points can be

estimated. Starting values can be set by argument startVal.

> cesStartGrid <- cesEst("y", c("x1", "x2"), cesData, vrs = TRUE,
+ start = coef(cesGrid))

> summary (cesStartGrid)

Estimated CES function with variable returns to scale

Call:
cesEst(yName = "y", xNames = c("x1", "x2"), data = cesData, vrs = TRUE,

start = coef(cesGrid))

Estimation by non-linear least-squares using the 'LM' optimizer
Convergence achieved after 3 iterations

Message: Relative error in the sum of squares is at most “ftol'.

5This plot method can be applied only if the model was estimated by grid search.
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Coefficients:

Estimate Std. Error t value Pr(>|tl)
gamma 1.01020 0.11244 8.984 <2e-16 *x*x
delta 0.62711 0.02834 22.126 <2e-16 **x
rho 0.63975 0.29705 2.154 0.0313 =
nu 1.09545 0.04500 24.346 <2e-16 *x*x

Signif. codes: 0O ‘*xx’ 0.001 ‘*x’ 0.01 ‘x> 0.05 ‘.” 0.1 ¢ ’ 1

Residual standard error: 2.424083
Multiple R-squared: 0.7751686

3. Implementation

The function cesEst is the primary user interface of the micEconCES package (Henningsen
and Henningsen 2010). However, the actual estimations are carried out by internal helper

functions or functions from other packages.

3.1. Kmenta approximation

The estimation of the Kmenta approximation (2) is implemented in the internal function
cesEstKmenta. This function uses translogEst from the micEcon package (Henningsen
2009) for estimating the unrestricted translog function (3). The test of the parameter re-
strictions defined in equation (4) is performed by the function linear.hypothesis of the
car package (Fox 2009). The restricted translog model (3, 4) is estimated with function
systemfit from the systemfit package (Henningsen and Hamann 2007).

3.2. Non-linear least-squares estimation

The non-linear least-squares estimations are carried out by various optimisers from other
packages. Estimations with the Levenberg-Marquardt algorithm are performed by function
nls.1lm of the minpack.lm package (Elzhov and Mullen 2009), which is an R interface to the
FORTRAN package MINPACK (Moré, Garbow, and Hillstrom 1980). Estimations with the
Conjugate Gradients (CG), BFGS, Nelder-Mead (NM), Simulated Annealing (SANN), and
L-BFGS-B algorithms use the function optim from the stats package (R Development Core
Team 2009). Estimations with the Newton-type algorithm are performed by function nlm
from the stats package (R Development Core Team 2009), which uses the FORTRAN library
UNCMIN (Schnabel et al. 1985) with line search as step selection strategy. Estimations
with the Differential Evolution (DE) algorithm are performed by function DEoptim from the
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DEoptim package (Ardia and Mullen 2009). Estimations with the PORT routines use function
nlminb from the stats package (R Development Core Team 2009), which uses the FORTRAN
library PORT (Gay 1990).

3.3. Grid search

The grid search procedure is implemented in the internal function cesEstGridRho. This
function consecutively calls cesEst for each of the pre-selected values of p, where argument
rho of cesEst is set to one of the pre-selected values at each call. If argument rho of cesEst
is a single scalar value, cesEst does not perform a grid search but estimates the CES function

by non-linear least-squares with parameter p fixed at the value of argument rho.

3.4. Calculating output

Function cesCalc can be used to calculate the output quantity of the CES function given
input quantities and parameters. An example of using cesCalc is shown in the beginning of
section 2, where the output variable of an artificial data set that is used to demonstrate the
usage of cesEst is generated with this function. Furthermore, the cesCalc function is used by
the internal function cesRss, that calculates and returns the sum of squared residuals, which
is the objective function in the non-linear least-squares estimations. As the CES function is
not defined for p = 0, cesCalc calculates in this case the output quantity with the limit of
the CES function for p — 0, which is the Cobb-Douglas function.

We noticed that the calculations with cesCalc using equation (1) are imprecise when p is
close to 0. This is caused by rounding errors that are unavoidable on digital computers but
are usually negligible. However, rounding errors can get large in specific circumstances, e.g. in
the CES function with very small p, when very small (in absolute terms) exponents (—p) are
applied first and then a very large (in absolute terms) exponent (—v/p) is applied. Therefore,
cesCalc uses a first-order Taylor series approximation at the point p = 0 for calculating the
output of the CES function, if the absolute value of p is smaller than or equal to argument
rhoApprox, which is 5- 1076 by default. This first-order Taylor series approximation is the
Kmenta approximation defined in (2). We illustrate this in the left panel of figure 4, which

has been created by following commands.

> rhoData <- data.frame(rho = seq(-2e-06, 2e-06, 5e-09), yCES = NA,

+ yLin = NA)

> for (i in 1:nrow(rhoData)) {

+ cesCoef <- c(gamma = 1, delta = 0.6, rho = rhoData$rhol[i],

+ nu =1.1)

+ rhoData$yLin[i] <- cesCalc(xNames = c("x1", "x2"), data = cesDatall,
+ ], coef = cesCoef, rhoApprox = Inf)
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+ rhoData$yCES[i] <- cesCalc(xNames = c("x1", "x2"), data = cesDatall,
+ ], coef = cesCoef, rhoApprox = 0)
+ }
> rhoData$yCES <- rhoData$yCES - rhoData$yLin[rhoData$rho == 0]
> rhoData$yLin <- rhoData$yLin - rhoData$yLin[rhoData$rho == 0]
> plot(rhoData$rho, rhoData$yCES, type = "1", col = "red", xlab = '"rho",
+ ylab = "y (normalised, red = CES, black = linearised)")
> lines(rhoData$rho, rhoData$yLin)
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Figure 4: Calculated output for different values of p

The right panel of figure 4 shows that the relationship between p and the output y can be
rather precisely approximated by a linear function, because it is nearly linear for a wide range

of p values.”

When estimating a CES function with function cesEst, the user can use argument rhoApprox
to modify the threshold for calculating the endogenous variable by the Kmenta approxima-
tion (2), as the first element of the vector rhoApprox is passed to cesCalc, partly through
cesRss. This might affect not only the fitted values and residuals returned by cesEst, but
also the estimation results, because the endogenous variable is used to calculate the sum of

squared residuals, which is the objective function of the non-linear least-squares estimations.

3.5. Partial derivatives with respect to coefficients

The internal function cesDerivCoef returns the partial derivatives of the CES function with

"The commands for creating the right panel of figure 4 are not shown here, because they are the same as
the commands for the left panel of this figure except for the command for creating the vector of p values.
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respect to all coefficients at all provided data points. These partial derivatives are:

v

0y _ —p AN

Oy YV —p —p —p\ T !

0 1 () (700 o

gy v —p —p —p o\~ s

37;) = ? log (59:1 +(1- 5)%2 ) (5561 +(1- 5)332 ) (18)
+ 2 (slogan)ar? + (1 - 9)lo(aa)e?) (3077 + (1 0)a3) 7

oy v —p —p —p —p\ " r

= ; log (5961 + (1 — &), ) (5$1 + (1 —d)as ) (19)

These derivatives are not defined for p = 0 and are imprecise if p is close to zero (similar
to the output variable of the CES function, see section 3.4). Therefore, we calculate these

derivatives by first-order Taylor series approximations at the point p = 0 if p is zero or close

to zero:

@ = 3;"{5 :p;(1_6) exp (_p v (1—19)(logxzy — log x2)2> (20)
vy 2
9y = (logz; — log xy) x¥° xg(l_é) (21)
00

(1 — g[l —25+v6(1—0) (logar — logzs) ] (log z1 — 10g$2)>

(1— 1
% _ v (1 —8)ay® 2y ( — < (log z1 — log 25)? (22)
ap 2
p 3, P 4

+ 5(1 —29) (logzy — logxa)” + 1 vo(l—9) (logzy — log o) )

gi _ ,ylexa x;(l—é) ((ﬂogan + (1 —6)logzs (23)

- gé(l —6) (logzy — log z9)* [1 + v (8log 1 + (1 — ) logwg)]>

Function cesDerivCoef has an argument rhoApprox that can be used to set the threshold
levels for defining when p is “close” to zero. This argument must be a numeric vector with
exactly four elements that define the thresholds for dy/0v, dy/9d, dy/dp, and dy/dv, re-
spectively. By default, these thresholds are 5- 1079 for dy/dv, 5- 1075 for dy/ds, 1073 for
dy/dp, and 5 - 1076 for dy/ov.

Function cesDerivCoef is used to provide argument jac to function nls.lm so that the
Levenberg-Marquardt algorithm can use analytical derivatives of each residual with respect
to the coefficients. Furthermore, this function is used by the internal function cesRssDeriv,

which calculates the partial derivatives of the sum of squared residuals (RSS) with respect to
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the coefficients by

ORSS N Ay;
———=_2 i , 24
a0 ; <“ ae) 29

where N is the number of observations, u; is the residual of the ith observation, 6 € {v,d, p,v}
is a coefficient of the CES function, and 0y; /90 is the partial derivative of the CES function
with respect to coefficient 6 evaluated at the ith observation as defined in equations (16)
to (19) or—depending on the value of p and argument rhoApprox—equations (20) to (23).
Function cesRssDeriv is used to provide analytical gradients for the gradient-based optim-
ization algorithms, i.e. Conjugate Gradients, Newton-type, BFGS, L-BFGS-B, and PORT.
Finally, function cesDerivCoef is used to obtain the gradient matrix for calculating the
asymptotic covariance matrix of the non-linear least-squares estimator (see section 3.6).

When estimating a CES function with function cesEst, the user can use argument rhoApprox
to modify the thresholds for calculating the derivatives with respect to the coefficients by the
linear approximations (20) to (23), as a vector containing the second to the fifth element of
argument rhoApprox is passed to cesDerivCoef, partly through cesRssDeriv. This might
affect not only the covariance matrix of the estimates, but also the estimation results obtained

by a gradient-based optimisation algorithm.

3.6. Covariance matrix

The asymptotic covariance matrix of the non-linear least-squares estimator obtained by the

various iterative optimisation methods is calculated by (Greene 2008, p. 292)

(@'%)"

where 0y/00 denotes the N x k gradient matrix defined in equations (16) to (19), N is
the number of observations, k is 3 for CES functions with constant returns to scale (v not
estimated but fixed at 1) and 4 for CES functions with variable returns to scale (v estim-
ated), and 62 denotes the estimated variance of the residuals. As equation (25) is only valid

asymptotically, we calculate the estimated variance of the residuals by

. 1
S (26)
i.e. without correcting for degrees of freedom.

3.7. Starting values

If the user calls cesEst with argument start set to a vector of starting values, the internal

function cesEstStart checks if the number of sarting values is correct and if the individual
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starting values are in the appropriate range of the corresponding parameter. If no starting
values are provided by the user, function cesEstStart determines the starting values auto-
matically. The starting value of § is always set to 0.5. If the coefficient p is estimated (not
fixed as, e.g., during grid search), the starting value of p is set to 0.25, which corresponds to
an elasticity of substitution of 0.8. If the estimation allows for a model with variable returns
to scale, the starting value of v is set to 1, which corresponds to constant returns to scale.
Finally, the starting value of ~y is set to a value so that the mean of the endogenous variable
is equal to the mean of its fitted values, i.e.

1 N
Y= N L 1o (27)

EEN (050 +052,0)

where py is either the pre-selected value of p (if p is fixed) or the starting value of p, i.e. 0.25
(if p is estimated).

3.8. Other internal functions

The internal function cesCoefAddRho is used to add the value of p to the vector of coefficients,
when p is fixed (e.g. during grid search for p) and hence, not included in the vector of estimated

coefficients.

If the user selects the optimization algorithm Differential Evolution, L-BFGS-B, or PORT but
does not specify lower or upper bounds of the coefficients, the internal function cesCoefBounds
creates and returns the default bounds depending on the optimization algorithm as described

in sections 2.4 and 2.5.

The internal function cesCoefNames returns a vector of character strings, which are the names
of the coefficients of the CES function.

3.9. Methods

The micEconCES package makes use of the “S3” class system of the R language introduced
in Chambers and Hastie (1992). Objects returned by function cesEst are of class "cesEst"
and the micEconCES package includes several methods for objects of this class. The print
method prints the call and the estimated coefficients. The coef, vcov, fitted, and residuals
methods extract and return the estimated coefficients, their covariance matrix, the fitted
values, and the residuals, respectively. The plot method can be applied only if the model
was estimated by grid search; it plots a scatter plot of the pre-selected values of p against the
corresponding sums of the squared residuals (see section 2.6) by using the plot.default and

points commands of the graphics package (R Development Core Team 2009).

The summary method calculates the estimated standard error of the residuals (&), the cov-
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ariance matrix of the coefficients estimated by non-linear least-squares, the R? value as well
as the standard errors, t-values, and marginal significance levels (P values) of the estimated
parameters. The object returned by the summary method is of class "summary.cesEst". The
print method for objects of class "summary.cesEst" prints the call, the estimated coefficients,
their standard errors, t-values, and marginal significance levels as well as some information on
the estimation procedure (e.g. algorithm, convergence). The coef method for objects of class
"summary.cesEst" returns a matrix with four columns containing the estimated coefficients,

their standard errors, t-values, and marginal significance levels, respectively.

4. Monte Carlo study

In this section we perform a Monte Carlo study to compare the different estimation methods
described above. These are the estimation by R’s standard tool for non-linear least-squares
estimations, nls, as well as the linear estimation of the Kmenta approximation and the
non-linear least-squares estimations using the various optimization algorithms described in
sections 2.2 to 2.5 using function cesEst.® The data set used in this Monte Carlo study
has 100 observations, where the input quantitites are drawn from a x? distribution with 10
degrees of freedom. We generate the “deterministic” output quantity by a CES function with
variable returns to scale, where the parameters are v = 1, 6 = 0.6, p = 1/3, and v = 1.1.
This function has an elasticity of substitution of ¢ = 0.75. In each of the 1000 replications,
a new set of disturbance terms is drawn from a normal distribution with a mean of zero and

standard deviation of 1.5. This results in R? values of the estimated models of around 0.915

Function cesEst is generally called with the default values of all arguments (except for argu-

ment method, of course). However, we override following default settings:

o Function nls:
we set the control parameter warnOnly to TRUE so that this function returns coefficients

(rather than just an error message) if the optimization does not converge.

e Levenberg-Marquardt, Newton, BFGS, L-BFGS-B:
we increased the maximum number of iterations to 250 to increase the chance that these

algorithms reach convergence.

e Conjugate Gradients:
we changed control parameter type to 2 so that the update formula of Polak and Ribiere

(1969) is used, increased the maximum number of iterations to 1000 and increased the

8The estimation by nls in this Monte Carlo study is done through function cesEst, which uses nls for the
estimation if argument method is set to "nls". This feature is not mentioned in the documentation of cesEst,
because it is not completely implemented yet.
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tolerance level (argument reltol) to 10™% so that this algorithm reaches convergence

in most replications (see example in section 2.3)

¢ Simulated Annealing:
we increased the number of iterations to 50,000 so that the estimate is closer to the

global minimum of the objective function (see section 2.4)

o Differential Evolution:
we increased the number of iterations to 1,000 so that the estimate is closer to the

global minimum of the objective function (see section 2.4)

The script used for the Monte Carlo simulation is shown in appendix B. The general results
of this Monte Carlo study are shown in table 1. Function nls reports 29 times that the non-
linear minimization of the squared residuals has not converged. The Newton and the Nelder-
Mead algorithms report this 5 and 3 times, respectively. All other algorithms always report
convergence. Even if nls or the Newton or Nelder-Mead algorithm report non-convergence,
the coefficients estimated by those methods are very close to the coefficients estimated by
most other methods. Moreover, sum of squared residuals of the “non-converged” estimations
is virtually the same as the sum of squared residuals of most other algorithms in the same
replication. Hence, it seems that only the default values of the convergence tolerance of nls
and the Newton and Nelder-Mead algorithms, which are used in this Monte Carlo study, are
a little too low for this optimization problem. The average sums of the squared residuals are
virtually identical for most estimation methods; only the Simulated Annealing method has on
average slightly larger sums of the squared residuals and the Kmenta approximation, which
does not aim at minimizing the sum of squared residuals of the (non-linear) CES function,

has a somewhat larger average sum of squared residuals.

We summarize the results of the Monte Carlo study by presenting the biases and root mean
square errors (RMSE) of the coefficients and the elasticity of substitution. The bias of a

parameter § estimated by method m is

1 &
K i=1

A

where K is the number of replications in the Monte Carlo study, 6;,, is the estimate of
parameter 6 estimated by method m in the ith replication, and 6 is the true value of this

parameter. The root mean square error of this parameter 6 estimated by method m is

where all variables are as defined above.
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Table 1: General results of the Monte Carlo simulation

nNoConv nConv rssAll rssConv
Kmenta 0 1000 228.2826052 228.6947658
nls 29 971 216.7175798 217.0249514
LM 0 1000 216.7175777 217.0249514
CG 0 1000 216.7175778 217.0249514
Newton 5 995 216.7175779 217.0249515
BFGS 0 1000 216.7175823 217.0249561
Nelder-Mead 3 997 216.7176217 217.0249958
SANN 0 1000 216.9664636 217.2736183
DE 0 1000 216.7175777 217.0249514
L-BFGS-B 0 1000 216.7175782 217.0249518
PORT 0 1000 216.7175777 217.0249514

Description of columns:

nNoConv: number of replications, where the estimation procedure with the corresponding method
warned about non-convergence

nConv: number of replications, where the estimation with the corresponding method converged
rssAll: mean sum of squared residuals of all replications

rssConv: mean sum of squared residuals of the replications, where all methods converged

The biases of the estimated coefficients of the CES function and of the elasticity of substitution
determined in our Monte Carlo study are shown in table 2. These biases are generally very
small, which means that the means of the estimated parameters are very close to their true
values, no matter which estimation method is used. Only the Kmenta approximation returns
on average a vy that is somewhat too small and a v that is a little too large but the bias
of § and p is even smaller than the corresponding biases from the non-linear least-squares
estimations. The estimated elasticities of substitution are on average a little larger than the

true value—particularly for the Kmenta approximation.’

The root mean square errors (RMSE) of the estimated coefficients of the CES function and
of the elasticity of substitution obtained by our Monte Carlo study are shown in table 3.
The RMSEs of v, ¢, and v are mostly rather small, which means that these coefficients
are estimated rather precisely, i.e. the estimated coefficients are mostly very close to their
true values. In contrast, the RMSEs of p are rather large, which means that the estimation
of this coefficient is rather imprecise. However, the elasticities of substitution calculated
from the estimated ps have rather small RMSEs, i.e. are mostly rather close to their true
values. As the elasticities of substitution—and not the ps—are usually used for interpreting
the substitutability of inputs, the imprecise estimation of p is not a major problem. The
RMSEs of most algorithms for non-linear least-squares estimations are virtually identical.

The RMSEs of the Simulated Annealing algorithm are slightly larger than the RMSEs of the

9This is a little surprising as the Kmenta approximation has the smallest bias of the corresponding parameter
p but this can be explained by the non-linear relationship between p and o (see section 1).
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Table 2: Bias of the estimates

gamma delta rho nu sigma
Kmenta -0.06507 -0.00042 0.00312 0.02987 0.04740
nls 0.00140  0.00113 0.00569 0.00093 0.02469
LM 0.00140  0.00113 0.00569 0.00093 0.02468
CG 0.00140  0.00113 0.00569 0.00093 0.02468
Newton 0.00140  0.00113 0.00569 0.00093 0.02468
BFGS 0.00139  0.00113 0.00568 0.00094 0.02469
Nelder-Mead ~ 0.00139  0.00113 0.00565 0.00094 0.02470
SANN 0.00246  0.00117 0.00703 0.00063 0.02462
DE 0.00140  0.00113 0.00569 0.00093 0.02468
L-BFGS-B 0.00140  0.00113 0.00569 0.00093 0.02468
PORT 0.00140  0.00113 0.00569 0.00093 0.02468

Note: the biases are calculated based on all replications, i.e. including replications, where the algorithm
warned about non-convergence; the biases calculated only with the replications, where all estimation
methods converged, are mostly rather similar to the reported biases but the biases of p are about 3
times larger than the reported biases. The column “sigma” represents the biases of the elasticity of
substitution.

other algorithms for non-linear least-squares but these differences are so small that they are
negligible in practical work. The estimates of the Kmenta approximation are less precise than

the estimates from the non-linear least-squares estimations.

Table 3: Root mean square error of the estimates

gamma delta rho nu sigma
Kmenta 0.15584 0.02825 0.33360 0.07037 0.04774
nls 0.09131 0.02228 0.25347 0.03647 0.02393
LM 0.09131 0.02228 0.25346 0.03647 0.02393
CG 0.09131 0.02228 0.25346 0.03647 0.02393
Newton 0.09131 0.02228 0.25347 0.03647 0.02393
BFGS 0.09131 0.02228 0.25347 0.03647 0.02393
Nelder-Mead 0.09130 0.02228 0.25344 0.03647 0.02393
SANN 0.09324 0.02242 0.25645 0.03724 0.02463
DE 0.09131 0.02228 0.25347 0.03647 0.02393
L-BFGS-B 0.09131 0.02228 0.25347 0.03647 0.02393
PORT 0.09131 0.02228 0.25347 0.03647 0.02393

Note: the root mean square errors are calculated based on all replications, i.e. including replications,
where the algorithm warned about non-convergence; the root mean square errors calculated only with
the replications, where all estimation methods converged, are very close to the reported root mean

square errors.

5. Conclusion

We have demonstrated several approaches to estimate the CES function, e.g. the Kmenta

approximation, the Levenberg-Marquardt algorithm, several other gradient-based and global
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optimisation algorithms, a grid search, and the standard tool for non-linear least-squares
estimations in R, nls. We compared the performance of these methods in a Monte Carlo
simulation. For the given data generating process, all methods proved satisfying results.
Anyway, our simulation confirms other simulation studies (e.g. Thursby 1980) in respect to
the unsatisfying result for the estimate of p. However, our results show that the elasticity of
substitution c—which is generally of interest—is close to the §true§ value. Hence, one should

not range this problem as too severe.

The results were derived under the ideal lab-conditions of a simulation. It is clear that not all
methods will return such satisfying results if they face real-world data. Given the econometric
problems that are often caused by real-world data, the presented methods will more clearly

display their fortitudes and weaknesses in empirical applications.

However, the micEconCES package provides the user with a multitude of instruments to
address common econometric problems in estimating the CES function with real-world data.
So the user should be able to find a satisfying solution for estimating the CES function in

most cases.
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A. Derivations of Taylor series approximations

The derivation of the Taylor series (Kmenta) approximation of the CES function in section A.1
is based on Uebe (2000). The derivation of the Talor series approximation of the partial
derivatives of the CES function with respect to the coefficients in section A.2 is novel but
inspired by Uebe (2000).

A.1. CES function (Kmenta approximation)

v

y = (-0 x) " (30)

Logarithmized CES function:

Iny = lny—zln(&vl_p—%(l—é) x;p) (31)
P
Define function
flp) = =S m(dar?+(1-0) z,") (32)
p
so that
Iny = Iny+f(p). (33)

Now we can approximate the logarithmized CES by a first-order Taylor series approximation

around p=0:

Iny ~Iny + f(0) + pf' (0) (34)
We define function
g(p) = 627"+ (1-0) 2,” (35)
so that
flo) = ——(g (o). (36)

Now we can calculate the first partial derivative of f (p):

Fp) = péln(g(p))—”g'(p) (37)
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and the first three derivatives of ¢ (p)

g (p) =
g"(p) =
9" (p) =

—6z7” Inzy — (1 —6) 25” Inxs
§x7” (Inz)® + (1 —6) 25" (Inxy)?

—6z,” (Inz)® — (1= 0) 25" (Inxo)®.

At the point of approximation p = 0 we have

£(0)

and the limit of f'(p) for p — 0:

1

—dIlnz — (1 —90) Inxg

§ (Inz1)* + (1 —0) (Inzp)?
—0 (Inz1)® — (1 —6) (Inxy)®

v(dInxy + (1 —19) Inxy)

f(0) = lim f'(p)
p—0
(v vg’(p))
= lim ( In (g - —
p—0 \ p? (9 (p) pg(p)
() —ve Y
p—0
g g 9" (p)g(p)—(d'(p)*
_ hm”g(p) Vigloy VP (9(0)?
p—0 2p
i Y 9P a(p) (g (0)
P02 (9 (p))?
_ v d"(0)g(0) - (¢ (0)”
(g(0))?
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—20(1=9¢) InzyInxe — (1 — 5)2 (In 332)2)

~2((6-0%) man)? + (1= 6) = (1= %) (an)?

l\?

—25(1—9) Inxzy ln:z:2>

(5 1= 8) (Inay)? + (1 —6) (1 — (1—6)) (Inms)?

M\t

—20(1—0) Inzy lnx2>

v (1 %) ((ln 1) —2Inz; Inzy + (In x2)2)
—]/5(12_6) (Inz; — Inzy)?

so that we get following first-order Taylor series approximation around p =0 :

Iny

~ Iny+vilnz +v(1—06) Inzy—vpd (1—36) (Inz; — Inxy)?

A.2. Derivatives with respect to coefficients

Jy
Oy
Jy
96
Jy
v
dy
ap

(5x;p+(1—5) x;’J)_

v
—~=
p

NN

(3277 +(1=8) 55") " (a7” — 23"

7% In <5x;p+ (1-96) x;p) (5331*P+ (1-9) $;P)_%

l’zf (5x;p+(1_5) x;p)_%ln (5xfp+(1—5) x;p)

14
el
p

Derivatives with respect to Gamma

exp

exp

1
exp (vd Inz; +v(1—90) Inzy — §Vp(5 (1-96) (Inxy —lnm2)2>

2
exp (
(

E\T

5331 +(1-9) 2p)>
f(p)
£(0) +pf )

(5.1‘1_p + (1 — 5) :EZ_P)_(E-H) (5$1—p Inzy + (1 _ 5) $2_p lan)

(57)

(58)

(61)
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— ata" ™ exp (~vp6 (1-9) (lnz) — lno)?) (70)

Derivatives with respect to Delta

9y _ v —p "o (o —p
% = —7; (5m1 +(1—96) x4y ) (931 — T, ) (71)
=P _ P v
L1 — Ty —p -\ "p !
= —yw———(dx;"+(1-90) 72
= (a4 (1= 6) 3”) (72)

Now we define the function f5(p)

) = T (5 -8 a7) (73)
= Wexp(— <;+1>1n(5x1_p+(1—5) xQ_p)) (74)

so that we can approximate dy/dd by using the first-order Taylor series approximation of

fs (p):

Wo— i) (75)

—v (fs (0) + pf5(0)) (76)

Q

Now we define the helper functions gs (p) and hs (p)

gs(p) = <;+1> n (5277 + (1-6) z5") (77)
- (p+ 1)_1:1 (9(0)) (78)
he(p) = 4 ;wz (79)
with first derivatives
G0 = ~ S+ (L+1) L0 (50)
v~ (na a:l_p—ln;;zx;p) —z 7+ xy” s

so that
f5(p) = hs (p) exp (—gs (p)) (82)
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hs (p) exp (—gs5 (p)) — hs (p) exp (—g5 (p)) g5 (p)

Now we can calculate the limits of g5 (p), g5 (p), hs (p)and hj (p) for p — 0 by

~vIn(g(p)) +p (v +p) 45

g5(0) = /glg(l) 95 (p)

= g ((; + 1) In (g (p)))

_ i P (g (p))

p—0 P
, () + (v +p) 24
= lim
p—0 1
'(0)

= ln(g(O))—l-l/g

lim 3
p—0 P
_ 9 g (p) 7' (p) 9" (P)a(p)—(g'(p))*
i 90 + () Gy + PGy e v p) RS
p—0 2p
g (p) p) g'(p) g'(p) 9" (P)alp)—(g' (p))*
T+ 0 0 o (v + ) (9(n)°
p—)O 2p
" (4 2
i (90) V+p)g (p)g(p gg (p)) )
ZAVID (9(0))
— (d' (0))?
IEWACHURII0)
) ( (0))
1 _
—0Inz; — (1 —=96) Inze + vo(1=9) (Inz; — Inxy)?
—p —p
R T
hs (0) = Ly 5
— lim —Inzy2,” +Inzoxy”
p—0 1

= —Inzy+Inxy

(84)
(85)

(86)

(96)

(97)
(98)
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—p —p =P 4 P
—p (lnml " —Inwzo xy ) —x" + 1y

() = 1im y (%9)
i (— (lnazl 21’ —Inzy x;p) +p ((lnx1)2 27" — (Inz9)? x;p) (100)
p—0 2p
Inzyz;” —Inzyxy”
+ 141 % 242 )
_ Ei%; ((ne)? a7? — (nws)® 257) (101)
= % ((lnm1)2 — (1I11'2)2) (102)
so that we can calculate the limit of f5(p)and f5 (p) for p — 0 by
£50) = lim £ (o) (103)
= lim (s (p) exp (~g5 (0))) (104)
= lim h; (p) lim exp (—g; () (105)
p— p—
— tim s () exp (~ L g5 (o)) (106)
= hs(0) exp(—gs5(0)) (107)
= (—Inz +Inxe)exp (vd Inz; +v (1 —0) Inzy) (108)
= (—Inzy +Inay) ¥z, v(1-9) (109)
£0) = lm s (o) (110)
= lim (5 (p) exp (g5 () = hs (p) exp (=5 (p)) 95 (+)) (111)
= lim h5 (p) lim exp (=g (p)) (112)
p— p—
— lim A (p) limy exp (—g5 () lim g5 ()
— lim 15 (p) exp (~ lim g5 (0)) (13)
— lim hs (p) exp (— lim. g (p)) limy 95 (p)
= h;(0) exp (—gs (0)) — hs (0) exp (—g5 (0)) g5 (0) (114)
= exp(—gs(0)) (75 (0) — hs (0) g5(0)) (115)
= exp(Wd Inz +v (1 —90) Inz) (; ((ln x1)? — (lnx2)2) (116)
—(—Inz; +Inxg)

Vs (1 6)

(—6 Inz; —(1—-90) Inazy + (Inzy —1In mg)z))
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v(l— 1 1
v 9:2(1 9) <2 (In 951)2 ~3 (In x2)2

+ (Inz; — Inxy)

= "131

<—5 Inzy —(1—90) Inze +

14 1 1
o0 (2 ) - J (s 6 ()

= I

—(1=9)Inz; Inxy +

+0 Inzy Inxe + (1 —0) (Inxg)

y§ I/(l*é)

x7° x, <(;—5

— ( — 5) Inz; Inzg + —=

l"s Vl 9 <( ) (Inzy — lnx2)2
)

—Inzy) (Inzy — Inxg) >

( )

v (1

2

vo (1 —

4]

vé (1 —90)
2

2

)

vs , v(1-9) (1_5+V5(16

—1In CEQ) :1:11/6 x;(l_(s) (

(Inz; —In a:2)2>)

Inz (Inz; —In x2)2

o vi(1—90)

- Inzo (Inz; —1In x2)2)

) (Inz1)? + (1 - 5) (In 22)’

—9) (Inzy —Inzg) (Inzy —In ;172)2>

(ln Ir1 — In x2)> (ln Ir1 — In x2)2

Inz; —In 3:2)2

2

and approximate dy/0d0 by

%
26

Q

—yv (f5(0) + o5 (0))

= —qv ((—lnx1+ln:v2) :B”‘Sacg(l %)

1—-29 6(1
+p + v (

—9) (Inxy

—Inxy)

2
1/6 I/(l 6)

= W ((lnxl —Inxzg) 2%z,

1-204+vé6(1—0)(Inzy —Inz U5 v(l—6
) (1—0)(Inzy 2)9315332(1 )

a0 :Eg(lﬂs) (Inz; —1In l‘2)2)

= v (lnz; —Inxg)

(1_

2

1-6

,01 —204+v0(1—9¢)(Inzy — Inxg)

Inz; —In x2)2)

Derivatives with respect to Nu

9y _
ov

—% n (977

2

+(1—-9)

(Inzg —In x2)>

v

x;p) (51:{”—{—(1—5) :E2p> °

(117)

(118)

(119)

(120)

(121)

(122)

(123)

(124)

(125)

(126)

(127)
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Now we define the function f, (p)

£,(0) = ll)m (3077 + (1= 0) 23") (5a7”+ (1= 8) 237) * (128)
; In (5:5?’ +(1-9) :c;p) exp <—; In <6scfp +(1-9) .%‘2'0)) (129)

so that we can approximate Jy/Jv by using the first-order Taylor series approximation of

fv (p):

% = v (p) (130)
~ =7 (o (0) +pf; (0)) (131)
Now we define the helper function g, (p)
9o (p) = —In(Sar”+(1=4) a37) (132
= () (133)
with first and second derivative
i) = — ale) (134)
- 14 -
R Ry <(5>)>)22 s R
_ OS] _p’j ((Z/((;,)))); T2l () (137)
and use the function f (p) defined above so that
o (9) = 90 (0) exp (£ (9) (138)
and
7o) = g (o) exp(f (o)) + 90 (0) exp (£ (0)) £ () (139)
Now we can calculate the limits of g, (p), ¢/, (p), and g (p) for p — 0 by
g9 (0) = lim g, (p) (140)

p—0
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_ i 20 (P) (141)
p—0 p
2(o)
: g9\p
= o )
= —0lnz;—(1—-9) Inzy (143)
9,(0) = limgl (o) (144)
— i (L9 ) In(g(p))
= (p 9(p) P> > )
4 —n(g(p))
- i - (146)
. g ((pp)) ¥ g”(p)g((gp()p;)(g () g ((pp)) wm
p—0 2p
_ o 2P a(p) — () (148)
p—0 2(9(p)*
_ 9'(9)g(0)— (29’ (0))* (149)
2(9(0))
= S (5ne)? + (1= 6) () — (Sl — (1-6) mz)?)  (150)
= 3(5 (1)’ + (1= ) (Inxs)* = 6% (Ina)* (151)

—20(1—0) InzyInzy — (1 — 5)2 (ln$2)2>

= 5((6= ) e+ (0= 6) - (1= 52) (n)® (152)
—26(1—90) Inay lnx2>
N ;<5 (1=6) (Ima1)* + (1= 0) (1 = (1= 9)) (Inxz)* (153)

—25(1—90) Inxz; lnx2>

= 0 (12_ ) ((ln 21)> =2 Iz Inzy + (In $2)2) (154)
= 0 (12_ ) (Inz; —1In x2)2 (155)
g, (0) = lim g7 (p) (156)

p—0
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_ 9,9 29"() _ 2 (g’

lim

e e
|

g'(p) 9" (p) (d'(p)? g"(p) 2 9" (p)
—2 g(p) —2p g(p) +2p (9(p)? +2p a TP g

3p?

lim (158)

p—0

_24"(pd (p ') o 2 (g () 2 (d'(p)? g'(p)
W’ 2P o) 2 e T e T2

e

(159)

9" () _9"(p)g gp) 2(9’ (p)):j’) (160)

(161)

Inz;)® — (1 - 6) (Inas 3) (162)

(=0 Inz; — (1 —68)Inzy)?

o () - % (1—6) (lna)® + 6% (Inz1)° (163)
+0(1—=0)(Inz)?nzy+6(1—68)Inzy (Inze)*+ (1 —68)* (Inzy)?

(62 (n21)* + 26 (1 8) Inas nwy + (1 - 6)° (Inwy)’)

(=6 Inay — (1 — §) Inx)

(52 _ ;5> (nz1)® + 6 (1= 6) (n21)* In 2 (164)

+0 (1= 0)Ina; (Inxo)® + <(1 —6)? — é (1- 5)) (Inzy)?

+§ (52 (Inz1)*> 426 (1 — ) Inz; Inag + (1 —6)? (1n332)2)

(=6 Inz; — (1 =9) Inzo)

(52 - ;5> (Inz1)* +6(1—6) (Inz)? Inay (165)
+6(1 = 8)Inay (nw)? + ((1 ) é (1- 5)) (In )3

—% (53 (Inz1)® + 6% (1 —0) (Inz1)? Inzy + 26% (1 — ) (Inz1)? In zy

+26 (1 —6)*Ina; (Inao)* +6 (1 —8)*Ina; (Inzg)® + (1 —6) (In ;132)3)

(52 — ;5) (Inz1)* +6(1—6) (Inz)® Inay (166)

45
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+6(1—08)Inzs (Inzs)? + <(1 _ 6 - é (1- 5)) (In 29)°
2

—§63 (Inzp)® — 262 (1 —6) (Inz1)? Inzy — 26 (1 — 6)* Inzy (Inag)?
—g (1= 6)° (Inas)?

- (52 _ L5 353) (Inzp)® + (5 (1—20)—26%(1 - 5)) (Inz1)? In z, (167)

+ (o (13— 6 —20(1-0))) lnay (nw)?
+ <(1 82 % (1-6)— % (1- 5)3) (Inas)?

= (5 - é - 252> S(nz)® + (1—=26)6 (1 —0) (Inzy)? In s (168)
+(1-2(1-0))6(1—08)Inz (Inxzm)?
+<(1—5)—;—§(1—5) )( ) (lna)?

= (; + §5> 6(1—0)(Inzy)®+(1—20)0(1—6)(Inz;)? Inxzy (169)
+(26-1)6(1—=0)Inz; (Inag)?
+ 1—5—%—7+ 5—%52 (1—6) (Inxy)?

- (-é §5> 5(1=08) (na) + (1 —25)5 (1—6) (na) Inas (170)
+(26 - 1)8(1 =) Inzy (Inxg)? + (; - §5> 5 (1—6) (Inxg)?

- % (1—28)6(1—6) (Ina1)? + (1 — 28)6 (1 — 8) (In21)? In.s (171)
—(1-28)6(1—06)Inz; (Inag)*+ % (1—26)6(1—96)(Inxo)®

- éu ~26)6 (1 6) (172)
((1 D+ 3(n21)?nas + 32y (Inag)? — (m@)?’)

- é (1—26)6(1—06)(Inzy — Inzs)® (173)

so that we can calculate the limit of f, (p)and f/ (p) for p — 0 by

fu(o) = })g%fz/() (174)
= [{g%(gu(p) exp (f (p))) (175)
= lim g, (p) lim exp (f (p)) (176)
p— p—
— limg, () exp (1im £ o)) (177)

= ¢, (0) exp(f(0)) (178)
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= (=0dlnz; —(1—9) Inzg)exp (v (d Inzy + (1 —6) Inzg))
= —(0lnz1+(1—-9) Inxg) x{‘sxg(l_d)

lim f! (p)

p—0

lim (g, (p) exp (f (p)) + gv (p) exp (f (p)) [’ (p))
iy , () exp (1im £ () ) + lim g, (s) exp (1ima £ (9)) Ly £ (o)

9, (0) exp (f (0)) + g» (0) exp (f (0)) ' (0)
exp (£ (0)) (g, (0) + 9. (0) £'(0))

exp (v (6 Inzy + (1 —6) Inxy)) (

+ (=0 Inay — (1 -9) Inay) (_ dtind) (Inzy — 1nx2)2>)

2
s w100 (1 =0
.%'161'2( ) ( D) )

2

(Inzy — Inxg)

5(1—0)
2

(Inz; —Inwe)® (1+v (8 Inay + (1—6) Ina))

and approximate dy/0v by

Jy

v

Q

— (£, (0) + 1, (0))

— Y (§Inay + (1 —0) Inag) a2y~
—ypatd u(1 6)5(25)(1nx1 — Inay)?
(1+v (8 Inzy + (1 -96) Inas))

R )<5 Inz; + (1 —-6) Inwy

_”5(12_5) (Inzy —Inwe)® (1 +v (6 nxy + (1—0) 1“””2)))

Derivatives with respect to Rho

ﬂ(axl F(1-0) 2 )%1n(5:c;*’+(1—5)x;/’)

(187)

(188)

(189)

(190)

(191)

(192)
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Now we define the function f, (p)
1 _ N\ _ _
f,(p) = ﬁ(mlua—a) ") "o (5277 + (1 6) a3 (193)
_(v4q
—i—/l) (5.7:1_p +(1-94) w;p> (G+1) (5m1_plna:1 +(1-9) m;plnxg)

so that we can approximate dy/dp by using the first-order Taylor series approximation of

fo (p):

Yy
oy — W (p) (194)
~ w (£,(0)+pf)(0)) (195)
We define the helper function g, (p)
gp(p) =062 Inz) + (1 —0) 25" Inxy (196)
with first and second derivative
() = —dar®(na)’ = (1—0) 0" (nas)? (197)
gy (p) = s (nz)’ + (1= 6) 2, (Inws)’ (198)

and use the functions g (p) and g, (p) all defined above so that

£ (p) = ;2(5:31’)4—(1—5) 2y”) " n (5077 4+ (1- ) 23°) (199)

(241
—i—/l) ((5:61_‘0—1—(1—5) x;p) (5+1) (5x1_plnx1+(1—6) x;plnxg)

= [)12(5:51%(1—5) :r;p)_%ln(éazfp+(1—5) x;f’) (200)
+; (0277 + (1= 8) 27) 7 (52 + (1 =) 237)
(51:1plnx1—i—(1—6) x5 In 2)

= p(ax;uu—a) :c2p) p(pln(dxl +(1—10) $2_p> (201)

- ((5x1_p+ (1-9) x;p)il (5x1_plnx1 +(1-9) xz_plnxg))

= j)exp (—Zln(éa:l_p—i-(l—é) 2”)) (ll)ln<5a:1_p+(1—5) x;p) (202)

- (6x1_p+ (1-9) xz_p)il (5x1_plnx1 +(1-9) $2_pln$2))
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exp (—vg, (0) (90 () + 9 (0) " 9, (0))

p

and we can calculate its first derivative

fr(p)

—pv exp (—v9, (p)) 9, (0) (9 (0) +9(9) " 95 ()

2
Lo (—vgv (0)) (9 () =9 ()9 (0) 90 () + 9 ()" 5}, ()
02
~exp (—vgw () (90 (0) +9.(0) " 9, (0)
2
exp (—vg, () p (—va, () 9 (p) = va., (P) 9 (1) " 9, (P))
2
RalSAR (90 (0) =9 (0) 9 (0) 95 () + 9 (0) " 9, (1))
2
e (v (0) (90 (0) + 9 (o) 9, ()
2
exp (—vgv (p)) ) . -1
— (0 (=790 () 9 (0) = 9., () 9 ()" 95 ()
+3, () = 9 () 29 () 95 (p) + 9 () g}, ()
—g, (0) =9 (p) " 9, (0))
w( vog,, (0) gv (0) = veg,, () g ()" 95 (p)

p
+pg,, (p) — pg (p) 29 (p) g
g (

9. (P) = 9(0) " 9, (0))

o (p)+pg(p) " g, (p)

Now we can calculate the limits of g, (p), g, (p), and gj (p) for p — 0 by

90(0) = lim g, (p)
- ‘1)13% (53:{”11(13:1 +(1-9) ac;plnm)
— - _ -
= dlnm ;%xl +(1-6) Inzy ;12%:1:2
= 0lnx;+(1-9) Inxy
9,(0) = lim g, (p)

p—0 P
= hm( Sx,” (Inzy)* —

p—0

(1-3) 23 (Iny)°)

(203)

(204)

(205)

(206)

(207)

(208)
(209)

(210)
(211)

(212)

(213)

49
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- _ 2 P _ (1 _ 2 —p
= —0(lnzy) /1)1_%351 (1—-9)(Inzo) ;I_I)%Z'Q

= —5(Inzy)? — (1 - 6) (Inz)’

95 (0) = limg; (p)
= lim (6277 (ina1)® + (1= 6) 25" (Inw2)*)
_ 31; —p _ 31: —p
= d(lnz) [1)12%1:1 + (1 —=9) (Inz) [1)13%51:2

= d(nz)* + (1 —6) (Inzy)?

so that we can calculate the limit of f, (p) for p — 0 by

£, (0)

})1_% fp( )

Lo [ P (e () (9 (0) +9() " 95 (0))

P p

(e (e () gy (o) (9 (o) +9(p) "9 (0))

o0 1

Lo o) (0 () =9 ()G e () +9() g <p>))
1

v exp (—vg, (0)) g ()( <> 9(0)7" g,(0)
+exp (—vgy o>>( g (0) 9,(0) + 9 (0) " g,(0))
) (-vyg )( (0)+¢(0) g, (0))
+exp (—vg, (0)) (g, (0) = 9 (0) g/ (0) g, (0) + g (0) " g} (0))

exp (—vg, (0)) ((—v g, (0) (9 (0) + g (0) " g, (0))
+4,,(0) = g (0)* ¢/ (0) g, (0) + g (0) " g}, (0))
exp (=1 (=6 nz1 — (1 — 6) Inas)) (— vo (12_ %)

(=0Inxy —(1=9) Inzo+d Inxy + (1 —9) Inxo)
d(1—=19)

(
exp (—vg, (0)
(

(Inz; — Inay)?

+ 2

—(=6Inz; — (1 —=6) Inzy) (6 Inzy + (1 —6) Inxy)
5 (na)? — (1-6) (inzz)?)

a0 xg(lfé) (;5 (1—08) (Inz)> —6(1—0)Inz Inay

(Inzp — Inxg)

1
—|—§5 (1—6)(Inzz)? + 6> (nzy)* +26 (1 — 6) Inzy Inasg

(214)

(215)

(216)
(217)
(218)

(219)

(220)

(221)

(222)

(223)

(224)

(225)

(226)

(227)
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+(1=0)* (Inwp)” = 6 (In21)” = (1 - 6) (Inws)*)

e ((;5 (1—0)+6%— 5) (In21)’ (228)
+ (;5(1_5)+(1_5)2— (1—5))

(ln22)* +6(1— 6) I In )
= a0 (36 300+ 8) (nan)? (229)

1 1
+ (25— 552+1 — 26+ 0% — 1+5> (In 29)*
+0(1 —9)Inz; Inxs)

1 1.1
= a0 ((_25 + 252) (Ina)? (230)
+ <—;6 + ;52> (In2g)®*+0(1—6)Ina; In $2>
= a0 (—;5 (1—6) (Inzy) (231)
—%5 (1—=10)(Inze)®> +6(1—0)Inxy lnx2>
- _%5 (1=06) 2t 25" ((In21)” = 2wy s + (n)°) (232)
= —%5 (1-9) :z’f5 xg(“” (Inz; — 1n$2)2 (233)

Before we can apply de I’'Hospital’s rule to lim, o f; (p), we have to check whether also the
numerator converges to zero. We do this by defining a helper function h, (p), where the

numerator converges to zero if h, (p) converges to zero for p — 0

hp(p) = —gu(p)—9(p)" 5 (p) (234)
hy (0) = limy by (p) (235)
= lim (=90 () = 9(0) " 95 () (236)
= —9,(0)—g(0)"" g, (0) (237)
= —(=0lnz1—(1—=96)Inze) — (0 Inzy + (1 —6) Inzg) (238)
=0 (239)

As both the numerator and the denominator converge to zero, we can calculate lim,_,g f/’) (p)

51
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by using de ’'Hospital’s rule.

£(0)

hr%f (p)
p—
lim (eXp(_:Qg”(p)) (—=vpg, (p) 9v (p)

—vpgy, (p) 9 (p) " 95 (p) + pgl, (p) — pg (p) >4’ (p) g, (p)
+p9(0) " 6 (0) = 9. (0) = 9 ()" 9, ()))

ty (exp (~vg, (p)) Ly (55 (-l () (0

—vpgl, (p) 9 (p) " 90 (p) + pgl, (p) — pg (p)

+09 ()" 9, () = 9 (0) — 9 ()" 9, (1))

1

t (exp (—vg, () Jim (5= (<), (o) g () = ol (0) . (0

—vpg,, (p) g, () — vd, ()9 ()" 9p (0) — vgl () g (P) ™" 9o ()
+vpg,, (p) 9 (P) "2 9" (p) 9p (p) = vpgs, (P) 9 (P) "' 0}y (p) + g1, ()
+ogl (p) — 9 (0) 29" (p) 90 () + 209 (0) (' (1))° g, ()

—pg (0) 29" (0) 90 () — pg (P) 2 9" (p) g, (P) + 9 (0) " g, (p)
—pg (0) 2 g (p) g}, (p) + g (P) ™" g, (p)

=g, () +9() 9 (0) 95 (P) — 9 ()" 9,(p)))

5 lim (e (v, () Timy (= (vl () () = v (0) . )

24 (p) g (p)

—vpdl, (p) g, (p) — va,, () 9 (p) " 9p (p) — vpgl (p) 9 (p) " g5 (p)
+vpgl, (p) 9(p) g (p) 9 (p) — vogl, (p) g ()" g, (p) + pgi, (p)

+209 (0) 2 (9" (1) 95 (0) — pg (0) > 4" (p) g, (p)

~2pg (0) > 4 (p) 9} (0) + P9 ()" 3} () )

5 lim (exp (—vg, ()

;g%(; (—v., () v () = vl () 9. ()" 9, (0))

—vgl (p) gv (p) = v, () gi, (p) — vl (P) 9 (p) ™" 95 (p)
+vgl, (0) g (p) 29 (p) 9o (p) — va., (p) 9 ()" g, (p)
+l (p) +29 (0) ™ (9" (9))% 95 (p) — 9 ()2 "

g"(r) g, (p)
—~29(p) 2 g' (p) g, () +9(p) " g} (p)>

5 lim (exp (~vg, ()

(240)

(241)

(242)

(243)

(244)

(245)

(246)
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(lim (1 (—v., () 9 () = v3, () 9 ()" 9y (p)))

p—0 \ p
+im (=9l (0) 9v (0) = v4l, ()9, () = 91 (1) 9 (V) " 9o (0)
+vgl, (p) 9 ()29 (p) 90 (p) — vl (p) 9 (P)~" g}, (p) + gil (p)
+29(0) 2 (g (0))° 95 () — 9 () 2 9" (p) 9 ()

~29 ()29 (0) g, (0) +9(0) " g, (p))>
Before we can apply de ’'Hospital’s rule again, we have to check if also the numerator converges

to zero. We do this by defining a helper function k, (p), where the numerator converges to

zero if k, (p) converges to zero for p — 0

ko(p) = —va,(p)9v (p) =3, (p) 9 (p) " 9y (p) (247)
kp(0) = ;13(1) ko (p) (248)
= lim (~va, () gw () ~ 3, ()9 (1) 3, (1)) (249)
= —vg,(0) g, (0) —vg, (0)g(0) " g, (0) (250)
vé (1 —9) 2
= —— 5 (Inzy —Inxe)” (=6 Inxy — (1 —9) Inzy) (251)
—1/6<12_5) (Inz, —Inag)? (6 Inzy + (1 — 6) Inas)
-0 (252)

As both the numerator and the denominator converge to zero, we can apply de I'Hospital’s

rule.
. ky(p) )
lim =25 = limk, () (253)
= lim (—va. (0) 9. (0) = v (gl () = vl (P) g () " 9p () (254)
+vg, (0) 9 (0) > 9 (0) 9, (p) — v, (P) 9 () " 5}, ()
and hence,
5, 0) = 5 lim (exp (~vg (5) (255)

(;g% (G (-vst (g (0) ~ vl ()9 () 00 )

+vg, (p) g (p)" "9 (p) 9o (p) —vg,, (p) g (p)~
gl (0) +29 ()2 (9" (0))% 95 (0) — 9 (P) 29" () 95 (p)
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—29(p) 29" (p) g, (p) +9(p) " g} (p))>

5 lim (exp (<vg, () (256)

p—0

(xl)l% (‘Vg’y’ (0) 90 (0) — v (91, (p))* = vl (p) 9 ()" gp (p)
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B. Script for Monte Carlo Simulation

# load the micEconCES package
library( micEconCES )

# seed for random number generation
set.seed( 1234 )

# number of replications
nRep <- 1000

# number of observations

nObs <- 100
# rho
rho <- 1/3

# variance of the error term
uStdDev <- 1.5

# create data set with explanatory variables
cesData <- data.frame( x1 = rchisq( nObs, 10 ), x2 = rchisq( nObs, 10 ) )

# names of explanatory variables

xxNames <- c( "x1", "x2" )

# variable returns to scale
vrs <- TRUE # FALSE #

# coefficients

cesCoef <- c¢( gamma = 1, delta = 0.6, rho = rho, nu = 1.1 )[ 1:( 3 + vrs ) ]

# calculate deterministic endogenous variable

cesData$yd <- cesCalc( xNames = xxNames, data = cesData, coef = cesCoef )

# estimation methods
allMethods <- c( "Kmenta", "nls", "LM", "CG", "Newton", "BFGS",
"Nelder-Mead", "SANN", "DE", "L-BFGS-B", "PORT" )

# objects to store the results
estCoef <- array( NA,
dim = c( nRep, length( cesCoef ), length( allMethods ) ),
dimnames = list( 1:nRep, names( cesCoef ), allMethods ) )
convergence <- estCoef[ , 1, ]
rss <- estCoef[ , 1, ]
rSquared <- estCoef[ , 1, ]

iterations <- estCoef[ , 1, ]
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## start the monte carlo experiment
for( i in 1:nRep ) {
cat( i, rl:uvt, sep = nn )

ptm <- proc.time()

# adding noise to the endogenous variable
repeat{
cesData$ys <- cesData$yd + rnorm( nObs, sd = uStdDev )
if( min( cesData$ys ) > 0 ) {
break
} else {
cat( "#" )

# estimate the model using different estimation methods
for( method in allMethods ) {
extraArgs <- list()
if( method == "nls" ) {
extraArgs <- list(
control = nls.control( warnOnly = TRUE ) )
} else if( method == "LM" ) {
extraArgs <- list(
control = nls.lm.control( maxiter = 250 ) )
} else if( method == "Newton" ) {
extraArgs <- list( iterlim = 250 )
} else if( method %inj), c¢( "BFGS", "L-BFGS-B" ) ) {
extraArgs <- list( control = list( maxit = 250 ) )
} else if( method == "CG" ) {
extraArgs <- list(
control = list( maxit = 1000, reltol = le-4, type = 2 ) )

} else if ( method == "SANN" ) {
extraArgs <- list( control = list( maxit = 50000 ) )
} else if( method == "DE" ) {

extraArgs <- list(
control = DEoptim.control( trace = FALSE, itermax = 1000 ) )
}
allArgs <- c( list( yName = "ys", xNames = xxNames, data = cesData,
method = method, vrs = vrs ), extralrgs )
cesResult <- try( do.call( "cesEst", allArgs ) )
if( class( cesResult )[1] != "try-error" ) {
# store the estimated coefficients
estCoef[ i, , method ] <- coef( cesResult )
# store if the estimation has converged
if( !is.null( cesResult$convergence ) ) {

convergence[ i, method ] <- cesResult$convergence
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# sum of squared residuals

rss[ i, method ] <- cesResult$rss

# R-squared values

rSquared[ i, method ] <- summary( cesResult )$r.squared
# number of iterations

if( !is.null( cesResult$iter ) ) {

iterations[ i, method ] <- sum( cesResult$iter )

ptmNew <- proc.time()
cat( ptmNew - ptm, "\n" )
ptm <- ptmNew

#iHARH#AH calculate summary results ###HHHHAHHHHEH

# differences between the estimated and the true coefficients

diffCoef <- estCoef - aperm(
array( cesCoef, dim = c( length( cesCoef ), length( allMethods ), nRep ) ),
c( 3,1, 2))

# elasticities of substitution and difference between estimates and true value
estSigma <- 1 / ( 1 + estCoef[ ,"rho", ] )
diffSigma <- estSigma - 1 / ( 1 + rho )

# function to calculate summary results of the Monte Carlo simulation
# depending on the selection of replications

calcMcResults <- function( repSelect ) {
result <- list()

# biases of the estimated coefficients and elasticity of substitution

result$bias <- colMeans( diffCoef[ repSelect, , ] )

# all.equal( bias, colMeans( estCoef ) - matrix( cesCoef, nrow = length( cesCoef ), ncol = length( allMeth
result$bias <- rbind( result$bias,

sigma = colMeans( diffSigmal[ repSelect, ] ) )

# median deviation of estimated coef. and elast. of subst. from their true values
result$devMed <- colMedians( diffCoef[ repSelect, , ] )
result$devMed <- rbind( result$devMed,

sigma = colMedians( diffSigmal repSelect, ] ) )

# root mean squared errors of the estimated coefficients and elasticity of substitution
result$rmse <- sqrt( colSums( diffCoef[ repSelect, , 172 ) / nRep )
result$rmse <- rbind( result$rmse,

sigma = colSums( diffSigma[ repSelect, 172 ) / nRep )
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# mean absolute deviations
result$mad <- colMeans( abs( diffCoef[ repSelect, , 1 ) )
result$mad <- rbind( result$mad,

sigma = colMeans( abs( diffSigma[ repSelect, ] ) ) )

# median absolute deviations
result$adMed <- colMedians( abs( diffCoef[ repSelect, , ] ) )
result$adMed <- rbind( result$adMed,

sigma = colMedians( abs( diffSigmal[ repSelect, ] ) ) )

# mean RSS

result$rssMean <- colMeans( rss[ repSelect, ] )

# mean R-squared values

result$rSquaredMean <- colMeans( rSquared[ repSelect, ] )

return( result )

# summary results of *all* replications

resultAll <- calcMcResults( 1:nRep )

# summary results of replications without errors (in any method)

resultNoErr <- calcMcResults( rowSums( is.na( rss ) ) == 0 )

# summary results of replications without errors or non-convergence (in any method)
resultConv <- calcMcResults(

rowSums ( is.na( rss ) | ( !convergence & !is.na( convergence ) ) ) == 0 )

#HHHH#H#### create tables for the paper ####H#AHA#AAHAHAHAHAHAA
# general results
tabGeneral <- data.frame( nNoConv =

colSums( is.na( rss ) | ( !convergence & !is.na( convergence ) ) ) )
tabGeneral$nConv <-

colSums( !is.na( rss ) & ( convergence | is.na( convergence ) ) )
tabGeneral$rssAll <- resultAll$rssMean

tabGeneral$rssConv <- resultConv$rssMean

#AHHHRARARAR write tables to disk #HA#AH#HAHHHHHHHA

library( xtable )

# general results

xTabGeneral <- xtable( tabGeneral, digits = c¢( rep( 0, 3 ), rep( 7, 2 ) ),
align = c¢( "1", rep( "r", 4 ) ) )

print( xTabGeneral, file = "../tables/mcGeneral.tex", floating = FALSE )
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# bias

xBias <- xtable( t( resultAll$bias ), digits = rep( 5, 6 ),
align = c( "1", rep( "r", 5) ) )

print( xBias, file = "../tables/mcBias.tex", floating = FALSE )

# root mean square error

xRmse <- xtable( t( resultAll$rmse ), digits = rep( 5, 6 ),
align = c( "1", rep( "r", 5) ) )

print( xRmse, file = "../tables/mcRmse.tex", floating = FALSE )
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