
npbr: an R package for nonparametric boundary
regression

Abdelaati Daouia∗, Thibault Laurent†and Hohsuk Noh‡

December 11, 2013

The package npbr provides functions for the best known approaches to nonpara-
metric boundary estimation. The selected methods are concerned with empirical, smooth,
unconstrained as well as restricted estimates under both separate and multiple shape
constraints. The package also allows for Monte Carlo comparisons among these dif-
ferent estimation procedures, illustrating the simulation experiments by Daouia, Noh,
and Park (2013).

1 Introduction
Suppose that we have n pairs of observations (xi,yi), i = 1, . . . ,n, from a bivariate
distribution with a density f (x,y) in R2. The support Ψ of f is assumed to be of the
form

Ψ = {(x,y)|y≤ ϕ(x)} ⊇ {(x,y)| f (x,y)> 0},
{(x,y)|y > ϕ(x)} ⊆ {(x,y)| f (x,y) = 0},

where ϕ is a monotone increasing and/or concave function whose graph corresponds to
the locus of the curve above which the density f is zero. We consider the estimation of
the frontier function ϕ based on the sample {(xi,yi), i = 1, . . . ,n} in the general setting
where the density f may have sudden jumps at the frontier, decay to zero or rise up to
infinity as it approaches its support boundary.

The package provides functions for the best known nonparametric estimation pro-
cedures. The selected methods can be divided into a number of different categories:
empirical, smooth, unconstrained and restricted estimates. The package provides some
real datasets as well.

2 Data examples
Two datasets are included in this package:

• the dataset nuclear from the US Electric Power Research Institute (EPRI) con-
sists of 254 toughness results obtained from non-irradiated representative steels.
For each steel i, fracture toughness xi and temperature yi were measured. See
Daouia, Girard, and Guillou (2013) for more details.
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• the dataset green consists of 123 American electric utility companies. As in the
set-up of Gijbels, Mammen, Park, and Simar (1999), we used the measurements
of the variables yi = log(qi) and xi = log(ci), where qi is the production output
of the company i and ci is the total cost involved in the production. For a detailed
description and analysis of these data see e.g. Christensen and Greene (1976).

Each of these datasets contains only two variables: one input and one output. To load
these datasets, we do:

> require("npbr")
> data("green")
> data("nuclear")

The scatterplots are displayed in Figure 1 as follows:

> plot(log(OUTPUT)~log(COST), data=green, pch=16,col='blue2')
> plot(ytab~xtab, data=nuclear, pch=16,col='blue2',
+ xlab="temperature of the reactor vessel", ylab="fracture toughness")
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Figure 1: Scatterplots of the 123 American electric utility companies’ data (left) and
the 254 nuclear reactors’ data (right).

3 Main functions
This section describes in detail the main functions of the npbr package. The two
first arguments of these functions correspond to the observed inputs x1, ...,xn and the
observed outputs y1, ...,yn. The third argument is a numeric vector of evaluation points
in which the estimator is to be computed. Basically, the user can generate a regular
sequence of size 1000, from the minimum value of input xi to their maximum value.
The other arguments of the functions depend on the underlying statistical methods.
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3.1 DEA, FDH and linearized FDH estimators
The function dea_est implements the empirical FDH (free disposal hull), LFDH (lin-
earized FDH) and DEA (data envelopment analysis) frontier estimators programmed
earlier in DEA package (Bogetoft and Otto, 2001). There are mainly two usual frontier
estimation methods for preserving monotonicity: the free disposal hull (FDH) intro-
duced by Deprins et al. (1984) and the data envelopment analysis (DEA) initiated by
Farrell (1957). The FDH boundary is the lowest “stair-case” monotone curve covering
all the data points

ϕn(x) := max{yi, i : xi ≤ x}.

An improved version of this estimator, referred to as the linearized FDH (LFDH), is
obtained by drawing the polygonal line smoothing the staircase FDH curve. It has
been considered in Hall and Park (2002) and Jeong and Simar (2006). When the joint
support of data is in addition convex, the DEA estimator is defined as the least concave
majorant of the FDH frontier (see also Gijbels et al. (1999)).

To illustrate the difference between these three empirical estimators on the green
data, we first create the vector of evaluation points:

> x.green <- seq(min(log(green$COST)), max(log(green$COST)),
+ length.out=1001)

Then we compute the DEA, FDH and LFDH estimates:

> y.dea<-dea_est(log(green$COST), log(green$OUTPUT),
+ x.green, type="dea")
> y.fdh<-dea_est(log(green$COST), log(green$OUTPUT),
+ x.green, type="fdh")
> y.lfdh=dea_est(log(green$COST), log(green$OUTPUT),
+ x.green, type="lfdh")

The resulting piecewise linear curves are graphed in Figure 2 using the following in-
structions:

> plot(log(OUTPUT)~log(COST), data=green)
> lines(x.green, y.dea, lty=1, lwd=4, col="red")
> lines(x.green, y.fdh, lty=2, lwd=4, col="blue")
> lines(x.green, y.lfdh, lty=3, lwd=4, col="green")
> legend("topleft", legend=c("dea","fdh","lfdh"),
+ col=c("red","blue","green"), lty=1:3, lwd=4)

3.2 Local linear frontier estimator
The function loc_est computes the local linear smoothing frontier estimator of Hall,
Park, and Stern (1998). The implemented estimator of ϕ(x) is defined by

ϕ̂n,LL(x) = min
{

z : there exists θ≥ 0 such that yi ≤ z+θ(xi− x)

for all i such that xi ∈ (x−h,x+h)
}
.

Hall and Park (2004) proposed a bootstrap procedure for selecting the optimal band-
width h in ϕ̂n,LL. The function loc_est_bw computes this optimal bootstrap band-
width.
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Figure 2: DEA, FDH and LFDH estimates of the optimal frontier.

Actually, to initiate Hall and Park’s bootstrap device, one needs to set a pilot band-
width, which seems to be quite critical to the quality of the local linear frontier. To
see how this estimator performs in the case of nuclear data, we first fix the vector of
evaluation points:

> x.nucl <- seq(min(nuclear$xtab), max(nuclear$xtab),
+ length.out=1001)

Then we evaluate the local linear estimate by using, for instance, the value 40 as the
pilot bandwidth. The value 79.11877 is the resulting optimal bandwidth computed
over 100 bootstrap replications via the function loc_est_bw. It should be clear that
the computational time of this function is not negligible.

> y.loc.opt<-loc_est(nuclear$xtab, nuclear$ytab, x.nucl, h=79.11877)
> y.loc<-loc_est(nuclear$xtab, nuclear$ytab, x.nucl, h=40)

The obtained estimates for both initial and final bandwidths 40 and 79.11877 are su-
perimposed in Figure 3 as follows:

> plot(ytab~xtab, data=nuclear)
> lines(x.nucl, y.loc.opt, lty=1, lwd=4, col="red")
> lines(x.nucl, y.loc, lty=2, lwd=4, col="blue")
> legend("topleft",legend=c("h=79.11877", "h=40"),
+ col=c("red","blue"), lwd=4, lty=c(1,2))
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Figure 3: Local linear estimates for the upper support extremity.

3.3 Polynomial estimators
The function poly_est is an implementation of the polynomial-type estimators of
Hall, Park, and Stern (1998) for support frontiers and boundaries.

Here, the data edge is modeled by a single polynomial ϕθ(x)= θ0+θ1x+ · · ·+θpxp

of known degree p that envelopes the full data and minimizes the area under its graph
for x ∈ [a,b], with a and b being respectively the lower and upper endpoints of the
design points x1, . . . ,xn. The function is the estimate ϕ̂n,P(x) = θ̂0+ θ̂1x+ · · ·+ θ̂pxp of
ϕ(x), where θ̂ = (θ̂0, θ̂1, · · · , θ̂p)

T minimizes
∫ b

a ϕθ(x)dx over θ ∈ Rp+1 subject to the
envelopment constraints ϕθ(xi)≥ yi, i = 1, . . . ,n.

The polynom degree p has to be fixed by the user in the 4th argument of the func-
tion. For example, the polynomial boundaries of degrees 2 and 4 can be computed in
the case of nuclear data as follows:

> y.poly.2<-poly_est(nuclear$xtab, nuclear$ytab, x.nucl, deg=2)
> y.poly.4<-poly_est(nuclear$xtab, nuclear$ytab, x.nucl, deg=4)

The obtained estimators are graphed in Figure 4 in the following way:

> plot(ytab~xtab, data=nuclear)
> lines(x.nucl, y.poly.2, lty=1, lwd=4, col="red")
> lines(x.nucl, y.poly.4, lty=2, lwd=4, col="blue")
> legend("topleft",legend=c("degree=2", "degree=4"),
+ col=c("red","blue"), lwd=4, lty=c(1,2))
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Figure 4: Polynomial estimators of degrees 2 and 4 for the data edge.

3.4 Quadratic spline estimators
Description of the method

The function quad_spline_est is an implementation of the constrained quadratic
spline smoother proposed by Daouia et al. (2013). Let a and b be, respectively, the
minimum and maximum of the design points x1, . . . ,xn. Denote a partition of [a,b]
by a = t0 < t1 < · · · < tkn = b (see below the selection process). Let N = kn + 2 and
π(x) = (π1(x), . . . ,πN(x))T be the vector of normalized B-splines of order 3 based on
the knot mesh {t j} (see, e.g., Schumaker (2007)). When the true frontier ϕ(x) is known
or required to be monotone nondecreasing (option cv=0), its constrained quadratic
spline estimate is defined by ϕ̂n(x) = π(x)T α̂, where α̂ minimizes

∫ 1
0 π(x)T αdx =

∑
N
j=1 α j

∫ 1
0 π j(x)dx over α ∈ RN subject to the envelopment and monotonicity con-

straints π(xi)
T α ≥ yi, i = 1, . . . ,n, and π′(t j)

T α ≥ 0, j = 0,1, . . . ,kn, with π′ being the
derivative of π.

Considering the special connection of the spline smoother ϕ̂n with the traditional
FDH frontier ϕn (see the function dea_est), Daouia et al. propose an easy way of
choosing the knot mesh. Let (X1,Y1), . . . ,(XN ,YN ) be the observations (xi,yi) lying
on the FDH boundary (i.e. yi = ϕn(xi)). The basic idea is to pick out a set of knots
equally spaced in percentile ranks among the N FDH points (X`,Y`) by taking t j =
X[ jN /kn], the j/knth quantile of the values of X` for j = 1, . . . ,kn−1. The choice of the
number of internal knots is then viewed as model selection through the minimization
of the AIC and BIC information criteria (see the function quad_spline_est_kn).

When the monotone boundary ϕ(x) is also believed to be concave (option cv=1),
its constrained fit is defined as ϕ̂?

n(x) = π(x)T α̂?, where α̂? ∈ RN minimizes the same
objective function as α̂ subject to the same envelopment and monotonicity constraints
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and the additional concavity constraints π′′(t∗j )
T α ≤ 0, j = 1, . . . ,kn, where π′′ is the

constant second derivative of π on each inter-knot interval and t∗j is the midpoint of
(t j−1, t j].

Regarding the choice of knots, the same scheme as for ϕ̂n is applied by replacing the
FDH points (X1,Y1), . . . ,(XN ,YN ) with the DEA points (X ∗1 ,Y ∗1 ), . . . ,(X ∗M ,Y ∗M ), that
is, the observations (xi,yi) lying on the piecewise linear DEA frontier (see the function
dea_est). Alternatively, the strategy of just using all the DEA points as knots is also
working quite well for datasets of modest size as shown in Daouia et al. (2013). In this
case, the user has to choose the option all.dea=TRUE.

Optimal number of knots
The function quad_spline_est_kn computes the optimal number of knots for the

constrained quadratic spline fit proposed by Daouia et al.. For the implementation of
the monotone quadratic spline smoother ϕ̂n, the authors first suggest using the set of
knots {t j = X[ jN /kn], j = 1, . . . ,kn−1} among the FDH points (X`,Y`), `= 1, . . . ,N ,
as described above. Because the number of knots kn determines the complexity of the
spline approximation, its choice may then be viewed as model selection through the
minimization of the following two information criteria:

AIC(k) = log

(
n

∑
i=1
|yi− ϕ̂n(xi)|

)
+2(k+2)/n,

BIC(k) = log

(
n

∑
i=1
|yi− ϕ̂n(xi)|

)
+ logn · (k+2)/n.

The first one (option type = "AIC") is similar to the famous Akaike information
criterion (Akaike, 1973) and the second one (option type = "BIC") to the Bayesian
information criterion (Schwartz, 1978). A small number of knots is typically needed
as elucidated by the asymptotic theory.

For the implementation of the monotone and concave spline estimator ϕ̂?
n, just apply

the same scheme as above by replacing the FDH points (X`,Y`) with the DEA points
(X ∗` ,Y ∗` ).

Practical guidelines
We describe here how to effect the necessary computations of the quadratic spline fit

under both separate and simultaneous shape constraints by making use of the green

data. When only the monotonicity constraint is of interest, we first determine the opti-
mal number of knots via the AIC criterion:

> (kn.aic.mono<-quad_spline_est_kn(log(green$COST), log(green$OUTPUT),
+ x.green, cv=0, type="AIC"))

[1] 6

We get the same optimal number of knots by applying the BIC criterion. The mono-
tonic spline ϕ̂n can then be produced as follows:

> y.quad.1<-quad_spline_est(log(green$COST), log(green$OUTPUT),
+ x.green, kn=kn.aic.mono, cv=0)

7



When the concavity constraint is also of interest, we obtain the optimal number of
knots via the BIC criterion and the corresponding constrained spline ϕ̂?

n by proceeding
as follows:

> (kn.bic.conca<-quad_spline_est_kn(log(green$COST), log(green$OUTPUT),
+ x.green, cv=1, type="BIC"))

[1] 1

> y.quad.2<-quad_spline_est(log(green$COST), log(green$OUTPUT),
+ x.green, kn=kn.bic.conca, cv=1)

To compute the smoother ϕ̂?
n by employing all the DEA points as knots, we use:

> y.quad.3<-quad_spline_est(log(green$COST), log(green$OUTPUT),
+ x.green, cv=1,
+ all.dea=TRUE)

The resulting three constrained estimators of the econometric frontier (i.e. the set of
the most efficient electric utility companies) are graphed in Figure 5.

> plot(log(OUTPUT)~log(COST), data=green)
> lines(x.green, y.quad.1, lty=2, lwd=4, col="red")
> lines(x.green, y.quad.2, lty=2, lwd=4, col="blue")
> lines(x.green, y.quad.3, lwd=4, lty=1)
> legend("topleft", col=c("red","blue","black"), lty=c(2,2,1),
+ legend=c("mono(kn=6)", "mono + concav (kn=1)",
+ "mono + concav (kn=all DEA points)"), lwd=4, cex=0.8)

4 Numerical illustrations
A comparison among the different estimation methods described above has been un-
dertaken by Daouia et al. (2013) via some simulation experiments. To encourage others
to explore these methods, we provide in this section guidelines that can help the users
to reproduce the Monte Carlo results obtained in Daouia et al.

4.1 Simulated data
The function simulate.data is an implementation of the experimental method by
Daouia et al. It generates a random sample following the model yi = ϕ(xi)vi, where
xi is uniform on [0,1] and vi, independent of xi, is Beta(β,β) with values of β = 0.5,1
and 3 (corresponding, respectively, to a joint density of the (xi,yi)’s increasing toward
infinity, having a jump or decreasing to zero as it approaches the support boundary).
The function has three arguments: the first one n is the sample size, the second one
funs specifies the frontier function ϕ and takes 3 values:

• if funs=0, the true frontier is linear and equal to ϕ(x) = x,

• if funs=1, the true frontier is concave and equal to ϕ(x) =
√

x,

• if funs=1, the true frontier is not concave and equal to ϕ(x) = exp(−5+10x)
1+exp(−5+10x) .
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Figure 5: The constrained quadratic spline boundaries ϕ̂n and ϕ̂?
n.

The last argument betav is the parameter β.

> simulate.data<- function(n, funs=1, betav=0.5)
+ {
+ # internal function
+ Fron<-function(x,funs)
+ {
+ if (funs==1) { return(exp (-5 + 10*x)/(1 + exp(-5 + 10*x)))}
+ if (funs==2) { return(sqrt(x))}
+ if (funs==3) { return(x)}
+ }
+
+ xtab <- runif(n, 0, 1)
+ V <-rbeta(n, betav, betav)
+ ytab <- Fron(xtab, funs)*V
+
+ return(data.frame(xtab=xtab, ytab=ytab))
+ }

4.2 Some Monte Carlo evidence
To reproduce, for instance, the Monte Carlo estimates obtained in Table 1 of Daouia
et al. (2013), we first generate 200 simulated samples in the case n = 25, β = 0.5 and
ϕ(x) = x. Results are saved in y.dea.
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> N<-200
> x.sim <- seq(0, 1, length.out=1000)
> y.dea<-matrix(0, N, 1000)
> for(k in 1:N)
+ {
+ don<-simulate.data(25)
+ y.dea[k,]<-dea_est(don$xtab, don$ytab, x.sim, type="dea")
+ }

We replace in y.dea, values equal to -Inf by 0:

> y.dea[is.infinite(y.dea)]<-0

To get the residuals of each simulation:

> error.dea<-matrix(x.sim, N, 1000, byrow=TRUE)-y.dea

To assess the empirical mean integrated squared error (MISE), the empirical integrated
squared bias (IBIAS2) and the empirical integrated variance (IVAR):

> (IBIAS2<-mean((x.sim-apply(y.dea,2,mean))^2))
> (IVAR<-mean((y.dea-matrix(apply(y.dea,2,mean),N,1000,byrow=TRUE))^2))
> (MISE<-IBIAS2+IVAR)
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