Exploring the openSenseMap Dataset

Norwin Roosen

2018-10-20

This package provides data ingestion functions for almost any data stored on the open data platform for environemental sensordata https://opensensemap.org. Its main goals are to provide means for:

Exploring the dataset

Before we look at actual observations, lets get a grasp of the openSenseMap datasets’ structure.

library(magrittr)
library(opensensmapr)

all_sensors = osem_boxes()
summary(all_sensors)
## boxes total: 2407
## 
## boxes by exposure:
##  indoor  mobile outdoor unknown 
##     361     107    1919      20 
## 
## boxes by model:
##                   custom             homeEthernet    homeEthernetFeinstaub 
##                      400                       92                       51 
##           homeV2Ethernet  homeV2EthernetFeinstaub               homeV2Wifi 
##                        2                        5                       37 
##      homeV2WifiFeinstaub                 homeWifi        homeWifiFeinstaub 
##                      116                      202                      165 
## luftdaten_pms1003_bme280 luftdaten_pms3003_bme280 luftdaten_pms5003_bme280 
##                        2                        2                       13 
## luftdaten_pms7003_bme280         luftdaten_sds011  luftdaten_sds011_bme280 
##                        5                       69                      295 
##  luftdaten_sds011_bmp180   luftdaten_sds011_dht11   luftdaten_sds011_dht22 
##                       27                       58                      866 
## 
## $last_measurement_within
##    1h    1d   30d  365d never 
##  1161  1200  1377  1889   328 
## 
## oldest box: 2014-05-28 15:36:14 (CALIMERO)
## newest box: 2018-10-20 17:34:50 (Leussow Süd)
## 
## sensors per box:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   4.000   4.000   4.683   5.000  33.000

This gives a good overview already: As of writing this, there are more than 700 sensor stations, of which ~50% are currently running. Most of them are placed outdoors and have around 5 sensors each. The oldest station is from May 2014, while the latest station was registered a couple of minutes ago.

Another feature of interest is the spatial distribution of the boxes: plot() can help us out here. This function requires a bunch of optional dependencies though.

if (!require('maps'))     install.packages('maps')
if (!require('maptools')) install.packages('maptools')
if (!require('rgeos'))    install.packages('rgeos')

plot(all_sensors)

It seems we have to reduce our area of interest to Germany.

But what do these sensor stations actually measure? Lets find out. osem_phenomena() gives us a named list of of the counts of each observed phenomenon for the given set of sensor stations:

phenoms = osem_phenomena(all_sensors)
str(phenoms)
## List of 548
##  $ Temperatur                                      : int 2192
##  $ rel. Luftfeuchte                                : int 1961
##  $ PM10                                            : int 1729
##  $ PM2.5                                           : int 1726
##  $ Luftdruck                                       : int 1131
##  $ Beleuchtungsstärke                              : int 635
##  $ UV-Intensität                                   : int 628
##  $ Luftfeuchtigkeit                                : int 99
##  $ Temperature                                     : int 69
##  $ Humidity                                        : int 54
##  $ Helligkeit                                      : int 29
##  $ Lautstärke                                      : int 27
##  $ UV                                              : int 26
##  $ Pressure                                        : int 25
##  $ Licht                                           : int 20
##  $ Schall                                          : int 20
##  $ Luftfeuchte                                     : int 17
##  $ PM01                                            : int 17
##  $ Umgebungslautstärke                             : int 14
##  $ Lämpötila                                       : int 13
##  $ Signal                                          : int 13
##  $ rel. Luftfeuchtigkeit                           : int 13
##  $ Ilmanpaine                                      : int 12
##  $ Feinstaub PM10                                  : int 11
##  $ Speed                                           : int 11
##  $ temperature                                     : int 11
##  $ Feinstaub PM2.5                                 : int 9
##  $ Kosteus                                         : int 8
##  $ Temperatur DHT22                                : int 8
##  $ Valonmäärä                                      : int 8
##  $ Niederschlag                                    : int 7
##  $ UV-säteily                                      : int 7
##  $ Wassertemperatur                                : int 7
##  $ Wind speed                                      : int 7
##  $ Windgeschwindigkeit                             : int 7
##  $ humidity                                        : int 7
##  $ UV-Strahlung                                    : int 6
##  $ Windrichtung                                    : int 6
##  $ Battery                                         : int 5
##  $ Beleuchtungstärke                               : int 5
##  $ Druck                                           : int 5
##  $ Ilmankosteus                                    : int 5
##  $ Light                                           : int 5
##  $ Regen                                           : int 5
##  $ Temp                                            : int 5
##  $ UV Index                                        : int 5
##  $ Sound                                           : int 4
##  $ Temperature 1                                   : int 4
##  $ UV-Index                                        : int 4
##  $ UV-Säteily                                      : int 4
##  $ lautstärke                                      : int 4
##  $ pressure                                        : int 4
##  $ rel. Luftfeuchte 1                              : int 4
##  $ rel. Luftfeuchte DHT22                          : int 4
##  $ relative Luftfeuchtigkeit                       : int 4
##  $ Air Pressure                                    : int 3
##  $ Air pressure                                    : int 3
##  $ Batterie                                        : int 3
##  $ Batteriespannung                                : int 3
##  $ DS18B20_Probe01                                 : int 3
##  $ DS18B20_Probe02                                 : int 3
##  $ DS18B20_Probe03                                 : int 3
##  $ DS18B20_Probe04                                 : int 3
##  $ DS18B20_Probe05                                 : int 3
##  $ Geschwindigkeit                                 : int 3
##  $ Illuminance                                     : int 3
##  $ Licht (digital)                                 : int 3
##  $ Luftdruck (BME280)                              : int 3
##  $ Noise                                           : int 3
##  $ PM 10                                           : int 3
##  $ PM 2.5                                          : int 3
##  $ Radioaktivität                                  : int 3
##  $ Relative Humidity                               : int 3
##  $ Temperatur (BME280)                             : int 3
##  $ Temperatur 2                                    : int 3
##  $ Temperatur HDC1008                              : int 3
##  $ Temperatura                                     : int 3
##  $ Temperature 2                                   : int 3
##  $ UV-Licht                                        : int 3
##  $ Valoisuus                                       : int 3
##  $ WiFi Signal                                     : int 3
##  $ Wind Direction                                  : int 3
##  $ Wind Gust                                       : int 3
##  $ Wind Speed                                      : int 3
##  $ Wind direction                                  : int 3
##  $ rel. Luftfeuchte 2                              : int 3
##  $ rel.Luftfeuchtigkeit                            : int 3
##  $ 1                                               : int 2
##  $ 10                                              : int 2
##  $ 2                                               : int 2
##  $ 3                                               : int 2
##  $ 4                                               : int 2
##  $ 5                                               : int 2
##  $ 6                                               : int 2
##  $ 7                                               : int 2
##  $ 8                                               : int 2
##  $ 9                                               : int 2
##  $ Anderer                                         : int 2
##  $ Außentemperatur                                 : int 2
##   [list output truncated]

Thats quite some noise there, with many phenomena being measured by a single sensor only, or many duplicated phenomena due to slightly different spellings. We should clean that up, but for now let’s just filter out the noise and find those phenomena with high sensor numbers:

phenoms[phenoms > 20]
## $Temperatur
## [1] 2192
## 
## $`rel. Luftfeuchte`
## [1] 1961
## 
## $PM10
## [1] 1729
## 
## $PM2.5
## [1] 1726
## 
## $Luftdruck
## [1] 1131
## 
## $Beleuchtungsstärke
## [1] 635
## 
## $`UV-Intensität`
## [1] 628
## 
## $Luftfeuchtigkeit
## [1] 99
## 
## $Temperature
## [1] 69
## 
## $Humidity
## [1] 54
## 
## $Helligkeit
## [1] 29
## 
## $Lautstärke
## [1] 27
## 
## $UV
## [1] 26
## 
## $Pressure
## [1] 25

Alright, temperature it is! Fine particulate matter (PM2.5) seems to be more interesting to analyze though. We should check how many sensor stations provide useful data: We want only those boxes with a PM2.5 sensor, that are placed outdoors and are currently submitting measurements:

pm25_sensors = osem_boxes(
  exposure = 'outdoor',
  date = Sys.time(), # ±4 hours
  phenomenon = 'PM2.5'
)
summary(pm25_sensors)
## boxes total: 1014
## 
## boxes by exposure:
## outdoor 
##    1014 
## 
## boxes by model:
##                   custom    homeEthernetFeinstaub  homeV2EthernetFeinstaub 
##                       34                       35                        1 
##      homeV2WifiFeinstaub                 homeWifi        homeWifiFeinstaub 
##                       24                        4                       53 
## luftdaten_pms1003_bme280 luftdaten_pms5003_bme280 luftdaten_pms7003_bme280 
##                        1                        7                        2 
##         luftdaten_sds011  luftdaten_sds011_bme280  luftdaten_sds011_bmp180 
##                       35                      193                       16 
##   luftdaten_sds011_dht11   luftdaten_sds011_dht22 
##                       34                      575 
## 
## $last_measurement_within
##    1h    1d   30d  365d never 
##   979   989  1000  1007     6 
## 
## oldest box: 2016-06-02 12:09:47 (BalkonBox Mindener Str.)
## newest box: 2018-10-20 17:34:50 (Leussow Süd)
## 
## sensors per box:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   2.000   4.000   4.000   4.637   5.000  12.000
plot(pm25_sensors)

Thats still more than 200 measuring stations, we can work with that.

Analyzing sensor data

Having analyzed the available data sources, let’s finally get some measurements. We could call osem_measurements(pm25_sensors) now, however we are focusing on a restricted area of interest, the city of Berlin. Luckily we can get the measurements filtered by a bounding box:

library(sf)
## Linking to GEOS 3.6.1, GDAL 2.2.4, PROJ 4.9.3
library(units)
## udunits system database from /usr/share/udunits
library(lubridate)
library(dplyr)

# construct a bounding box: 12 kilometers around Berlin
berlin = st_point(c(13.4034, 52.5120)) %>%
  st_sfc(crs = 4326) %>%
  st_transform(3857) %>% # allow setting a buffer in meters
  st_buffer(set_units(12, km)) %>%
  st_transform(4326) %>% # the opensensemap expects WGS 84
  st_bbox()
pm25 = osem_measurements(
  berlin,
  phenomenon = 'PM2.5',
  from = now() - days(3), # defaults to 2 days
  to = now()
)

plot(pm25)

Now we can get started with actual spatiotemporal data analysis. First, lets mask the seemingly uncalibrated sensors:

outliers = filter(pm25, value > 100)$sensorId
bad_sensors = outliers[, drop = T] %>% levels()

pm25 = mutate(pm25, invalid = sensorId %in% bad_sensors)

Then plot the measuring locations, flagging the outliers:

st_as_sf(pm25) %>% st_geometry() %>% plot(col = factor(pm25$invalid), axes = T)

Removing these sensors yields a nicer time series plot:

pm25 %>% filter(invalid == FALSE) %>% plot()

Further analysis: comparison with LANUV data TODO