
Analysing growth curves and other user-defined

data in opm

Markus Göker

Leibniz Institute DSMZ

Abstract

This is tutorial about the analysis of growth curves and other user defined kinetics with
the opm package in the version of March 10, 2014. It is explained how any kinds of growth
or respiration measurements can be input into opm. Data without a real structuring into
plates and wells can nevertheless be studied with opm by using a virtual arrangement into
plates and wells. This convention is not an oddity but rather the appropriate means to
enable the visual and statistical comparisons of interest and to disable those that make no
sense for the data. We also show how Phenotype Microarray (PM) data with user-defined
plate types can be analysed. Analysing such data visually and statistically requires in
some cases adaptations of function arguments whose defaults are targeting PM data. All
these practically relevant issues are explained in detail.

Keywords: Growth Kinetics.

1. Introduction

A detailed description of the OmniLog➤ Phenotype Microarray (PM) system, its measur-
ing procedure and data characteristics are found in the vignette “opm: An R Package for
Analysing Phenotype Microarray and Growth Curve Data” (called “main tutorial” in the fol-
lowing). How substrate information stored within opm can be accessed and used for advanced
visual and statistical analyses is explained in the vignette “Working with substrate informa-
tion in opm” (called “substrate tutorial” in the following). The description of the methods
below do not presuppose that the user is already familiar with the usage of opm. But for
details on its approaches to visualisation and statistical analysis we will refer to the main tu-
torial, the substrate tutorial as well as the entries of the opm manual. Especially the concepts
behind the different classes of opm objects are only explained in the main tutorial, and the
methods available for these classes are only explained in the main and substrate tutorial.

In addition to visual inspection or statistical comparative analyses of PM data, as described in
the main tutorial and the substrate tutorial, users might be interested in analysing data other
than PM data, or analysing PM with user-defined plate types. To work with user-defined PM
plates only requires registering these plates, i.e. storing a mapping from well coordinates to
substrate names, and optionally also a full, descriptive name for the plate. The analysis of data
other than PM data, such as growth curves, additionally requires inputting these data and
converting them to OPMX objects. If these data are not really structured into plates and wells,
a virtual arrangement into plates and wells must be established, as well as a virtual positioning



2 User-defined plates in opm (March 10, 2014)

of the plates in a reader, which is used for identifying each plate. This nomenclature may be
unusual for data that have not been measured in plate readers, but presents no problems in
practice. Users should be aware, however, which kinds of comparisons can be made within
and between plates of the same plate type. Indeed, the arrangement into virtual plates and
wells is the appropriate means to ensure that the visual and statistical comparisons of interest
for the data are possible and that those that make no sense are disabled. Note that some
defaults of the plotting functions are only suitable for PM data. Hence, the functions should
be called slightly distinctly.

Besides these slight restrictions, which are illustrated with examples below, non-PM data can
be analysed with opm almost like PM data.

2. Preparation

As usual, opm must be loaded before any analysis can begin:

R> if ("package:opm" %in% search())

detach("package:opm", unload = TRUE)

R> library("opm")

3. Growth-curve data input

3.1. User-entered data frames

In the following we will use the growth-measurements data set from Vaas, Marheine, Sikorski,
Göker, and Schumacher (2013) as exemplar. These data have been entered by hand and then
input into R with one of the functions for reading Comma-Separated Values (CSV), yielding
a data frame that comes with opm:

R> data("potato")

R> head(potato)

Genotype Treatment Replicate Time FM DM

1 07-08-1 0.16M NaCl 1 2 597 44

2 07-08-1 0.16M NaCl 2 2 550 40

3 07-08-1 0.16M NaCl 3 2 633 48

4 07-08-1 0.16M NaCl 4 2 490 31

5 07-08-1 0.16M NaCl 5 2 617 47

6 07-08-1 0.16M NaCl 1 4 585 55

For details on this data set, enter ?potato at the R prompt. The measurements are in “long”
format and must be reshaped using the eponymous function into “wide” format. The “long”
format was deliberately chosen for demonstrating the use of the reshape function. We reshape
separately for the Dry Mass (DM) and Fresh Mass (FM) measurements within the data set:

R> potato.fm <- reshape(potato, v.names = "FM", drop = "DM", direction = "wide",

idvar = c("Genotype", "Treatment", "Replicate"), timevar = "Time")



M. Göker 3

R> potato.dm <- reshape(potato, v.names = "DM", drop = "FM", direction = "wide",

idvar = c("Genotype", "Treatment", "Replicate"), timevar = "Time")

For reshape, “long” format means that each measurement is stored in a separate record with
one entry per row (see above). Thus here for each data point the “Genotype”, “Treatment”
and “Time” entries have to be repeated, resulting in a data frame with 540 rows in 6 columns.
A call to reshape can rearrange the data set into a form where the columns “Genotype”,
“Treatment” and “Replicate” are kept and the columns “Time” and either “FM” or “DM”,
respectively, are merged, resulting in 9 columns representing the measurement times:

R> head(potato.fm)

Genotype Treatment Replicate FM.2 FM.4 FM.6 FM.8 FM.10 FM.12 FM.14 FM.16 FM.18

1 07-08-1 0.16M NaCl 1 597 585 882 844 1291 1847 2232 2560 2808

2 07-08-1 0.16M NaCl 2 550 614 908 1103 1240 1798 2184 2832 2501

3 07-08-1 0.16M NaCl 3 633 570 855 1200 1392 1827 2360 2522 3113

4 07-08-1 0.16M NaCl 4 490 681 1087 994 1478 1921 2315 2317 2761

5 07-08-1 0.16M NaCl 5 617 707 962 849 1446 1853 2335 2564 2426

46 07-08-1 0.32M NaCl 1 395 551 392 342 322 322 368 336 274

Thus the dimensions of the data dwindled to 60 rows in 12 columns. Now the data are in the
right arrangement for the next step, the conversion into OPMX or MOPMX objects. When
entering data manually, users who directly choose a format analogous to the “wide” format
can, of course, skip the conversion with reshape. Thus directly using the “horizontal” input
format of opmx is recommended for manually entering data.

The main function for converting user-defined data frames to OPMX or MOPMX objects is
opmx, which can directly be applied to the objects created in the last step. This works because
the “horizontal” input format of opmx corresponds to the “wide” format of reshape.

R> potato.fm <- opmx(potato.fm, position = c("Genotype", "Replicate"),

well = "Treatment", prefix = "FM.",

full.name = c(fm = "Growth experiment, fresh mass"))

R> potato.dm <- opmx(potato.dm, position = c("Genotype", "Replicate"),

well = "Treatment", prefix = "DM.",

full.name = c(dm = "Growth experiment, dry mass"))

The data frames passed to opmx contain all substrate information in their“Treatment”column.
Its content will be interpreted as substrate names for wells, which are virtual in our case.
Hence, opm registers the mapping from well coordinates to substrate names on the fly. The
substrate names are taken directly from the data frame in “horizontal” format and registered
after sorting. The plate type must be provided, however. As it is not within the data frame,
the short name of the plate type is taken from the full.name argument, whose main purpose
is to enter the full, descriptive name of the plate type. That is, a virtual plate with virtual
wells, yielding a user-defined plate type, will be registered. The prefix argument helps
identifying the columns with measurements over time.

“Genotype” and “Replicate” go to the metadata of the resulting object and together identify
each plate. In the case of PM data, this is done using the position of the plate within the
OmniLog➤ reader. Thus the relevant argument here is position, which must be supplied



4 User-defined plates in opm (March 10, 2014)

unless there is a column of that name. If so, its content is used literally, otherwise it is
newly constructed from the columns explicitly given in the position argument, yielding a
grouping of plates equivalent to the combination of factor levels in these columns. So the
“plate position” is usually also virtual, but just acts as an identifier of the plate.

The registered plate type can be queried as follows:

R> plate_type(TRUE) # shows all existing user-defined plates

[1] "CUSTOM:DM" "CUSTOM:FM"

R> listing(wells(plate = c("CUSTOM:FM", "CUSTOM:DM")))

CUSTOM:FM:

- Growth experiment, fresh mass

- A01: 0.16M NaCl

A02: 0.32M NaCl

A03: 0.5M Sorbitol

A04: Control

CUSTOM:DM:

- Growth experiment, dry mass

- A01: 0.16M NaCl

A02: 0.32M NaCl

A03: 0.5M Sorbitol

A04: Control

Note the prefix “CUSTOM:”, which is used to distinguish user-defined plate types from those
that come with opm. The object resulting from listing can be output with to_yaml or
saveRDS for externally storing plate types in files. Indeed, please keep in mind that the
definition of plate types is only available in the current R session. The definitions will be lost
once the session is terminated. This can be circumvented by placing code for loading opm

and for registering the plates of interest in an .Rprofile file or in the global Rprofile.site
file. See the R documentation on how such files are used. Of course, registering of plates can
always be done within the R file that makes use of these plates, too.

With the resulting potato.dm and potato.fm objects the user can now follow the opm work
flow for processing PM data. Please continue in Section 4 and the following sections for
plotting and statistical analysis of the estimated curve parameters.

It is possible to first register the plate, as shown in Section 3.2, and then convert the data via

opmx. This makes most sense if another ordering of wells should be enforced. Otherwise opmx
takes the substrate names directly from the data frame in “horizontal” format and registers
them after sorting.

3.2. Direct registration of plate types

An example input file comes with opm containing growth-curve data derived from an exper-
iment with two Escherichia coli strains (Deutsche Sammlung von Mikroorganismen (DSM)
18039 = K12 and the type strain DSM 30083T) on increasing Glucose concentrations. Here
we are dealing with a real plate with real wells, but the registering procedure would be the
same for virtual plates with virtual wells. Thus, it will here be shown how to prepare a plate



M. Göker 5

map and register it as a new plate type. Section 3.2 then shows how to import the data and
subsequently convert them to an OPMX or MOPMX object. Each combination of strain and
Glucose concentration was repeated twice on the plate. It will thus be shown how to define
a numbering of these repetitions suitable for later on using the split function to split the
object into one object per repetition.

The opm package offers several ways to set up a user-defined plate layout. The function
register_plate is useful for both customised PM plates and measurements from quite dif-
ferent experiments such as growth curves and other kinds of kinetics.

For small data sets it might be feasible to type the substrate allocation manually into a
character vector, as done in the following. The short name of the plate type will be “growth”,
as simply given by the named function argument. Here two arguments of the same name are
passed to the function for registering the full name and the well mapping in a single call:

R> register_plate(

growth = c(

A01 = "Negative Control #1", A02 = "10mM Glucose #1",

A03 = "20mM Glucose #1", A04 = "50mM Glucose #1",

A05 = "100mM Glucose #1", A06 = "200mM Glucose #1",

B01 = "Negative Control #2", B02 = "10mM Glucose #2",

B03 = "20mM Glucose #2", B04 = "50mM Glucose #2",

B05 = "100mM Glucose #2", B06 = "200mM Glucose #2",

C01 = "Negative Control #3", C02 = "10mM Glucose #3",

C03 = "20mM Glucose #3", C04 = "50mM Glucose #3",

C05 = "100mM Glucose #3", C06 = "200mM Glucose #3",

D01 = "Negative Control #4", D02 = "10mM Glucose #4",

D03 = "20mM Glucose #4", D04 = "50mM Glucose #4",

D05 = "100mM Glucose #4", D06 = "200mM Glucose #4"

),

growth = "Growth on Glucose"

)

R> listing(wells(plate = "custom:growth"))

However, manually entering the well mapping is error prone and not efficient when dealing
with data sets containing more than a few wells. Alternatively, a user-designed plate can
also be registered with a plate map given as matrix. The matrix then directly represents the
allocation of the used substrates on the plate. Because of the repetitions in the substrate
names (note the numbering, which is necessary here to generate unique substrate names, and
later on important to split the plate), the texts can also be generated with less code:

R> # create constant part of the substrate names

R> growth <- c("Negative Control", "10mM Glucose", "20mM Glucose",

"50mM Glucose", "100mM Glucose", "200mM Glucose")

R> # create repetitions and assign according numbers

R> growth <- paste(rep(growth, each = 4), rep(1:4, 4), sep = " #")

R> # create matrix that mirrors the plate layout

R> growth <- matrix(growth, nrow = 4, ncol = 6,

dimnames = list(LETTERS[1:4], 1:6))

R> # register this plate type and show the result

R> register_plate(growth = growth, growth = "Growth on Glucose")

R> listing(wells(plate = "custom:growth"))



6 User-defined plates in opm (March 10, 2014)

Plates with other layouts can be put together in the same way but using other more or
fewer row and/or column names. Plates with other repetition structure, or no repetitions of
substrates at all, can be put together in the same way, too, but modifying or omitting the
way a substrate numbering is introduced. Instead of a matrix, a data frame could be used
as well. We will try this here after showing how to delete a plate type again by providing a
NULL argument:

R> register_plate(growth = NULL)

R> growth <- as.data.frame(growth)

R> register_plate(growth = growth, growth = "Growth on Glucose")

R> listing(wells(plate = "CUSTOM:GROWTH"))

3.3. Input of TECAN data

The data for which we have registered a full plate name and a mapping from well coordinates
to substrate names in Section 3.2 are contained in an exemplar input file that comes with
opm. It can be found, and input into R, as follows:

R> tecan.file <- opm_files("growth")

R> tecan.file <- grep("tecan", tecan.file, ignore.case = TRUE, value = TRUE)

R> tecan <- read.table(tecan.file)

R> head(tecan)

V1 V2 V3 V4 V5 V6 V7

1 <> 1.000 2.000 3.000 4.000 5.000 6.000

2 A 0.087 0.088 0.087 0.088 0.085 0.084

3 B 0.087 0.088 0.087 0.086 0.087 0.085

4 C 0.083 0.082 0.081 0.083 0.079 0.077

5 D 0.083 0.083 0.081 0.082 0.080 0.079

6 <> 1.000 2.000 3.000 4.000 5.000 6.000

This file was output by an Infinite➤ F200 PRO instrument as distributed by the TECAN
corporation. After data recording, the MagellanTM software generates such as file via the
“save as .asc” option in the “edit” menu.

The resulting format is not particularly useful within R but can be converted using the
“rectangular” mode of opmx:

R> tecan <- opmx(tecan, "rectangular", plate.type = "growth", position = "1A",

interval = 1)

R> tecan

Class OPM

From file

Hours measured 71

Number of wells 24

Plate type CUSTOM:GROWTH

Position 1A

Setup time Mon Mar 10 20:59:14 2014

Metadata 0

Aggregated FALSE

Discretized FALSE



M. Göker 7

Note that we have to refer to the previously registered plate type, “growth”. If several plates
of this plate type are to be dealt with, the position argument is important for identifying
each plate. The format of the position entry can, in principle, be arbitrarily selected by
the user, but the shown format is the recommended one, i.e. an integer followed by a single
letter. The optional interval argument provides the time interval between two consecutive
measurements. In the given example one measurement per hour was recorded, thus the default
fits perfectly when assigning increasing integers starting at 0. If interval is stated explicitly,
ideally, it is provided in hours. Time series with irregular intervals can be entered with the
same argument (by directly providing each time point). See the manual for further details on
the usage of this argument.

The generated OPM object can now be split according to the repetition structure of the wells,
and metadata can be added that describe each resulting plate:

R> tecan <- split(tecan)

R> metadata(tecan) <- data.frame(Replicate = c(1, 2, 1, 2),

Strain = rep(c("DSM30083", "DSM18039"), each = 2),

stringsAsFactors = FALSE)

R> dim(tecan)

[1] 4 72 6

4. Visualisation of growth curves

Visualising raw measurements of growth curves with the methods intended for PM data
is straightforward, but some adaptations are necessary due to the deviations between the
distinct kinds of data. For instance, the expected maximum for PM data can seldom be used
for delimiting the y axes, and the data are not measured in OmniLog➤ units, and a negative
control might not be present:

R> library(gridExtra)

R> plot.fm <- xy_plot(potato.fm, theor.max = FALSE, rcr = 1,

include = "Genotype", main = list(in.parens = FALSE),

ylab = "Fresh cell mass [mg]", neg.ctrl = FALSE)

R> plot.dm <- xy_plot(potato.dm, theor.max = FALSE, rcr = 1,

include = "Genotype", main = list(in.parens = FALSE),

ylab = "Dry mass [mg]", neg.ctrl = FALSE)

R> grid.arrange(plot.fm, plot.dm, ncol = 2)

The result is shown in Figure 1. The TECAN data (which contain a negative control) can be
visualised in the same way as the potato data, yielding Figure 2. Note the rm.num argument,
which causes the removal of the numbering from the end of the full well names (which is not
needed any more after applying the split function as described in Section 3.3):

R> xy_plot(tecan, theor.max = FALSE, include = "Strain",

main = list(in.parens = FALSE), ylab = "OD at 690nm", rm.num = TRUE)



8 User-defined plates in opm (March 10, 2014)

Growth experiment, fresh mass

Time [h]

F
re

sh
 c

el
l m

as
s 

[m
g] 5000

10000

15000

20000

A01 (0.16M NaCl)

5 10 15

A02 (0.32M NaCl)

5 10 15

A03 (0.5M Sorbitol)

5000

10000

15000

20000

A04 (Control)

07−08−1
07−08−2
WT

Growth experiment, dry mass

Time [h]

D
ry

 m
as

s 
[m

g]

200

400

600

800

A01 (0.16M NaCl)

5 10 15

A02 (0.32M NaCl)

5 10 15
A03 (0.5M Sorbitol)

200

400

600

800

A04 (Control)

07−08−1
07−08−2
WT

Figure 1: Potato cell line growth measurements, recorded as fresh mass (left) and dry mass
(right), visualised using the xy_plot method. See Section 2.7 and Section 3.7 in the main
tutorial for details on this kind of plotting. Considering the fresh weight, the plot indicates
that the wild type grows better than the genetically modified cell lines under non-stress
(control) conditions. It also indicates that the stresses impair growth but that the genetically
modified cells grow better then the wild type under moderate stress conditions. The results
for the dry mass are similar except for the behaviour under Sorbitol stress.



M. Göker 9

Growth on Glucose

Time [h]

O
D

 a
t 6

90
nm

0.2

0.4

0.6

0.8

1.0

A01 (Negative Control)

0 20 40 60

A02 (10mM Glucose) A03 (20mM Glucose)

0 20 40 60

A04 (50mM Glucose) A05 (100mM Glucose)

0 20 40 60

0.2

0.4

0.6

0.8

1.0

A06 (200mM Glucose)

DSM18039
DSM30083

Figure 2: Growth of two E. coli strains on Glucose, visualised using the xy_plot method.
See Section 2.7 and Section 3.7 in the main tutorial for details on this kind of plotting. The
plot indicates that one of the strains outgrows the other unless high concentrations of Glucose
are applied.



10 User-defined plates in opm (March 10, 2014)

5. Estimating parameters from growth curves

The next step is the estimation of curve parameters using do_aggr. See Section 2.5 and
Section 3.5 in the main tutorial for details on aggregation methods. The main difference
with respect to user-entered growth-curve data is that these may contain much fewer time
points than PM measurements. So the question arises which spline estimation is optimal for
such measurements, because all spline-fitting procedures have been optimised for estimating
parameters from PM data. The following (informal) comparison, however, shows little differ-
ences between the methods. We first define a helper function for plotting parameters obtained
with distinct approaches:

R> plot_param_diff <- function(...) {

x <- list(...)

if (is.null(names(x)))

names(x) <- seq_along(x)

for (param in param_names()) {

y <- lapply(lapply(x, aggregated, param, ci = FALSE), unlist)

for (name in names(y)[-1]) {

plot(y[[1]], y[[name]], xlab = names(y)[1], ylab = name,

main = param, pch = 19, col = "darkgrey")

abline(line(y[[1]], y[[name]]), lty = "dashed")

}

}

invisible(NULL)

}

In the next step, the distinct spline-fitting approaches have to be applied.

R> sm.tecan <- do_aggr(tecan, method = "splines", boot = 0,

options = set_spline_options(type = "smooth.spline"))

R> tp.tecan <- do_aggr(tecan, method = "splines", boot = 0,

options = set_spline_options(type = "tp.spline"))

R> p.tecan <- do_aggr(tecan, method = "splines", boot = 0,

options = set_spline_options(type = "p.spline"))

After these preparations the methods can be visually compared as follows.

R> old.par <- par(mfrow = c(2, 4))

R> plot_param_diff(Sm = sm.tecan, Tp = tp.tecan, P = p.tecan)

R> par(old.par)

Apparently the distinct spline-fitting methods yield approximately the same estimates for all
parameters. Thus even in the case of comparatively few data points it seems that spline
fitting as implemented in opm can robustly be applied. For the forthcoming analyses we
restrict ourselves to the results obtained with smoothing splines.

R> tecan <- sm.tecan

R> rm(tp.tecan, p.tecan, sm.tecan) # tidy up

R> potato.fm <- do_aggr(potato.fm, method = "splines", boot = 0,

options = set_spline_options(type = "smooth.spline"))

R> potato.dm <- do_aggr(potato.dm, method = "splines", boot = 0,

options = set_spline_options(type = "smooth.spline"))



M. Göker 11

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●
●
●

●

0.00 0.08

0.
00

0.
04

0.
08

0.
12

mu

Sm

T
p

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●●
●

●

0.00 0.08

0.
00

0.
04

0.
08

0.
12

mu

Sm

P

●
●

●

●●●

●

●
●
●

●●

●

●●●●●

●

●●●●●

−250 −50

−
25

0
−

15
0

−
50

0

lambda

Sm

T
p

●
●

●

●●●

●

●
●
●

●●

●

●●●●●

●

●●●●●

−250 −50

−
25

0
−

15
0

−
50

0

lambda

Sm

P

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●●
●

0.2 0.6 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

A

Sm

T
p

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●●
●

0.2 0.6 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

A

Sm

P

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●
●
●●●

10 30 50

10
20

30
40

50

AUC

Sm

T
p

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●
●
●●●

10 30 50

10
20

30
40

50
AUC

Sm

P

Figure 3: Correlation of curve parameters estimated using different spline-fitting options.
There are obviously quite high correlations for all parameters, hence spline fitting appears
to be robust even when dealing with comparatively few data points. Negative λ values can
occur in the case of negative reactions.



12 User-defined plates in opm (March 10, 2014)

Plots based on the estimated curve parameter could now be generated, such as heat maps or
confidence-interval plots. As there is no difference to plotting PM data, we refer to Section 2.8
and Section 3.8 in the main tutorial for details.

6. Statistical analysis of growth curves

In the following we will use opm_mcp to assess whether the conclusions from the graphical
analysis (Figure 2 and Figure 1) can be confirmed for the example data. The opm_mcp method
is extensively documented in Section 2.9 and particularly Section 3.9 of the main tutorial,
hence we here restrict ourselves to just the necessary function calls.

The following code answers the main question regarding the potato data sets, i.e. for which
treatment (well) significant or insignificant differences between the genotypes are found, and
how large the according effect size is.

R> dm.mcp <- opm_mcp(potato.dm, ~ J(Well, Genotype), m.type = "aov",

linfct = c(Pairs.Well = 1), max = 7, in.parens = FALSE)

R> fm.mcp <- opm_mcp(potato.fm, ~ J(Well, Genotype), m.type = "aov",

linfct = c(Pairs.Well = 1), max = 7, in.parens = FALSE)

Using the dedicated plot method, the results can be visualised as demonstrated in Figure 4.

R> library(multcomp) # now needed

R> old.par <- par(mfrow = c(2, 1), mar = c(1, 15, 2, 1))

R> plot(fm.mcp)

R> plot(dm.mcp, main = "")

R> par(old.par)

Results obtained with opm_mcp confirm the suspicion from Figure 1 that the stresses impair
growth but that, when measured using fresh mass (Figure 4, upper section), the genetically
modified cells grow better then the wild type under moderate stress conditions. In contrast,
the wild type outgrows the genetically modified lineages under non-stress (control) conditions.
In the dry-mass measurements (Figure 4, lower section) some differences are less apparent.
For instance, there is no significant difference between the lineages under control conditions.
See the publication by Vaas et al. (2013) for an in-depth interpretation of these results.

The TECAN data can be analysed in an analogous fashion.

R> tecan.mcp <- opm_mcp(tecan, ~ J(Well, Strain), m.type = "aov",

linfct = c(Pairs.Well = 1), full = FALSE)

Plotting the object accordingly yields Figure 5:

R> old.mar <- par(mar = c(3, 15, 3, 2))

R> plot(tecan.mcp)

R> par(old.mar)

The plot in Figure 2 indicated that one of the strains outgrows the other unless high concen-
trations of Glucose are applied. This can be confirmed with the opm_mcp analysis (Figure 5),
as significant differences between the two strains only occur for moderate Glucose concentra-
tions (wells “A02” and“A03”) but neither in the control treatment nor for high concentrations
of the sugar.



M. Göker 13

−4000 0 2000 6000

‘Control/WT‘ − ‘Control/07−08−2‘
‘Control/WT‘ − ‘Control/07−08−1‘

‘Control/07−08−2‘ − ‘Control/07−08−1‘
‘0.5M S./WT‘ − ‘0.5M S./07−08−2‘
‘0.5M S./WT‘ − ‘0.5M S./07−08−1‘

‘0.5M S./07−08−2‘ − ‘0.5M S./07−08−1‘
‘0.32M./WT‘ − ‘0.32M./07−08−2‘
‘0.32M./WT‘ − ‘0.32M./07−08−1‘

‘0.32M./07−08−2‘ − ‘0.32M./07−08−1‘
‘0.16M./WT‘ − ‘0.16M./07−08−2‘
‘0.16M./WT‘ − ‘0.16M./07−08−1‘

‘0.16M./07−08−2‘ − ‘0.16M./07−08−1‘ (
(

(
(
(
(

(
(

(
(

(
(

)
)

)
)
)
)

)
)

)
)

)
)

●

●

●

●

●

●

●

●

●

●

●

●

95% family−wise confidence level

‘Control/WT‘ − ‘Control/07−08−2‘
‘Control/WT‘ − ‘Control/07−08−1‘

‘Control/07−08−2‘ − ‘Control/07−08−1‘
‘0.5M S./WT‘ − ‘0.5M S./07−08−2‘
‘0.5M S./WT‘ − ‘0.5M S./07−08−1‘

‘0.5M S./07−08−2‘ − ‘0.5M S./07−08−1‘
‘0.32M./WT‘ − ‘0.32M./07−08−2‘
‘0.32M./WT‘ − ‘0.32M./07−08−1‘

‘0.32M./07−08−2‘ − ‘0.32M./07−08−1‘
‘0.16M./WT‘ − ‘0.16M./07−08−2‘
‘0.16M./WT‘ − ‘0.16M./07−08−1‘

‘0.16M./07−08−2‘ − ‘0.16M./07−08−1‘ (
(

(
(

(
(

(
(

(
(

(
(

)
)

)
)

)
)

)
)

)
)

)
)

●

●

●

●

●

●

●

●

●

●

●

●

Figure 4: Point estimates and 95% confidence intervals in a “Pairs”-type comparison of group
means for the fresh-mass (upper section) and dry-mass (lower section) potato cell-line example
data. Significant differences are those whose confidence intervals do not cross the dotted line
at x = 0; effect sizes are also easily visible. Compare the outcome with Figure 1 and see the
main text for an interpretation.



14 User-defined plates in opm (March 10, 2014)

−0.1 0.0 0.1 0.2 0.3

‘A06/DSM18039‘ − ‘A06/DSM30083‘

‘A05/DSM18039‘ − ‘A05/DSM30083‘

‘A04/DSM18039‘ − ‘A04/DSM30083‘

‘A03/DSM18039‘ − ‘A03/DSM30083‘

‘A02/DSM18039‘ − ‘A02/DSM30083‘

‘A01/DSM18039‘ − ‘A01/DSM30083‘ (

(

(

(

(

(

)

)

)

)

)

)

●

●

●

●

●

●

95% family−wise confidence level

Figure 5: Point estimates and 95% confidence intervals in a “Pairs”-type comparison of group
means for the TECAN example data obtained from two E. coli strains. Significant differences
are those whose confidence intervals do not cross the dotted line at x = 0; effect sizes are also
easily visible. Compare the outcome with Figure 2 and see the main text for an interpretation.



M. Göker 15

7. Acknowledgements

The author is grateful to Victoria Michael (Deutsche Sammlung von Mikroorganismen und
Zellkulturen (DSMZ)) for providing growth curves measured with a TECAN instrument.
Cordial thanks are addressed to Lea A.I. Vaas (DSMZ) for providing the potato growth mea-
surements and background information on these data, as well as for clarifying some technical
issues related to the TECAN data.

References

Vaas LAI, Marheine M, Sikorski J, Göker M, Schumacher HM (2013). “Impacts of pr-
10a Overexpression at the Molecular and the Phenotypic Level.” International Jour-

nal of Molecular Sciences, 14, 15141–15166. doi:10.3390/ijms140715141. URL http:

//www.mdpi.com/1422-0067/14/7/15141.

Affiliation:

Markus Göker
Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures
Braunschweig

Telephone: +49/531-2616-272
Fax: +49/531-2616-237
E-mail: markus.goeker@dsmz.de
URL: www.dsmz.de

http://dx.doi.org/10.3390/ijms140715141
http://www.mdpi.com/1422-0067/14/7/15141
http://www.mdpi.com/1422-0067/14/7/15141
mailto:markus.goeker@dsmz.de
www.dsmz.de

	Introduction
	Preparation
	Growth-curve data input
	User-entered data frames
	Direct registration of plate types
	Input of TECAN data

	Visualisation of growth curves
	Estimating parameters from growth curves
	Statistical analysis of growth curves
	Acknowledgements

