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Introduction

Horn’s parallel analysis (PA) is an empirical method to decide how many
components in a principal component analysis (PCA) or factors in a com-
mon factor analysis (FA) drive the variance observed in a data set of n
observations on p variables (Horn, 1965). This decision of how many compo-
nents or factors to retain is critical in applications of PCA or FA to reducing
the dimensionality of data in analysis (as when compositing multiple scale
items into a single score), and also in exploratory factor analysis where the
different contributions of each factor to each observed variable help generate
theory (Preacher and MacCallum, 2003; Velicer and Jackson, 1990). As will
be shown, the development of PA was predicated upon properties of PCA.
However, some have been exponents of the use of PA for FA (Velicer, Eaton,
and Fava, 2000). The correct application of PA with FA requires modifica-
tion to the original PA procedure. This paper attempts to clarify PA with
both PCA and FA.

Concerning eigenvalues in PCA and FA

PCA and FA are two similar methods used to describe the multicolinearity
in an n by p matrix R of observed data. Both methods produce eigenvalues
(λs ordered in magnitude from largest (λ1) to smallest (λp) which apportion
variance along p unobserved dimensions. One major interpretive difference
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between PCA and FA, is that in the former, each (unrotated) eigenvalue rep-
resents a portion of total standardized variance in R, and in the later each
(unrotated) eigenvalue represents a portion of common standardized variance
shared among all p variables. This means that the eigenvalues of a principal
component analysis sum to p, and that the eigenvalues of an common factor
analysis sum to less than p.

For purposes of this article, PCA is taken to be a function of observed n
by p data set R that returns a set of p eigenvalues. If e (A) is a function
returning the eigenvalues of square matrix A, and cov (R) is a function re-
turning the covariance matrix of R, then a PCA of R returns the matrix λ
of eigenvalues as in Equation 1.

λR = e (cov (R)) (1)

Where

λR =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λp

 (2)

If U is a matrix of n observations of p uncorrelated variables, then as n ap-
proaches ∞, λU approaches the identity matrix I. (Equation 3) This jives
with the substantive interpretation of PCA as apportioning total standard-
ized variance: if p variables are perfectly uncorrelated, then in an infinite
population they must each explain exactly the same amount of standardized
variance, namely (1/p)p, or 1. One can easily demonstrate this property by
running the following series of commands in R which return the eigenvalues
of U for progressively larger values of n (the command returns a vector of
the λs for a PCA of U, rather than the matrix λU):

n <- 100

U <- matrix(rnorm(n*p),n,p)

eigen(cor(U), only.values = TRUE)[[1]]

n <- 10000

U <- matrix(rnorm(n*p),n,p)

eigen(cor(U), only.values = TRUE)[[1]]

n <- 1000000

2



U <- matrix(rnorm(n*p),n,p)

eigen(cor(U), only.values = TRUE)[[1]]

lim
n→∞

λU = I (3)

FA relevant to PA can be treated with the same formality. If the function
diag (A) of a square matrix returns a square matrix with the main diagonal
elements (aij where i = j) of A, and zeros in all other elements, and if A+ is
the Moore-Penrose inverse (also ’generalized inverse’, or ’pseudoinverse’) of
the matrix A, then an FA of R returns the matrix λR of eigenvalues as in
Equation 4.

λR = e
(

cov (R)− diag
(
cov (R)+)+) (4)

If U is a matrix of n observations on p uncorrelated variables, then as n
approaches∞, λU approaches the zero matrix 0. (Equation 5) This jives with
the substantive interpretation of common factor analysis as apportioning
common standardized variance: if p variables are perfectly uncorrelated, then
in an infinite population there can be no common standardized variance,
so each factor ’explains’ zero variance. One can easily demonstrate this
property by running the following series of commands in R (requires the
MASS package) which return the eigenvalues of U for progressively larger
values of n (the command returns a vector of the λs for an FA of U, rather
than the matrix λU):

library(MASS)

n <- 100

U <- matrix(rnorm(n*p),n,p)

eigen(cor(U)-ginv(diag(diag(ginv(cor(U))))), only.values = TRUE)[[1]]

n <- 10000

U <- matrix(rnorm(n*p),n,p)

eigen(cor(U)-ginv(diag(diag(ginv(cor(U))))), only.values = TRUE)[[1]]

n <- 1000000

U <- matrix(rnorm(n*p),n,p)

eigen(cor(U)-ginv(diag(diag(ginv(cor(U))))), only.values = TRUE)[[1]]

lim
n→∞

λU = 0 (5)

The difference between Equation 3 and Equation 5 is critical to the correct
application of PA to PCA versus FA.
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Applying PA

Kaiser (1960) asserted (while laboring under the misnomer of FA as meaning
PCA) that in application one would retain those components with eigenvalues
greater than one. (Equation 6)

λq

{
> 1 retain
≤ 1 do not retain

(6)

Where q indexes the eigenvalues from 1 to p.

Horn (1965) elaborated upon this logic by pointing out that applied re-
searchers do not have an infinite number of observations. According to Horn,
in order to account for ”sampling error and least squares bias” due to finite
n, one would want to:

1. conduct a parallel PCA on an n by p matrix of random values;

2. repeat this k times;

3. average the eigenvalues λr
q over k, to produce λ̄r

q; and

4. adjust λq by subtracting from it
(
λ̄r

q − 1
)

to produce λadj
q .

The retention criterion of PA is to retain those first components with ad-
justed eigenvalues greater than one (technically, all components following
the first component with an adjusted eigenvalue less than one were rejected;
the adjustment to subsequent components often increases their eigenvalues,
sometimes above the value of one). (Equation 7) This retention criterion
can be stated in a mathematically equivalent way as retain those first com-
ponents with unadjusted eigenvalues greater than the corresponding mean
random eigenvalue. (Equation 8)

λadj
q

{
> 1 retain
≤ 1 do not retain

(7)

λq

{
> λ̄r

q retain
≤ λ̄r

q do not retain
(8)

PA must be amended for use with FA by calculating the adjusted eigenvalue
λadj

q as λq − λ̄r
q. The retention criteria must likewise be changed to retain
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those first adjusted eigenvalues greater than zero. (Equation 9) And as with
PA for PCA, this criterion can be restated in an equivalent form as retain
those unadjusted eigenvalues greater than the corresponding mean random
eigenvalue. (Equation 8)

λadj
q

{
> 0 retain
≤ 0 do not retain

(9)
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