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1 Introduction

The majority of recursive partitioning algorithms are special cases of a sim-
ple two-stage algorithm: First partition the observations by univariate splits in
a recursive way and second fit a constant model in each cell of the resulting
partition. The most popular implementations of such algorithms are ‘CART’
(Breiman et al., 1984) and ‘C4.5’ (Quinlan, 1993). Not unlike AID, both perform
an exhaustive search over all possible splits maximizing an information measure
of node impurity selecting the covariate showing the best split. This approach
has two fundamental problems: overfitting and a selection bias towards covari-
ates with many possible splits. With respect to the overfitting problem Mingers
(1987) notes that the algorithm

[. . . ] has no concept of statistical significance, and so cannot distin-
guish between a significant and an insignificant improvement in the
information measure.

With the party package we enter at the point where White and Liu (1994)
demand for

[. . . ] a statistical approach [to recursive partitioning] which takes
into account the distributional properties of the measures.

We present a unified framework embedding recursive binary partitioning into
the well defined theory of permutation tests developed by Strasser and Weber
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(1999). The conditional distribution of statistics measuring the association be-
tween responses and covariates is the basis for an unbiased selection among
covariates measured at different scales. Moreover, multiple test procedures are
applied to determine whether no significant association between any of the co-
variates and the response can be stated and the recursion needs to stop.

2 Recursive Binary Partitioning

We focus on regression models describing the conditional distribution of a re-
sponse variable Y given the status of m covariates by means of tree-structured
recursive partitioning. The response Y from some sample space Y may be multi-
variate as well. The m-dimensional covariate vector X = (X1, . . . , Xm) is taken
from a sample space X = X1× · · · ×Xm. Both response variable and covariates
may be measured at arbitrary scales. We assume that the conditional distribu-
tion D(Y|X) of the response Y given the covariates X depends on a function
f of the covariates

D(Y|X) = D(Y|X1, . . . , Xm) = D(Y|f(X1, . . . , Xm)),

where we restrict ourselves to partition based regression relationships, i.e., r
disjoint cells B1, . . . , Br partitioning the covariate space X =

⋃r
k=1 Bk. A model

of the regression relationship is to be fitted based on a learning sample Ln, i.e.,
a random sample of n independent and identically distributed observations,
possibly with some covariates Xji missing,

Ln = {(Yi, X1i, . . . , Xmi); i = 1, . . . , n}.

For the sake of simplicity, we use a learning sample

> ls <- data.frame(y = gl(3, 50, labels = c("A", "B",

+ "C")), x1 = rnorm(150) + rep(c(1, 0, 0), c(50,

+ 50, 50)), x2 = runif(150))

in the following illustrations. A generic algorithm for recursive binary partition-
ing for a given learning sample Ln can be formulated using non-negative integer
valued case weights w = (w1, . . . , wn). Each node of a tree is represented by a
vector of case weights having non-zero elements when the corresponding obser-
vations are elements of the node and are zero otherwise. The following algorithm
implements recursive binary partitioning:

1. For case weights w test the global null hypothesis of independence between
any of the m covariates and the response. Stop if this hypothesis cannot
be rejected. Otherwise select the covariate Xj∗ with strongest association
to Y.

2. Choose a set A∗ ⊂ Xj∗ in order to split Xj∗ into two disjoint sets A∗ and
Xj∗ \A∗. The case weights wleft and wright determine the two subgroups
with wleft,i = wiI(Xj∗i ∈ A∗) and wright,i = wiI(Xj∗i 6∈ A∗) for all
i = 1, . . . , n (I(·) denotes the indicator function).
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3. Recursively repeat steps 1 and 2 with modified case weights wleft and
wright, respectively.

The separation of variable selection and splitting procedure into steps 1 and 2 of
the algorithm is the key for the construction of interpretable tree structures not
suffering a systematic tendency towards covariates with many possible splits
or many missing values. In addition, a statistically motivated and intuitive
stopping criterion can be implemented: We stop when the global null hypothesis
of independence between the response and any of the m covariates cannot be
rejected at a pre-specified nominal level α. The algorithm induces a partition
{B1, . . . , Br} of the covariate space X , where each cell B ∈ {B1, . . . , Br} is
associated with a vector of case weights.

In package party, the dependency structure and the variables may be spec-
ified in a traditional formula based way

> library("party")

> ctree(y ~ x1 + x2, data = ls)

Case counts w may be specified using the weights argument.

3 Recursive Partitioning by Conditional Infer-
ence

In the main part of this section we focus on step 1 of the generic algorithm.
Unified tests for independence are constructed by means of the conditional dis-
tribution of linear statistics in the permutation test framework developed by
Strasser and Weber (1999). The determination of the best binary split in one
selected covariate and the handling of missing values is performed based on
standardized linear statistics within the same framework as well.

Variable Selection and Stopping Criteria. At step 1 of the generic algo-
rithm given in Section 2 we face an independence problem. We need to decide
whether there is any information about the response variable covered by any
of the m covariates. In each node identified by case weights w, the global hy-
pothesis of independence is formulated in terms of the m partial hypotheses
Hj

0 : D(Y|Xj) = D(Y) with global null hypothesis H0 =
⋂m

j=1 Hj
0 . When we

are not able to reject H0 at a pre-specified level α, we stop the recursion. If the
global hypothesis can be rejected, we measure the association between Y and
each of the covariates Xj , j = 1, . . . ,m, by test statistics or P -values indicating
the deviation from the partial hypotheses Hj

0 .
For notational convenience and without loss of generality we assume that the

case weights wi are either zero or one. The symmetric group of all permutations
of the elements of (1, . . . , n) with corresponding case weights wi = 1 is denoted
by S(Ln,w). A more general notation is given in the Appendix. We measure
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the association between Y and Xj , j = 1, . . . ,m, by linear statistics of the form

Tj(Ln,w) = vec

(
n∑

i=1

wigj(Xji)h(Yi, (Y1, . . . ,Yn))>
)
∈ Rpjq (1)

where gj : Xj → Rpj is a non-random transformation of the covariate Xj . The
transformation may be specified using the xtrafo argument. If, for example, a
ranking both x1 and x2 is required,

> ctree(y ~ x1 + x2, data = ls, xtrafo = function(data) trafo(data,

+ numeric_trafo = rank))

can be used. The influence function h : Y ×Yn → Rq depends on the responses
(Y1, . . . ,Yn) in a permutation symmetric way. Section 4 explains how to choose
gj and h in different practical settings. A pj × q matrix is converted into a
pjq column vector by column-wise combination using the ‘vec’ operator. The
influence function can be specified using the ytrafo argument.

The distribution of Tj(Ln,w) under Hj
0 depends on the joint distribution

of Y and Xj , which is unknown under almost all practical circumstances. At
least under the null hypothesis one can dispose of this dependency by fixing the
covariates and conditioning on all possible permutations of the responses. This
principle leads to test procedures known as permutation tests. The conditional
expectation µj ∈ Rpjq and covariance Σj ∈ Rpjq×pjq of Tj(Ln,w) under H0

given all permutations σ ∈ S(Ln,w) of the responses are derived by Strasser
and Weber (1999):

µj = E(Tj(Ln,w)|S(Ln,w)) = vec

((
n∑

i=1

wigj(Xji)

)
E(h|S(Ln,w))>

)
,

Σj = V(Tj(Ln,w)|S(Ln,w))

=
w·

w· − 1
V(h|S(Ln,w))⊗

(∑
i

wigj(Xji)⊗ wigj(Xji)>
)

(2)

− 1
w· − 1

V(h|S(Ln,w))⊗

(∑
i

wigj(Xji)

)
⊗

(∑
i

wigj(Xji)

)>
where w· =

∑n
i=1 wi denotes the sum of the case weights, ⊗ is the Kronecker

product and the conditional expectation of the influence function is

E(h|S(Ln,w)) = w−1
·

∑
i

wih(Yi, (Y1, . . . ,Yn)) ∈ Rq

with corresponding q × q covariance matrix

V(h|S(Ln,w)) = w−1
·

∑
i

wi (h(Yi, (Y1, . . . ,Yn))− E(h|S(Ln,w)))

(h(Yi, (Y1, . . . ,Yn))− E(h|S(Ln,w)))> .
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Having the conditional expectation and covariance at hand we are able to stan-
dardize a linear statistic T ∈ Rpq of the form (1) for some p ∈ {p1, . . . , pm}.
Univariate test statistics c mapping an observed multivariate linear statistic
t ∈ Rpq into the real line can be of arbitrary form. An obvious choice is the
maximum of the absolute values of the standardized linear statistic

cmax(t, µ,Σ) = max
k=1,...,pq

∣∣∣∣∣ (t− µ)k√
(Σ)kk

∣∣∣∣∣
utilizing the conditional expectation µ and covariance matrix Σ. The application
of a quadratic form cquad(t, µ,Σ) = (t−µ)Σ+(t−µ)> is one alternative, although
computationally more expensive because the Moore-Penrose inverse Σ+ of Σ is
involved.

The type of test statistic to be used can be specified by means of the
ctree_control function, for example

R> ctree(y ~ x1 + x2, data = ls,

control = ctree_control(teststattype = "maxabs"))

uses cmax and

R> ctree(y ~ x1 + x2, data = ls,

control = ctree_control(teststattype = "quadform"))

takes cquad (the default).
It is important to note that the test statistics c(tj , µj ,Σj), j = 1, . . . ,m,

cannot be directly compared in an unbiased way unless all of the covariates are
measured at the same scale, i.e., p1 = pj , j = 2, . . . ,m. In order to allow for
an unbiased variable selection we need to switch to the P -value scale because
P -values for the conditional distribution of test statistics c(Tj(Ln,w), µj ,Σj)
can be directly compared among covariates measured at different scales. In step
1 of the generic algorithm we select the covariate with minimum P -value, i.e.,
the covariate Xj∗ with j∗ = argminj=1,...,m Pj , where

Pj = PHj
0
(c(Tj(Ln,w), µj ,Σj) ≥ c(tj , µj ,Σj)|S(Ln,w))

denotes the P -value of the conditional test for Hj
0 . So far, we have only ad-

dressed testing each partial hypothesis Hj
0 , which is sufficient for an unbiased

variable selection. A global test for H0 required in step 1 can be constructed
via an aggregation of the transformations gj , j = 1, . . . ,m, i.e., using a linear
statistic of the form

T(Ln,w) = vec

(
n∑

i=1

wi

(
g1(X1i)>, . . . , gm(Xmi)>

)>
h(Yi, (Y1, . . . ,Yn))>

)
.

However, this approach is less attractive for learning samples with missing val-
ues. Universally applicable approaches are multiple test procedures based on
P1, . . . , Pm. Simple Bonferroni-adjusted P -values mPj , available via
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> ctree_control(testtype = "Bonferroni")

or a min-P -value resampling approach

> ctree_control(testtype = "MonteCarlo")

are just examples and we refer to the multiple testing literature (e.g., Westfall
and Young, 1993) for more advanced methods. We reject H0 when the minimum
of the adjusted P -values is less than a pre-specified nominal level α and other-
wise stop the algorithm. In this sense, α may be seen as a unique parameter
determining the size of the resulting trees.

Splitting Criteria. Once we have selected a covariate in step 1 of the algo-
rithm, the split itself can be established by any split criterion, including those
established by Breiman et al. (1984) or Shih (1999). Instead of simple binary
splits, multiway splits can be implemented as well, for example utilizing the
work of O’Brien (2004). However, most splitting criteria are not applicable to
response variables measured at arbitrary scales and we therefore utilize the per-
mutation test framework described above to find the optimal binary split in one
selected covariate Xj∗ in step 2 of the generic algorithm. The goodness of a
split is evaluated by two-sample linear statistics which are special cases of the
linear statistic (1). For all possible subsets A of the sample space Xj∗ the linear
statistic

TA
j∗(Ln,w) = vec

(
n∑

i=1

wiI(Xj∗i ∈ A)h(Yi, (Y1, . . . ,Yn))>
)
∈ Rq

induces a two-sample statistic measuring the discrepancy between the samples
{Yi|wi > 0 and Xji ∈ A; i = 1, . . . , n} and {Yi|wi > 0 and Xji 6∈ A; i =
1, . . . , n}. The conditional expectation µA

j∗ and covariance ΣA
j∗ can be computed

by (2). The split A∗ with a test statistic maximized over all possible subsets A
is established:

A∗ = argmax
A

c(tA
j∗ , µ

A
j∗ ,Σ

A
j∗). (3)

The statistics c(tA
j∗ , µ

A
j∗ ,Σ

A
j∗) are available for each node with

> ctree_control(savesplitstats = TRUE)

and can be used to depict a scatter plot of the covariate Xj∗ against the statistics.
Note that we do not need to compute the distribution of c(tA

j∗ , µ
A
j∗ ,Σ

A
j∗) in

step 2. In order to anticipate pathological splits one can restrict the number
of possible subsets that are evaluated, for example by introducing restrictions
on the sample size or the sum of the case weights in each of the two groups of
observations induced by a possible split. For example,

> ctree_control(minsplit = 20)

requires the sum of the weights in both the left and right daughter node to
exceed the value of 20.
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Missing Values and Surrogate Splits. If an observation Xji in covariate
Xj is missing, we set the corresponding case weight wi to zero for the compu-
tation of Tj(Ln,w) and, if we would like to split in Xj , in TA

j (Ln,w) as well.
Once a split A∗ in Xj has been implemented, surrogate splits can be established
by searching for a split leading to roughly the same division of the observations
as the original split. One simply replaces the original response variable by a
binary variable I(Xji ∈ A∗) coding the split and proceeds as described in the
previous part. The number of surrogate splits can be controlled using

> ctree_control(maxsurrogate = 3)

Inspecting a Tree. Once we have fitted a conditional tree via

> ct <- ctree(y ~ x1 + x2, data = ls)

we can inspect the results via a print method

> ct

Conditional tree with 2 terminal nodes

Response: y
Inputs: x1, x2
Number of observations: 150

1) x1 <= 0.8255248; criterion = 1, statistic = 22.991
2)* weights = 96

1) x1 > 0.8255248
3)* weights = 54

or by looking at a graphical representation as in Figure 1.
Each node can be extracted by its node number, i.e., the root node is

> nodes(ct, 1)

[[1]]
1) x1 <= 0.8255248; criterion = 1, statistic = 22.991
2)* weights = 96

1) x1 > 0.8255248
3)* weights = 54

This object is a conventional list with elements

> names(nodes(ct, 1)[[1]])

[1] "nodeID" "weights" "criterion" "terminal"
[5] "psplit" "ssplits" "prediction" "left"
[9] "right"
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> plot(ct)

x1
p < 0.001

1

≤ 0.826 > 0.826

Node 2 (n = 96)

A B C

0

0.2

0.4

0.6

0.8

1

Node 3 (n = 54)

A B C

0

0.2

0.4

0.6

0.8

1

Figure 1: A graphical representation of a classification tree.

and we refer to the manual pages for a description of those elements. The
Predict function aims at computing predictions in the space of the response
variable, in our case a factor

> Predict(ct, newdata = ls)

[1] A A A A C A C A C C A A C A A A A C A C A A A C A A A C C A
[31] A C A A C A A C C C A A C C C C A A A A A A C C C C A C C A
[61] C C C C C C A A A A A C C A C A C C C C C C C C C C C C A C
[91] A C A C C C C C C C C A C C C A C C A C C C C C C C A C C C
[121] C C C C C C C C C C C C C C C C C A C C C C A C C A C A C A
Levels: A B C

When we are interested in properties of the conditional distribution of the re-
sponse given the covariates, we use

> treeresponse(ct, newdata = ls[c(1, 51, 101), ])

[[1]]
[1] 0.5740741 0.2592593 0.1666667

[[2]]
[1] 0.5740741 0.2592593 0.1666667
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[[3]]
[1] 0.1979167 0.3750000 0.4270833

which, in our case, is a list with conditional class probabilities. We can determine
the node numbers of nodes some new observations are falling into by

> where(ct, newdata = ls[c(1, 51, 101), ])

[1] 3 3 2

4 Examples

Univariate Continuous or Discrete Regression. For a univariate nu-
meric response Y ∈ R, the most natural influence function is the identity
h(Yi, (Y1, . . . ,Yn)) = Yi. In case some observations with extremely large or
small values have been observed, a ranking of the observations may be appro-
priate: h(Yi, (Y1, . . . ,Yn)) =

∑n
k=1 wkI(Yk ≤ Yi) for i = 1, . . . , n. Numeric

covariates can be handled by the identity transformation gji(x) = x (ranks
are possible, too). Nominal covariates at levels 1, . . . ,K are represented by
gji(k) = eK(k), the unit vector of length K with kth element being equal to
one. Due to this flexibility, special test procedures like the Spearman test,
the Wilcoxon-Mann-Whitney test or the Kruskal-Wallis test and permutation
tests based on ANOVA statistics or correlation coefficients are covered by this
framework. Splits obtained from (3) maximize the absolute value of the stan-
dardized difference between two means of the values of the influence functions.
For prediction, one is usually interested in an estimate of the expectation of the
response E(Y|X = x) in each cell, an estimate can be obtained by

Ê(Y|X = x) =

(
n∑

i=1

wi(x)

)−1 n∑
i=1

wi(x)Yi.

Censored Regression. The influence function h may be chosen as Logrank or
Savage scores taking censoring into account and one can proceed as for univariate
continuous regression. This is essentially the approach first published by Segal
(1988). An alternative is the weighting scheme suggested by Molinaro et al.
(2004). A weighted Kaplan-Meier curve for the case weights w(x) can serve as
prediction.

J-Class Classification. The nominal response variable at levels 1, . . . , J is
handled by influence functions h(Yi, (Y1, . . . ,Yn)) = eJ(Yi). Note that for a
nominal covariate Xj at levels 1, . . . ,K with gji(k) = eK(k) the correspond-
ing linear statistic Tj is a vectorized contingency table. The conditional class
probabilities can be estimated via

P̂(Y = y|X = x) =

(
n∑

i=1

wi(x)

)−1 n∑
i=1

wi(x)I(Yi = y), y = 1, . . . , J.
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Ordinal Regression. Ordinal response variables measured at J levels, and
ordinal covariates measured at K levels, are associated with score vectors ξ ∈ RJ

and γ ∈ RK , respectively. Those scores reflect the ‘distances’ between the levels:
If the variable is derived from an underlying continuous variable, the scores can
be chosen as the midpoints of the intervals defining the levels. The linear statistic
is now a linear combination of the linear statistic Tj of the form

MTj(Ln,w) = vec

(
n∑

i=1

wiγ
>gj(Xji)

(
ξ>h(Yi, (Y1, . . . ,Yn)

)>)

with gj(x) = eK(x) and h(Yi, (Y1, . . . ,Yn)) = eJ(Yi). If both response and
covariate are ordinal, the matrix of coefficients is given by the Kronecker product
of both score vectors M = ξ ⊗ γ ∈ R1,KJ . In case the response is ordinal only,
the matrix of coefficients M is a block matrix

M =

 ξ1 0
. . .

0 ξ1

∣∣∣∣∣∣∣ . . .

∣∣∣∣∣∣∣
ξq 0

. . .
0 ξq

 or M = diag(γ)

when one covariate is ordered but the response is not. For both Y and Xj

being ordinal, the corresponding test is known as linear-by-linear association test
(Agresti, 2002). Scores can be supplied to ctree using the scores argument,
see Section 5 for an example.

Multivariate Regression. For multivariate responses, the influence function
is a combination of influence functions appropriate for any of the univariate re-
sponse variables discussed in the previous paragraphs, e.g., indicators for multi-
ple binary responses (Zhang, 1998; Noh et al., 2004), Logrank or Savage scores
for multiple failure times and the original observations or a rank transformation
for multivariate regression (De’ath, 2002).

5 Illustrations and Applications

In this section, we present regression problems which illustrate the potential
fields of application of the methodology. Conditional inference trees based on
cquad-type test statistics using the identity influence function for numeric re-
sponses and asymptotic χ2 distribution are applied. For the stopping criterion
a simple Bonferroni correction is used and we follow the usual convention by
choosing the nominal level of the conditional independence tests as α = 0.05.

Tree Pipit Abundance.

> data("treepipit", package = "coin")

> tptree <- ctree(counts ~ ., data = treepipit)
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> plot(tptree, terminal_panel = node_hist(tptree, breaks = 0:6 -

+ 0.5, ymax = 65, horizontal = FALSE, freq = TRUE))

coverstorey
p = 0.002

1

≤ 40 > 40

Node 2 (n = 24)

0 1 2 3 4 5

0

10

20

30

40

50

60

Node 3 (n = 62)

0 1 2 3 4 5

0

10

20

30

40

50

60

Figure 2: Conditional regression tree for the tree pipit data.

The impact of certain environmental factors on the population density of
the tree pipit Anthus trivialis is investigated by Müller and Hothorn (2004).
The occurrence of tree pipits was recorded several times at n = 86 stands which
were established on a long environmental gradient. Among nine environmental
factors, the covariate showing the largest association to the number of tree pipits
is the canopy overstorey (P =0.002). Two groups of stands can be distinguished:
Sunny stands with less than 40% canopy overstorey (n = 24) show a significantly
higher density of tree pipits compared to darker stands with more than 40%
canopy overstorey (n = 62). This result is important for management decisions
in forestry enterprises: Cutting the overstorey with release of old oaks creates a
perfect habitat for this indicator species of near natural forest environments.

Glaucoma & Laser Scanning Images.

> data("GlaucomaM", package = "ipred")

> gtree <- ctree(Class ~ ., data = GlaucomaM)

Laser scanning images taken from the eye background are expected to serve
as the basis of an automated system for glaucoma diagnosis. Although pre-
diction is more important in this application (Mardin et al., 2003), a simple
visualization of the regression relationship is useful for comparing the struc-
tures inherent in the learning sample with subject matter knowledge. For 98
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> plot(gtree)

vari
p < 0.001

1

≤ 0.059 > 0.059

vasg
p < 0.001

2

≤ 0.046 > 0.046

vart
p = 0.001

3

≤ 0.005 > 0.005

Node 4 (n = 51)

glaucoma normal

0

0.2

0.4

0.6

0.8

1
Node 5 (n = 22)

glaucoma normal

0

0.2

0.4

0.6

0.8

1
Node 6 (n = 14)

glaucoma normal

0

0.2

0.4

0.6

0.8

1
Node 7 (n = 109)

glaucoma normal

0

0.2

0.4

0.6

0.8

1

Figure 3: Conditional inference tree for the glaucoma data. For each inner node,
the Bonferroni-adjusted P -values are given, the fraction of glaucomatous eyes
is displayed for each terminal node.

patients and 98 controls, matched by age and gender, 62 covariates describing
the eye morphology are available. The data is part of the ipred package (Pe-
ters et al. (2002), http://CRAN.R-project.org). The first split in Figure 3
separates eyes with a volume above reference less than 0.059 mm3 in the infe-
rior part of the optic nerve head (vari). Observations with larger volume are
mostly controls, a finding which corresponds to subject matter knowledge: The
volume above reference measures the thickness of the nerve layer, expected to
decrease with a glaucomatous damage of the optic nerve. Further separation
is achieved by the volume above surface global (vasg) and the volume above
reference in the temporal part of the optic nerve head (vart).

The plot in Figure 3 shows the distribution of the classes in the terminal
nodes. This distribution can be shown for the inner nodes as well, namely
by specifying the appropriate panel generating function (node_barplot in our
case), see Figure 4.

As mentioned in Section 3, it might be interesting to have a look at the
split statistics the split point estimate was derived from. Those statistics can
be extracted from the splitstatistic element of a split and one can easily
produce scatterplots against the selected covariate. For all three inner nodes of
gtree, we produce such a plot in Figure 5. For the root node, the estimated
split point seems very natural, since the process of split statistics seems to have
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> plot(gtree, inner_panel = node_barplot, edge_panel = function(ctreeobj,

+ ...) {

+ function(...) invisible()

+ }, tnex = 1)

Node 1 (n = 196)
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1

Node 3 (n = 73)

glaucoma normal

0
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0.6
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1

Node 4 (n = 51)

glaucoma normal

0
0.2
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1
Node 5 (n = 22)

glaucoma normal

0
0.2
0.4
0.6
0.8

1
Node 6 (n = 14)

glaucoma normal

0
0.2
0.4
0.6
0.8

1
Node 7 (n = 109)

glaucoma normal

0
0.2
0.4
0.6
0.8

1

Figure 4: Conditional inference tree for the glaucoma data with the fraction of
glaucomatous eyes displayed for both inner and terminal nodes.

a clear maximum indicating that the simple split point model is something
reasonable to assume here. This is less obvious for nodes 2 and, especially, 3.

The class predictions of the tree for the learning sample (and for new ob-
servations as well) can be computed using the Predict function. A comparison
with the true class memberships is done by

> table(Predict(gtree), GlaucomaM$Class)

glaucoma normal
glaucoma 70 3
normal 28 95

When we are interested in conditional class probabilities, the treeresponse
method must be used. A graphical representation is shown in Figure 6.

Node Positive Breast Cancer.
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> cex <- 1.6

> inner <- nodes(gtree, 1:3)

> layout(matrix(1:length(inner), ncol = length(inner)))

> out <- sapply(inner, function(i) {

+ splitstat <- i$psplit$splitstatistic

+ x <- GlaucomaM[[i$psplit$variableName]][splitstat >

+ 0]

+ plot(x, splitstat[splitstat > 0], main = paste("Node",

+ i$nodeID), xlab = i$psplit$variableName,

+ ylab = "Statistic", ylim = c(0, 10), cex.axis = cex,

+ cex.lab = cex, cex.main = cex)

+ abline(v = i$psplit$splitpoint, lty = 3)

+ })

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

0.00 0.05 0.10 0.15 0.20

0
2

4
6

8
10

Node 1

vari

S
ta

tis
tic

●

●

●●

●

●

●

●

●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

0.01 0.03 0.05

0
2

4
6

8
10

Node 2

vasg

S
ta

tis
tic

●

●●

●

●

●
●

●

0.002 0.004 0.006 0.008
0

2
4

6
8

10

Node 3

vart

S
ta

tis
tic

Figure 5: Split point estimation in each inner node. The process of the stan-
dardized two-sample test statistics for each possible split point in the selected
input variable is show. The estimated split point is given as vertical dotted line.

> data("GBSG2", package = "ipred")

> stree <- ctree(Surv(time, cens) ~ ., data = GBSG2)

Recursive partitioning for censored responses has attracted a lot of interest
(e.g., Segal, 1988; LeBlanc and Crowley, 1992). Survival trees using P -value
adjusted Logrank statistics are used by Schumacher et al. (2001) for the evalua-
tion of prognostic factors for the German Breast Cancer Study Group (GBSG2)
data, a prospective controlled clinical trial on the treatment of node positive
breast cancer patients. Here, we use Logrank scores as well. Complete data
of seven prognostic factors of 686 women are used for prognostic modeling, the
dataset is available within the ipred package. The number of positive lymph
nodes (pnodes) and the progesterone receptor (progrec) have been identified
as prognostic factors in the survival tree analysis by Schumacher et al. (2001).
Here, the binary variable coding whether a hormonal therapy was applied or
not (horTh) additionally is part of the model depicted in Figure 7.
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> prob <- sapply(treeresponse(gtree), function(x) x[1]) +

+ runif(nrow(GlaucomaM), min = -0.01, max = 0.01)

> splitvar <- nodes(gtree, 1)[[1]]$psplit$variableName

> plot(GlaucomaM[[splitvar]], prob, pch = as.numeric(GlaucomaM$Class),

+ ylab = "Conditional Class Prob.", xlab = splitvar)

> abline(v = nodes(gtree, 1)[[1]]$psplit$splitpoint,

+ lty = 2)

> legend(0.15, 0.7, pch = 1:2, legend = levels(GlaucomaM$Class),

+ bty = "n")
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Figure 6: Estimated conditional class probabilities (slightly jittered) for the
Glaucoma data depending on the first split variable. The vertical line denotes
the first split point.

The estimated median survival time for new patients is less informative com-
pared to the whole Kaplan-Meier curve estimated from the patients in the learn-
ing sample for each terminal node. We can compute those ‘predictions’ by means
of the treeresponse method

> treeresponse(stree, newdata = GBSG2[1:2, ])

[[1]]
Call: survival:::survfit(formula = resp, weights = w[[i]], subset = w[[i]] >

0)

n events median 0.95LCL 0.95UCL
248 88 2093 1814 Inf
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> plot(stree)
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Figure 7: Tree-structured survival model for the GBSG2 data and the distri-
bution of survival times in the terminal nodes. The median survival time is
displayed in each terminal node of the tree.

[[2]]
Call: survival:::survfit(formula = resp, weights = w[[i]], subset = w[[i]] >

0)

n events median 0.95LCL 0.95UCL
166 77 1701 1174 2018

Mammography Experience.

> data("mammoexp", package = "party")

> mtree <- ctree(ME ~ ., data = mammoexp)

Ordinal response variables are common in investigations where the response
is a subjective human interpretation. We use an example given by Hosmer
and Lemeshow (2000), p. 264, studying the relationship between the mam-
mography experience (never, within a year, over one year) and opinions about
mammography expressed in questionnaires answered by n = 412 women. The
resulting partition based on scores ξ = (1, 2, 3) is given in Figure 8. Women
who (strongly) agree with the question ‘You do not need a mammogram unless
you develop symptoms’ seldomly have experienced a mammography. The vari-
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> plot(mtree)
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Figure 8: Ordinal regression for the mammography experience data with the
fractions of (never, within a year, over one year) given in the nodes. No admis-
sible split was found for node 4 because only 5 of 91 women reported a family
history of breast cancer and the sample size restrictions would require more than
5 observations in each daughter node.

able benefit is a score with low values indicating a strong agreement with the
benefits of the examination. For those women in (strong) disagreement with the
first question above, low values of benefit identify persons being more likely
to have experienced such an examination at all.
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