Estimating phylogenetic trees with phangorn (Version
0.99-2)

Klaus P. Schliep®
July 20, 2009

1 Introduction

These notes should enable the user to estimate phylogenetic trees from alignment data
with with different methods using the phangorn package. For more background on all
the methods see e.g. [2, [7]. This document illustrates some of the phangorn features to
estimate phylogenetic trees using different reconstruction methods. Small adaptations
to the scripts in [6] should enable the user to perform phylogenetic analysis.

2 Getting started

The first thing we have to do is to read in an alignment. Unfortunately there exists many
different file formats alignments can be stored in. The function read.phyDat is used
to read in an alignment. There are several functions to read in alignments depending
on the format of the dataset (nexus, phylip, fasta) and the kind of data (amino acid or
nucleotides) in the ape package [3] and phangorn. The function read.phyDat calls these
other functions. For the specific parameter settings available look in the help files of the
function read.dna (for phylip, fasta, clustal format), read.nexus.data for nexus files.
For amino acid data additional read.aa is called. We start our analysis the phangorn
package and then load in an alignment.

> library(phangorn)
> primates = read.phyDat("primates.dna", format = "phylip",
+ type = "DNA")

*mailto:k.p.schliep@massey.ac.nz

mailto:k.p.schliep@massey.ac.nz

3 Distance based methods

After reading in the alignment we can build a first tree with distance based methods. The
function dist.dna from the ape package computes distances for many DNA substitution
models. To use the function dist.dna we have to transform the data to class DNAbin. For
amino acids the function dist.ml offers common substitution models ("WAG”, "Dayhoft”,
"JTT” and "LG”). After constructing a distance matrix we reconstruct a rooted tree
with UPGMA and alternatively an unrooted tree using Neighbor Joining [5] [6].

> dm = dist.dna(as.DNAbin(primates))
> treeUPGMA = upgma (dm)
> treeNJ = NJ(dm)

We can use the plot the trees treeUPGMA and treeNJ (figure [1) with the commands:

> par(mfrow = c(1, 2), mar = c(1, 1, 4, 1))
> plot(treeUPGMA, main = "UPGMA")
> plot(treeNJ, "unrooted", main = "NJ")

Distance based methods are very fast and we will use the UPGMA and NJ tree as
starting trees for the maximum parsimony and maximum likelihood analysis.

4 Parsimony

The function parsimony returns the parsimony score, that is the number of changes
which are at least necessary to describe the data for a given tree. We can compare the
parsimony score or the two trees we computed so far:

> parsimony(treeUPGMA, primates)
[1] 751

> parsimony(treeNJ, primates)
[1] 746

We can use the function optim.parsimony performs tree rearrangements to find trees with
a lower parsimony score. So far the only tree rearrangement implemented is nearest-
neighbor interchanges (NNI).

> treePars = optim.parsimony(treeUPGMA, primates)
optimize topology: 751 --> 746

optimize topology: 746 --> 746

Final p-score 746 after 1 nni operations

> parsimony(treePars, primates)

[1] 746

UPGMA

Mouse

Lemur

Bovine

Tarsiel

Barblv

Crab-

—Jpn M

—Rhesu

Gibbol

Orang

Gorilla

Chimp

Humal

Squir |

NJ

Crab-E.Mac

BarbMacadpPrRYiasas n

Squir Monk

ouse

ursier Gorilla

Lemur

Figure 1: Rooted UPGMA tree and unrooted NJ tree

5 Maximum likelihood

The last method we will describe in this vignette is Maximum Likelihood (ML) as in-
troduced by Felsenstein [I]. We can easily compute the likelihood for a tree given the
data

> fit = pml(treeNJ, data = primates)

> fit

loglikelihood: -3077.846
unconstrained loglikelihood: -1230.335

Rate matrix:

acgt
a0111
cl1011
gl101
t1110

Base frequencies:
0.25 0.25 0.25 0.25

The function pml returns an object of class pml. This object contains the data, the
tree and many different parameters of the model like the likelihood etc. There are many
generic functions for the class pml available.

The object fit just estimated the likelihood for the tree it got supplied, but the branch
length are not optimized for for the Jukes-Cantor model yet, which can be done with
the function optim.pml.

> fitJC = optim.pml(fit, TRUE)
> logLik(£itJC)

With the default values pml will estimate a Jukes-Cantor model. The function up-
date.pml allows to change parameters. We will change the model to the GTR + T'(4)
+ I model and then optimize all the parameters.

> fitGTR = update(fit, k = 4, inv = 0.2)
> fitGTIR = optim.pml(fitGTR, TRUE, TRUE, TRUE, TRUE, TRUE)
> fitGTR

loglikelihood: -2609.589

unconstrained loglikelihood: -1230.335

4

Proportion of invariant sites: 0.006045091
Discrete gamma model

Number of rate categories: 4

Shape parameter: 3.175621

Rate matrix:

a C g t
0.0000000 0.6234389 32.36013 0.3867576
0.6234389 0.0000000 0.00000 13.8337603
2.3601271 0.0000000 0.00000 1.0000000
0.

a
c

g 3
t 3867576 13.8337603 1.00000 0.0000000

Base frequencies:
0.3918068 0.3795443 0.04024686 0.1884020

We can compare the trees for the JC and GTR + I'(4) 4+ I model with the AIC

> AIC(fitGTR)
[1] 5293.178
> AIC(£itJC)
[1] 6186.59

or the Shimodaira-Hasegawa test.

> SH.test(fitGTR, fitJC)

Trees In L Diff 1n L p-value
[1,] 1 -2609.589 0.0000 0.498
[2,] 2 -3068.295 458.7061 0.000

6 Appendix: Standard scripts for nucleotide or amino
acid analysis

Here we provide two standard scripts which can be adapted for the most common tasks.
Most likely the arguments for read.phyDat have to be adapted to accommodate your
file format. The bootstrap analysis can be computational demanding.

file = "myfile"

dat = read.phyDat(file)

dm = dist.ml(dat)

tree = NJ(dm)

fitNJ = pml(tree, dat, k = 4, inv = 0.2)

fit = optim.pml(fitNJ, TRUE, TRUE, TRUE, TRUE, TRUE)
fit

V V V V V V V

You can specify different several models build in which you can specify "WAG”,
"JTT”, "Dayhoft”, "LG”. Optimising the rate matrix for amino acids is possible, but
would take a long, a very long time. So make sure to set opt Bf=FALSE and optQ=FALSE
in the function optim.pml, which is also the default.

> file = "myfile"
> dat = read.phyDat(file, type = "AA")
> dm = dist.ml(dat, model = "JTT")
> tree = NJ(dm)
> fitNJ = pml(tree, dat, model = "JTT", k = 4, inv = 0.2)
> fit = optim.pml(fitNJ, optNni = TRUE, optInv = TRUE,
+ optGamma = TRUE)
> fit
References

[1] Joseph Felsenstein. Evolutionary trees from dna sequences: a maxumum likelihood
approach. Journal of Molecular Evolution, 17:368-376, 1981.

[2] Joseph Felsenstein. Inferring Phylogenies. Sinauer Associates, Sunderland, 2004.

[3] E. Paradis, J. Claude, and K. Strimmer. Ape: Analyses of phylogenetics and evolu-
tion in r language. Bioinformatics, 20(2):289-290, 2004.

[4] Emmanuel Paradis. Analysis of Phylogenetics and Evolution with R. Springer, New
York, 2006.

[5] N. Saitou and M. Nei. The neighbor-joining method - a new method for reconstruct-
ing phylogenetic trees. Molecular Biology and Evolution, 4(4):406-425, 1987.

[6] J. A. Studier and K. J. Keppler. A note on the neighbor-joining algorithm of saitou
and nei. Molecular Biology and Evolution, 5(6):729-731, 1988.

[7] Ziheng Yang. Computational Molecular evolution. Oxford University Press, Oxford,
2006.

7 Session Information

The version number of R and packages loaded for generating the vignette were:
e R version 2.9.1 (2009-06-26), i386-pc-mingw32

e Locale: LC_COLLATE=English_New Zealand.1252;LC_CTYPE=English_New Zealand.1252;LC_MOI

e Base packages: base, datasets, graphics, grDevices, methods, stats, tools, utils
e Other packages: ape 2.3-1, phangorn 0.99-2, quadprog 1.4-11

e Loaded via a namespace (and not attached): gee 4.13-13, grid 2.9.1, lattice 0.17-25,
nlme 3.1-92

	Introduction
	Getting started
	Distance based methods
	Parsimony
	Maximum likelihood
	Appendix: Standard scripts for nucleotide or amino acid analysis
	Session Information

