
Estimating phylogenetic trees with phangorn (Version
1.7-0)

Klaus P. Schliep∗

October 30, 2012

1 Introduction

These notes should enable the user to estimate phylogenetic trees from alignment data
with different methods using the phangorn package [10]. Several functions of phangorn
are also described in more detail in [6]. For more theoretical background on all the
methods see e.g. [2, 12]. This document illustrates some of the phangorn features to
estimate phylogenetic trees using different reconstruction methods. Small adaptations
to the scripts in section 6 should enable the user to perform phylogenetic analyses.

2 Getting started

The first thing we have to do is to read in an alignment. Unfortunately there exists many
different file formats that alignments can be stored in. The function read.phyDat is used
to read in an alignment. There are several functions to read in alignments depending
on the format of the dataset (nexus, phylip, fasta) and the kind of data (amino acid
or nucleotides) in the ape package [5] and phangorn. The function read.phyDat calls
these other functions. For the specific parameter settings available look in the help files
of the function read.dna (for phylip, fasta, clustal format), read.nexus.data for nexus
files. For amino acid data additional read.aa is called. We start our analysis loading
the phangorn package and then reading in an alignment.

> library(phangorn)

> primates = read.phyDat("primates.dna", format="phylip", type="DNA")

∗mailto:klaus.schliep@gmail.com

1

mailto:klaus.schliep@gmail.com

3 Distance based methods

After reading in the alignment we can build a first tree with distance based methods. The
function dist.dna from the ape package computes distances for many DNA substitution
models. To use the function dist.dna we have to transform the data to class DNAbin.
For amino acids the function dist.ml offers common substitution models (”WAG”, ”JTT”,
”LG”, ”Dayhoff”, ”cpREV”, ”mtmam”, ”mtArt”, ”MtZoa” and ”mtREV24”).

After constructing a distance matrix we reconstruct a rooted tree with UPGMA and
alternatively an unrooted tree using Neighbor Joining [9, 11].

> dm = dist.dna(as.DNAbin(primates))

> treeUPGMA = upgma(dm)

> treeNJ = NJ(dm)

We can plot the trees treeUPGMA and treeNJ (figure 1) with the commands:

> layout(matrix(c(1,2), 2, 1), height=c(1,2))

> par(mar = c(.1,.1,.1,.1))

> plot(treeUPGMA, main="UPGMA")

> plot(treeNJ, "unrooted", main="NJ")

Distance based methods are very fast and we will use the UPGMA and NJ tree as
starting trees for the maximum parsimony and maximum likelihood analyses.

4 Parsimony

The function parsimony returns the parsimony score, that is the number of changes
which are at least necessary to describe the data for a given tree. We can compare the
parsimony score or the two trees we computed so far:

> parsimony(treeUPGMA, primates)

[1] 751

> parsimony(treeNJ, primates)

[1] 746

The function optim.parsimony performs tree rearrangements to find trees with a lower
parsimony score. So far the only tree rearrangement implemented is nearest-neighbor
interchanges (NNI). However is also a version of the parsimony ratchet [4] implemented,
which is likely to find better trees than just doing NNI rearrangements.

> treePars = optim.parsimony(treeUPGMA, primates)

Final p-score 746 after 1 nni operations

> treeRatchet = pratchet(primates, trace = 0)

> parsimony(c(treePars, treeRatchet), primates)

2

Mouse

Bovine
Lemur

Tarsier

Squir Monk

Jpn Macaq
Rhesus Mac

Crab−E.Mac
BarbMacaq

Gibbon
Orang
Gorilla
Chimp
Human

Mouse

Bovine

Lemur

Tarsier

Squir Monk
Jpn Macaq

Rhesus Mac

Crab−E.Mac

BarbMacaq

Gibbon

Orang
Gorilla

Chimp
Human

Figure 1: Rooted UPGMA tree and unrooted NJ tree

3

[1] 746 746

For small datasets it is also possible to find all most parsimonious trees using a branch
and bound algorithm [3]. For datasets with more than 10 taxa this can take a long time
and depends strongly on how tree like the data are.

> (trees <- bab(subset(primates,1:10)))

5 Maximum likelihood

The last method we will describe in this vignette is Maximum Likelihood (ML) as in-
troduced by Felsenstein [1]. We can easily compute the likelihood for a tree given the
data

> fit = pml(treeNJ, data=primates)

> fit

loglikelihood: -3077.846

unconstrained loglikelihood: -1230.335

Rate matrix:

a c g t

a 0 1 1 1

c 1 0 1 1

g 1 1 0 1

t 1 1 1 0

Base frequencies:

0.25 0.25 0.25 0.25

The function pml returns an object of class pml. This object contains the data, the
tree and many different parameters of the model like the likelihood etc. There are many
generic functions for the class pml available, which allow the handling of these objects.

> methods(class="pml")

[1] anova.pml* logLik.pml* plot.pml* print.pml* update.pml*

[6] vcov.pml*

Non-visible functions are asterisked

The object fit just estimated the likelihood for the tree it got supplied, but the branch
length are not optimized for the Jukes-Cantor model yet, which can be done with the
function optim.pml.

4

> fitJC = optim.pml(fit, TRUE)

> logLik(fitJC)

With the default values pml will estimate a Jukes-Cantor model. The function up-

date.pml allows to change parameters. We will change the model to the GTR + Γ(4)
+ I model and then optimize all the parameters.

> fitGTR = update(fit, k=4, inv=0.2)

> fitGTR = optim.pml(fitGTR, TRUE,TRUE, TRUE, TRUE, TRUE,

+ control = pml.control(trace = 0))

> fitGTR

loglikelihood: -2609.598

unconstrained loglikelihood: -1230.335

Proportion of invariant sites: 0.006061292

Discrete gamma model

Number of rate categories: 4

Shape parameter: 3.174819

Rate matrix:

a c g t

a 0.0000000 0.645861577 33.527747991 0.4043634

c 0.6458616 0.000000000 0.008025152 14.3385979

g 33.5277480 0.008025152 0.000000000 1.0000000

t 0.4043634 14.338597857 1.000000000 0.0000000

Base frequencies:

0.3918077 0.3795142 0.04026932 0.1884088

We can compare the objects for the JC and GTR + Γ(4) + I model using likelihood
ratio statistic

> anova(fitJC, fitGTR)

Likelihood Ratio Test Table

Log lik. Df Df change Diff log lik. Pr(>|Chi|)

1 -3068.3 25

2 -2609.6 35 10 917.39 < 2.2e-16 ***

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

with the AIC

> AIC(fitGTR)

[1] 5289.195

5

> AIC(fitJC)

[1] 6186.59

or the Shimodaira-Hasegawa test.

> SH.test(fitGTR, fitJC)

Trees ln L Diff ln L p-value

[1,] 1 -2609.598 0.0000 0.5

[2,] 2 -3068.295 458.6975 0.0

An alternative is to use the function modelTest to compare different models the AIC or
BIC, similar to popular program of [7, 8].

> mt = modelTest(primates)

The results of is illustrated in table 1

The thresholds for the optimisation in modelTest are not as strict as for optim.pml and
no tree rearrangements are performed. As modelTest computes and optimises a lot of
models it would be a waste of computer time not to save these results. The results are
saved as call together with the optimised trees in an environment and this call can be
evaluated to get a ”pml” object back to use for further optimisation or analysis.

> env <- attr(mt, "env")

> ls(envir=env)

[1] "data" "F81" "F81+G" "F81+G+I"

[5] "F81+I" "GTR" "GTR+G" "GTR+G+I"

[9] "GTR+I" "HKY" "HKY+G" "HKY+G+I"

[13] "HKY+I" "JC" "JC+G" "JC+G+I"

[17] "JC+I" "K80" "K80+G" "K80+G+I"

[21] "K80+I" "SYM" "SYM+G" "SYM+G+I"

[25] "SYM+I" "tree_F81" "tree_F81+G" "tree_F81+G+I"

[29] "tree_F81+I" "tree_GTR" "tree_GTR+G" "tree_GTR+G+I"

[33] "tree_GTR+I" "tree_HKY" "tree_HKY+G" "tree_HKY+G+I"

[37] "tree_HKY+I" "tree_JC" "tree_JC+G" "tree_JC+G+I"

[41] "tree_JC+I" "tree_K80" "tree_K80+G" "tree_K80+G+I"

[45] "tree_K80+I" "tree_SYM" "tree_SYM+G" "tree_SYM+G+I"

[49] "tree_SYM+I"

> (fit <- eval(get("HKY+G+I", env), env))

loglikelihood: -2615.149

unconstrained loglikelihood: -1230.335

Proportion of invariant sites: 0.003869274

6

Model df logLik AIC BIC
1 JC 25.00 -3068.42 6186.83 6273.00
2 JC+I 26.00 -3062.63 6177.26 6266.87
3 JC+G 26.00 -3066.92 6185.83 6275.45
4 JC+G+I 27.00 -3062.71 6179.43 6272.49
5 F81 28.00 -2918.17 5892.33 5988.84
6 F81+I 29.00 -2909.12 5876.24 5976.20
7 F81+G 29.00 -2912.58 5883.17 5983.12
8 F81+G+I 30.00 -2908.52 5877.04 5980.44
9 K80 26.00 -2952.94 5957.89 6047.50

10 K80+I 27.00 -2944.51 5943.02 6036.08
11 K80+G 27.00 -2944.99 5943.99 6037.05
12 K80+G+I 28.00 -2942.38 5940.76 6037.27
13 HKY 29.00 -2647.74 5353.48 5453.43
14 HKY+I 30.00 -2629.83 5319.67 5423.07
15 HKY+G 30.00 -2618.49 5296.99 5400.39
16 HKY+G+I 31.00 -2615.15 5292.30 5399.15
17 SYM 30.00 -2813.91 5687.83 5791.23
18 SYM+I 31.00 -2811.73 5685.45 5792.30
19 SYM+G 31.00 -2804.76 5671.53 5778.38
20 SYM+G+I 32.00 -2804.68 5673.36 5783.65
21 GTR 33.00 -2642.89 5351.78 5465.52
22 GTR+I 34.00 -2624.07 5316.15 5433.34
23 GTR+G 34.00 -2613.65 5295.30 5412.49
24 GTR+G+I 35.00 -2610.31 5290.62 5411.26

Table 1: Summary table of modelTest

Discrete gamma model

Number of rate categories: 4

Shape parameter: 2.911518

Rate matrix:

a c g t

a 0.00000 1.00000 33.58626 1.00000

c 1.00000 0.00000 1.00000 33.58626

g 33.58626 1.00000 0.00000 1.00000

t 1.00000 33.58626 1.00000 0.00000

Base frequencies:

0.4129084 0.3650499 0.04424032 0.1778014

7

Mouse

Bovine

Lemur
Tarsier

Squir Monk

Jpn MacaqRhesus Mac

Crab−E.Mac

BarbMacaq

Gibbon Orang

Gorilla

Chimp

Human

90

86
74

96
98

100

83

72

70

68
41

Figure 2: Unrooted tree with bootstrap support values

At last we may want to apply bootstrap to test how well the edges of the tree are
supported:

> bs = bootstrap.pml(fitJC, bs=100, optNni=TRUE,

+ control = pml.control(trace = 0))

Now we can plot the tree with the bootstrap support values on the edges

> par(mar=c(.1,.1,.1,.1))

> plotBS(fitJC$tree, bs)

Several analyses, e.g. bootstrap and modelTest, can be computationally demand-
ing, but as nowadays most computers have several cores one can distribute the compu-
tations using the multicore package. However it is only possible to use this approach if
R is running from command line (”X11”), but not using a GUI (for example ”Aqua” on
Macs) and unfortunately the multicore package does not work at all under Windows.

8

6 Appendix: Standard scripts for nucleotide or amino

acid analysis

Here we provide two standard scripts which can be adapted for the most common tasks.
Most likely the arguments for read.phyDat have to be adapted to accommodate your
file format. Both scripts assume that the multicore package, see comments above.

library(parallel) # supports parallel computing

library(phangorn)

file="myfile"

dat = read.phyDat(file)

dm = dist.ml(dat)

tree = NJ(dm)

as alternative for a starting tree:

tree <- pratchet(dat)

1. alternative: estimate an GTR model

fitStart = pml(tree, dat, k=4, inv=.2)

fit = optim.pml(fitStart, TRUE, TRUE, TRUE, TRUE, TRUE)

2. alternative: modelTest

(mt <- modelTest(dat, multicore=TRUE))

mt$Model[which.min(mt$BIC)]

choose best model from the table, assume now GTR+G+I

env = attr(mt, "env")

fitStart = eval(get("GTR+G+I", env), env)

fitStart = eval(get(mt$Model[which.min(mt$BIC)], env), env)

fit = optim.pml(fitStart, optNni=TRUE, optGamma=TRUE, optInv=TRUE,

model="GTR")

bs = bootstrap.pml(fit, bs=100, optNni=TRUE, multicore=TRUE)

You can specify different several models build in which you can specify, e.g. ”WAG”,
”JTT”, ”Dayhoff”, ”LG”. Optimising the rate matrix for amino acids is possible, but
would take a long, a very long time. So make sure to set optBf=FALSE and optQ=FALSE
in the function optim.pml, which is also the default.

library(parallel) # supports parallel computing

library(phangorn)

file="myfile"

dat = read.phyDat(file, type = "AA")

dm = dist.ml(dat, model="JTT")

tree = NJ(dm)

(mt <- modelTest(dat, model=c("JTT", "LG", "WAG"), multicore=TRUE))

fitStart = eval(get(mt$Model[which.min(mt$BIC)], env), env)

fitNJ = pml(tree, dat, model="JTT", k=4, inv=.2)

9

fit = optim.pml(fitNJ, optNni=TRUE, optInv=TRUE, optGamma=TRUE)

fit

bs = bootstrap.pml(fit, bs=100, optNni=TRUE, multicore=TRUE)

References

[1] Joseph Felsenstein. Evolutionary trees from dna sequences: a maxumum likelihood
approach. Journal of Molecular Evolution, 17:368–376, 1981.

[2] Joseph Felsenstein. Inferring Phylogenies. Sinauer Associates, Sunderland, 2004.

[3] M.D. Hendy and Penny D. Branch and bound algorithms to determine minimal
evolutionary trees. Math. Biosc., 59:277–290, 1982.

[4] K.˜Nixon. The parsimony ratchet, a new method for rapid rarsimony analysis.
Cladistics, 15:407–414, 1999.

[5] E.˜Paradis, J.˜Claude, and K.˜Strimmer. Ape: Analyses of phylogenetics and
evolution in r language. Bioinformatics, 20(2):289–290, 2004.

[6] Emmanuel Paradis. Analysis of Phylogenetics and Evolution with R. Springer, New
York, second edition, 2012.

[7] D.˜Posada and K.A. Crandall. Modeltest: testing the model of dna substitution.
Bioinformatics, 14(9):817–818, 1998.

[8] David Posada. jmodeltest: Phylogenetic model averaging. Molecular Biology and
Evolution, 25(7):1253–1256, 2008.

[9] N.˜Saitou and M.˜Nei. The neighbor-joining method - a new method for recon-
structing phylogenetic trees. Molecular Biology and Evolution, 4(4):406–425, 1987.

[10] Klaus˜Peter Schliep. phangorn: Phylogenetic analysis in R. Bioinformatics,
27(4):592–593, 2011.

[11] J.˜A. Studier and K.˜J. Keppler. A note on the neighbor-joining algorithm of saitou
and nei. Molecular Biology and Evolution, 5(6):729–731, 1988.

[12] Ziheng Yang. Computational Molecular evolution. Oxford University Press, Oxford,
2006.

10

7 Session Information

The version number of R and packages loaded for generating the vignette were:

� R version 2.15.2 (2012-10-26), x86_64-pc-linux-gnu

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=en_US.UTF-8, LC_MONETARY=en_US.UTF-8,
LC_MESSAGES=en_US.UTF-8, LC_PAPER=C, LC_NAME=C, LC_ADDRESS=C,
LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Base packages: base, datasets, graphics, grDevices, grid, methods, stats, utils

� Other packages: ape˜3.0-6, igraph˜0.6-3, lattice˜0.20-10, Matrix˜1.0-10,
phangorn˜1.7-0, seqLogo˜1.24.0, xtable˜1.7-0

� Loaded via a namespace (and not attached): gee˜4.13-18, nlme˜3.1-105,
tools˜2.15.2

11

	Introduction
	Getting started
	Distance based methods
	Parsimony
	Maximum likelihood
	Appendix: Standard scripts for nucleotide or amino acid analysis
	Session Information

