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Constructs, plots and evaluates probability distributions (probability mass/density functions,
cumulative distribution functions and quantile functions) with continuous kernel smoothing,
and to a lesser extent, discrete kernel smoothing. Supports univariate, multivariate and con-
ditional distributions, including multivariate-conditional distributions. Also, supports other
probability distributions (categorical, frequency and empirical-like) and weighted data, which
is possibly useful mixed with fuzzy clustering. Furthermore, there are extensions for comput-
ing multivariate probabilities and multivariate random numbers, and for parameter and mode
estimation.

***note that this package is subject to change***

Pre-Intro

This package is based on self-referencing function objects.

Some functions return objects (here, mostly probability distributions), which are also func-
tions.

The resulting function objects have attributes, which are accessible inside the function
body.
(This enables functions to be bundled with data).

In this context, it’s equivalent to the {d, p, q, r} approach used in R’s stats package.

Introduction

This is an R package for multivariate generalized kernel smoothing, as per the title.
Kernel smoothing is generalized, by estimating:

e Both discrete and continuous probability distributions.

e Probability mass/density functions (PMFs/PDFs), cumulative distribution functions
(CDFs) and quantile functions (QFs).

e In the continuous case, multivariate, conditional and weighted distributions.
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Also, there are categorical and empirical-like distributions, both of which, may be weighted.
Specifically, this includes:
e With discrete kernel smoothing (~DKS):

(Primarily, for modelling smoothed-frequency distributions).
e Univariate probability mass function (PMF yy)~DKS).
e Univariate cumulative distribution function (CDF yv)~DKS).

e Univariate quantile function (QFyv)~DKS).
e With continuous kernel smoothing (~CKS):

e Univariate probability density function (PDF yy)~CKS).

e Univariate cumulative distribution function (CDF yy)~CKS).

e Univariate quantile function (QFyv)~CKS).

m Multivariate probability density function (PDF pvy~CKS).

m Multivariate cumulative distribution function (CDF pv)~CKS).

e Conditional probability density function (PDF ¢)~CKS).

e Conditional cumulative distribution function (CDF ¢)~CKS).

e Conditional quantile function (QFc)~CKS).

m Multivariate-conditional probability density function (PDF (yvc)~CKS).
m Multivariate-conditional cumulative distribution function (CDF (yryvc)~CKS).
o Chained quantile function (ChQF~CKS).

e Categorical distributions (~CAT):

Univariate probability mass function (PMF yy)~CAT).

Univariate cumulative distribution function (CDF(yv)~CAT).

Univariate quantile function (QF yv)~CAT).

Conditional probability mass function (PMFc)~CAT|CKS), conditional on a
continuous variable.

¢ Empirical-like distributions (~EL):

e (Univariate) cumulative distribution function (CDF~EL).

e (Univariate) quantile function (QF~EL).
e Distribution sets:

e Marginal sets.
e Categorical sets.

e Conditional sets.

Here, univariate and multivariate models refer to unconditional distributions, unless stated
otherwise. Conditional models refers to univariate-conditional distributions, unless stated
otherwise. And multivariate-conditional models refer to the special case where a probability
distribution is both multivariate and conditional.

By default, ~DKS models are lower-bounded and have a bandwidth parameter of one,
which results in an (unsmoothed) frequency distribution. By default, univariate and con-
ditional PDF/CDF ~CKS models use a cubic Hermite spline as an intermediate model.

Categorical variables are assumed to be ordinal, however, this assumption is only relevant
for a meaningful interpretation of the CDF and QF. Empirical-like models are derived from
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empirical cumulative distribution functions. There’s a small modification to the (initial)
formula, and the resulting points are interpolated by a cubic Hermite spline, in a similar
way to ~CKS models.

Also, ~CKS/~CAT/~EL models can be weighted, and I've provided an example of mod-
elling a fuzzy cluster with weighted multivariate kernel density estimation, in an appendix,
at the end of this vignette.

There are plot methods for all univariate models and distribution sets, and for multivariate
models but only with two random variables.

Often the goal of kernel smoothing is simply to plot the distribution, as an exploratory
tool.

However, these models can be used for a variety of purposes, including:

e Computation of probabilities, from the CDF.
¢ Random number generation, from QFs.

e Computation of the mean, standard deviation, variance, skewness and kurtosis, from
the PMF or continuous CDF.

e Computation of the median or quantiles, from QFs.
e Mode estimation, using the PMF or PDF.

Noting that all of the above apply to conditional distributions, too.

In principle, there’s no multivariate quantile function, however, I've created a (novel)
chained quantile function, to support the computation of multivariate random numbers.
(i.e. Synthetic data).

Note that currently, this package doesn’t support automatic bandwidth selection.
This feature is likely to be added in the next update.

One solution, is to plot marginal PMFs/PDFs, and select the smallest bandwidth that
doesn’t look like it causing overfitting.

Also note that most of the models in this package work best with matrix objects (not
data.frame objects), which have column names.

Preliminary Code

I'm going to load (and attach) the probhat, fclust and scatterplot3d packages:

> library (probhat)
> library (fclust)
> library (scatterplot3d)

Note that the probhat package imports the intoo, barsurf and kubik packages.
I will set the theme for default colors to green:

> use.ph.theme ("green")
And T will construct some data objects:

> data.prep ()

This function emulates a script, the contents of which, are given later, in an appendix.
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Discrete Kernel Smoothing

We can construct a PMF yvy~DKS object, using the pmfuv.dks constructor.

I will use traffic data, derived from the “Traffic” data in the MASS package:
> fh = pmfuv.dks (traffic.x, traffic.h, bw=23, lower=0)

> plot (fh, TRUE)
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The “x” variable is number of accidents, and the “y” variable is the frequency.

Refer to the help file, for how to construct these objects, with other combinations of the
first two arguments.

The resulting object is a function, which maps an integer vector (of integer quantiles) to a
numeric vector (of masses):

> fh (10)
[1] 0.03449809

Likewise, we can construct CDF yyv)~DKS and QF yv)~DKS objects, using the cdfuv.dks
and qfuv.dks constructors:

> Fh = cdfuv.dks (traffic.x, traffic.h, bw=23, lower=0)
> Fh.inv = gqfuv.dks (traffic.x, traffic.h, bw=23, lower=0)

> plot (Fh, TRUE)
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> plot (Fh.inv)
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Discrete quantile functions, are defined in the same way as R’s stats package, and map a
numeric vector (in the interval [0, 1]) to an integer vector.

Continuous Kernel Smoothing:
Univariate Probability Distributions

By default, univariate (and conditional) PDF/CDF ~CKS models use a cubic Hermite
spline as an intermediate model, which is more efficient, if the probability distribution
needs to be evaluated many times.

QF (uv)~CKS (and QF(c)~CKS) models use either a cubic Hermite spline or a nested
spline.

In principle, QF yv)~CKS models are constructed by transposing the CDF, however, if
there are level sections in the CDF (i.e. zero-density regions in the corresponding PDF),
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then a nested spline is constructed, with a separate cubic Hermite spline for each increasing
section of the CDF.

We can construct a PDF(yy)~CKS object, using the pdfuv.cks constructor.
I will use the height variable derived from the “trees” data in the datasets package:
> fh = pdfuv.cks (Height)

> plot (fh, TRUE)
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Note that this data has been converted to metric.

The resulting object is a function, which maps a numeric vector (of one or more quantiles)
to a numeric vector (of one or more densities):

> fh (22)
[1] 0.1334647

Likewise, we can construct CDF (yv)~CKS and QF yv)~CKS objects, using the cdfuv.cks
and gfuv.cks constructors:

> Fh = cdfuv.cks (Height)
> Fh.inv = gfuv.cks (Height)

> plot (Fh, TRUE)
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cumprob
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> plot (Fh.inv)
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Continuous quantile functions, map a numeric vector (in the interval [0, 1]) to a numeric
vector.

Note that here, they’re not the exact inverse of the CDF, however, they become closer to
the CDF, if the number of control points in the spline is increased.

>pl =0.5
> p2 = Fh (Fh.inv (p1) )
> pl == p2
[1] FALSE

> abs (pl - p2)

[1] 2.646609e-05
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Continuous Kernel Smoothing:
Multivariate Probability Distributions
We can construct a PDF(\v)~CKS object, using the pdfmv.cks constructor.
Again, I will use the “trees” data:
> fh = pdfmv.cks (trees [,2:3])

> plot (fh, all=TRUE)
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The resulting object is a function, which maps a numeric vector (implying a single row
matrix) or matrix to a numeric vector:

> fh (c (22, 0.8) )
[1] 0.134061

Likewise, we can construct a CDF(yy)~CKS object, using the cdfuv.cks constructor:
> Fh = cdfmv.cks (trees [,2:3])

> plot (Fh, all=TRUE)
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Also, it’s possible to compute what I refer to as chained quantile functions, discussed later.

Continuous Kernel Smoothing:
Conditional Probability Distributions
We can construct a PDF(¢)~CKS object, using the pdfc.cks constructor:

> conditions = ¢ (Girth=30, Height=22)
> cfh = pdfc.cks (trees, conditions=conditions)

> plot (cfh)
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As with previous objects, it’s a function which can be evaluated:

> #density of volume (volume=0.85), given girth=30 and height=22
> cfh (0.85)

[1] 0.9716484

Likewise, we can construct CDF c)~CKS and QF ¢)~CKS objects, using the cdfc.cks and
gfc.cks constructors.

The resulting functions are almost identical to univariate functions, so I will bypass the
examples.

Continuous Kernel Smoothing:
Multivariate-Conditional Distributions

We can construct a PDF(\yvc)~CKS object, using the pdfmvc.cks constructor.
I will use four variables from the “quakes” data in the datasets package:

> conditions = c¢ (lat=-20, long=180)
> cfh = pdfmvc.cks (quakes, conditions=conditions)

> plot (cfh, xlim = c (0, 800) )

mag
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|
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> plot (cfh, TRUE, xlim = c (0, 800) )
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The model above, gives the bivariate density estimate of depth and magnitude, conditional
on the near-mean values of latitude and longitude.

I found this interesting, because it suggests that, for a given location, there are two depth-
based clusters of earthquakes.

So, here’s some similar models, but using different locations:

> cfh.AA = pdfmvc.cks (quakes, conditions = ¢ (lat=-30, long=170) )
> cfh.AB = pdfmvc.cks (quakes, conditions = ¢ (lat=-30, long=180) )
> cfh.BA = pdfmvc.cks (quakes, conditions = c (lat=-20, long=170) )
> cfh.BB = cfh

> plot_2x2 (cfh.AA, cfh.AB, cfh.BA, cfh.BB,
"lat=-30, long=170", "lat=-30, long=180",
"lat=-20, long=170", "lat=-20, long=180",
xlim = ¢ (0, 800) )
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And what if we reverse the relationship (and model latitude and longitude conditional on
depth), and ignore magnitude...

> cfh.A = pdfmvc.cks (quakes [,-4], conditions = ¢ (depth=100) )
> cfh.B = pdfmvc.cks (quakes [,-4], conditions = ¢ (depth=500) )

> plot (cfh.A, main="depth=100")
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> plot (cfh.B, main="depth=500")
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Likewise, we can construct a CDF 1vc)~CKS object, using the cdfmve.cks constructor,
however, I'm going to bypass the example.

Categorical Distributions
We can construct a PMF v)~CAT object, using the pmfuv.cat constructor.
I will use the state region variable from the datasets package:

> fh = pmfuv.cat (region)

> plot (fh)

mass
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]
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The resulting object is a function, which maps an integer or character vector to a numeric
vector:

> fh (1)
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[1] 0.24
> fh ("North Central")
[1] 0.24

Likewise, we can construct CDF yy)~CAT and QF (yv)~CAT objects, using the cdfuv.cat
and qfuv.cat constructors. However, as the categorical variable is not clearly ordinal, T will
bypass the examples.

Categorical Distributions
Conditional on A Continuous Variable
It’s possible to construct a PMF c)~CAT|CKS object, using the pmfc.cat.cks constructor.

This gives a categorical distribution (currently, univariate PMF only) conditional on a
continuous variable.

I will use the “iris” data from the datasets package:

> mean.Sepal.Length = mean (iris.Sepal.Length)
> fh = pmfc.cat.cks (iris.Species, iris.Sepal.Length, at=mean.Sepal.Length)

> plot (fh)
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Currently, PMF ¢)~CAT|CKS models are derived by using Bayes Theorem with a cate-
gorical set, described later.

This in turn, can be used for classification purposes.

Empirical-Like Distributions
We can construct a CDF~EL object, using the cdf.el constructor:
> Fh = cdf.el (Height)

> plot (Fh)



Spurdle, A. probhat 0.2.0 15

0.8 1.0
]

cumprob
0.6

0.4
]

0.0
|

Height
Likewise, we can construct a QF~EL object, using the gf.el constructor:
> Fh.inv = gf.el (Height)

> plot (Fh.inv)

Height
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Unlike continuous kernel smoothing, empirical-like models don’t “Smooth” the model,
they’re completely nonparametric. They compute a set of points, representing cumula-
tive probabilities, and interpolate the points with a cubic Hermite spline. However, the
resulting functions don’t necessarily appear smooth.

~EL models may be preferable to ~CKS models, if you want to compute the median or
other quantiles, without any smoothing. These quantiles can be regarded as quantiles of
the data, itself, rather than estimates derived from a model.

As with QF (yv)~CKS models, QF~EL models are not the exact inverse their correspond-
ing CDF.

Empirical-like models require unique x values, and a small amount of random variation is
automatically added if they’re not unique.
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Distribution Sets

Here, a distribution set is a set of one or more probability distributions.
Currently, there are three types, and this may be changed significantly, in the future:

e Categorical Set
One univariate probability distribution for each (categorical) level, out of many (cat-
egorical) levels.

e Conditional Set
Similar to a categorical set, except that there’s one univariate-conditional probability
distribution for each set of conditions, rather than each level.

e Marginal Set
One univariate probability distribution for each variable, out of many variables.

We can construct categorical sets, using any of the univariate constructors, given so far.
Lets construct PDF yvy~CKS models of sepal length, grouped by species:
> cs = categorical.set (pdfuv.cks, iris.Sepal.Length, group.by=iris.Species)

> plot (cs)
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Now, lets construct a conditional set, of the density of volume, conditional on different
heights:

> conditions = cbind (Height = c¢ (20, 24, 28) )
> cond.set = conditional.set (pdfc.cks, trees [,2:3], group.by=conditions)

> plot (cond.set)
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Note that it’s possible that the bandwidth is too low, and increasing the bandwidth may
minimize the bimodal effect, above.

We can construct marginal sets using any of the univariate constructors, given so far.
Lets construct marginal QF~EL objects:
> ms = marginal.set (qf.el, trees)

> plot (ms)
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Multivariate Probabilities

Here, multivariate probability refers to the probability of observing multiple random vari-
ables between pairs of lower and upper limits. In theory, such probabilities could be
computed from the multivariate PMF or PDF, however (here at least), it’s more efficient
to compute them from the multivariate CDF.

Using the trees data, we can compute the probability that girth, height and volume are all
between arbitrary pairs of values.

We can use the probmv function, which has three arguments, the multivariate CDF, a
vector of lower limits and a vector of upper limits:

> #multivariate cdf
> Fh = cdfmv.cks (trees)

> #approximate first and third quartiles
a=c (28, 22, 0.55)
b =c (38, 24, 1.05)

vV Vv
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> cbind (lower=a, upper=b)

lower upper
[1,] 28.00 38.00
[2,] 22.00 24.00
[3,] 0.55 1.05

> #multivariate probability
> probmv (Fh, a, b)

[1] 0.08509282

Note that it’s possible to compute multiple regions at once by making a and b matrices with
each row representing one region. Also note that currently, variables names are ignored,
so they must be in the same order as the variables used to construct the CDF.

Chained Quantile Functions
And Random Number Generation

In addition to the probability distributions presented earlier, it’s also possible to construct
what I refer to as chained quantile functions.

Standard quantile functions can be used to compute univariate random numbers via (stan-
dard) inversion sampling. And chained quantile functions (currently, for continuous kernel
smoothing only) can be used to compute multivariate random numbers, via nonstandard
inversion sampling.

Chained quantile functions work by:

1. Fitting a standard quantile function, to the first variable’s observations, x’[" 1

2. Using that quantile function to map the first variable’s (input) probabilities, py i}, to
(output) quantiles q 1.

3. (Assuming that there are two or more variables).
Iterating over each evaluation point and each subsequent variable.
For each (ith) evaluation point and for each (jth) subsequent variable:

*

(a) Fitting a conditional quantile function to a subset of variables, X[; 1.5 condi-

tional on the previous variables, qy; 1.(j—1)]-

(b) And then using that conditional quantile function to evaluate the current point,
for the next variable.

The convenience function, ph.rng, takes two arguments, the univariate or chained quantile
function, and the number of random numbers to generate, then evaluates the quantile
function, using a vector or matrix of uniform random numbers.

> chF.inv = chqgf.cks (trees)
> synthetic.data = ph.rng (chF.inv, 31)

> #convenience function
> plot.trees.data = function (x, main)
{ Height = x [,"Height"]
Girth = x [,"Girth"]
Volume = x [,"Volume"]
scatterplot3d (Height, Girth, Volume,
main=main, type="h", angle=112.5, pch=16)
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> #original data
> plot.trees.data (trees, "original data")
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> #synthetic data
> plot.trees.data (synthetic.data, "synthetic data")
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Note that I've used the same sample size, however, you could use any sample size.

Parameter Estimation

Both univariate and conditional probability distributions can be used to compute probabil-
ities, parameter estimates and other parameter-like estimates. Parameter (and parameter-
like) estimates, include the mean, median, mode, other quantiles, standard deviation, vari-
ance, skewness and kurtosis.

The mean, standard deviation, variance and higher moments can be computed from the
PMF or continuous CDF. The mode can be computed from the PMF or PDF. Probabilities
can be computed from the CDF, and the QF can be used for the median and other quantiles.
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In the future, I may allow automatic conversion between the PMF/PDF, CDF and QF,
however, I note that such conversion may be less efficient.

I’'m going to use a conditional distribution, and compute its mean, median and mode:

#conditional distributions

conditions = ¢ (Height=24)

cfth = pdfc.cks (trees [,2:3], conditions=conditions)
cFh = cdfc.cks (trees [,2:3], conditions=conditions)
cFh.inv = gfc.cks (trees [,2:3], conditions=conditions)

vV V. V VvV VvV

#mean, median and mode
mean.Volume = ph.mean (cFh)
median.Volume = cFh.inv (0.5)
mode.Volume = ph.mode (cfh)

vV V. V Vv

\'2

cbind (statistic = ¢ ("mean", "median", "mode"),
value = ¢ (mean.Volume, median.Volume, mode.Volume) )

statistic value
[1,] "mean" "0.967117448076443"
[2,] "median" "0.898280046366254"
[3,] "mode" "0.6923001776467"

> plot (cfh)
> abline (v = ¢ (mean.Volume, mode.Volume) )
> abline (v=median.Volume, lty=2)

density
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Volume

> #and just as an example, the variance, skewness and kurtosis...
> ph.var (cFh)

[1] 0.224956
> ph.skewness (cFh)
[1] 0.2920473
> ph.kurtosis (cFh)

[1] 2.157884
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Note that currently, standard deviation, variance and higher moments, should be regarded
as unreliable (because the smoothing algorithm tends to inflate their values), however, they
can still be used as an exploratory tool, especially for the purpose, of comparing different
conditional probability distributions.
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Appendix A:
Multivariate Probabilities

We can compute the probability that a single (continuous) random variable is between a
pair of values as:

Pla < X <b) = Fx(b) — Fx(a)
Where a is the lower limit and b is the upper limit.

This is the area under a univariate PDF.

Likewise, we can compute the probability that two (continuous) random variables are
between two pairs of values as:

]P’(al SXI Sbh as SXQ Sbg) :ZP@) —ZP(?) +ZPG)

= F(x1,x2)(b1,b2)
— [Fix1,x2)(a1,b2) + Fix1,x2)(b1, az2)]
+ Fix1,x2) (a1, a2)

Where > P(%) is shorthand for the sum of the m-variate CDF evaluated with cach possible
combination of k b-terms and (m - k) a-terms.

And where a is a vector of lower limits and b is a vector of upper limits.

This is the volume under the bivariate PDF.

For three and four variables we have:

Plas < X7 <bi, a2 < X9 <by, az< X3 <by)

=3 PO Y PG 3 PG -3 PO

= Fix1,x2,x3) (b1, b2, b3)
— [Fix1,x2,x3)(a1,b2,03) + Fx1,x2,x3) (b1, a2,b3) + Fx1,x2,x3) (b1, b2, 03)]
+ [Fix1,x2,x3)(a1,a2,b3) + Fix1,x2,x3)(a1, b2, a3) + Fx1,x2,x3) (b1, az, a3)]

— Fix1,x2,x3)(a1, a2, a3)
Plai < X1 <bi, as < X9 <by, a3 < X3<bs, ag <Xy <by)

= p() _ Zp(é) +y p) — ZPG) + Zp(ﬁ)

More generally (given a continuous multivariate CDF, Fix1 x2,...,xm), for m random vari-
ables), we have:

Play < X1 <by, a2 < Xp<bay ooy Oy < Xy < bypy) = Z ((—l)mkaP(Tg))
ke[0,m]
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Appendix B:
Conditional Formulae

We can compute univariate-conditional (continuous) distributions, with one random vari-
able conditional on one other variable, using:

fy(y) = f(Y\X:z)(y)
_ f(X17X2)(931 =x,20 =)
fxi(z1 = )

Fy(y) = Fiy|x=x)(¥)
Y f(X1,X2) (r1 = 2,22 = u)
—o0 fX1($1 = $)

du

We can compute univariate-conditional (continuous) distributions, with one random vari-
able conditional on multiple other variables, using:

fy(y) = f(Y\Xl:a:l,X2::v2,...,X[mfl]:x[mfl])(y)
_ f(Xl,XZ,...,Xm)(SBXv $Y:Jv)
f(Xl,XZ,...,X[ncon])($X)

o f(Xl,XQ,...,Xm)(xl = X1,X2 = T2, --+; T[ncon] = L[ncon]> Im = y)

f(Xl,XQ,...7X[ncon])(xl = 1,2 = T2, .-+; L[ncon] = x[ncon])

. f(X1,X2,...,Xm)($1 =T1,T2 = T2, Lim—1] = Lim—-1], Tm = Y)

.f(Xl,XQ,A.WX[m—l])(‘Tl = X1, T2 = X253 T[m—1] = x[m—l])

Fy (y) = Fly|x1=21,X2=22,.... X [m—1]=2[m—1]) (¥)
Y fixix2,.,xm) (83X, $U)
oo J(X1,X2,. X peom) (3X)

Y fixixz2,. xm)(T1 =21, T2 = Ta, o, Tlncon] = Tlncon]y  Tm = U) du
B —o0 f(Xl,XQ,.wX[ncon])(xl = X1,T2 = X2, --+s L[ncon] = I[ncon])
Y fxaxe, xm) (T = 21,02 = T2, e, Ty 1] = D]y T = U) du
e fixixo Xm—1(T1 = 21,82 = To,s ey Tpp—1) = Tlm—1))

Note that the convention in this package, is that conditioning variables are enumerated
first.

In the univariate-conditional case, ncon (the number of conditions) is equal to m (the total
number of variables) minus one.

This can be further generalized to compute multivariate-conditional (continuous) distribu-
tions, with M random variables conditional on multiple other variables, using:

fyive,..ym(Wi, Y2, Ynmr) = f(v1,y2,...y M|X1=21,X2=22,.... X [ncon]=z[ncon]) (Y1, Y2, -+, Y )

f(x1,x2,.... X[ncon]) ($X)

FYl,Y2,...,YM(ﬁUl»y2a ---,yM) = F(Y1,Y2 ..... YM|X1=x1,X2=x2,..., X[ncon]:m[ncon])(y17y27 o yM)
B /yl /y2 UM fixn,x2,,xm) (83X, 8Uny)
—oc0 —oo.“ —00 f(Xl,XQ ..... X[ncon])($X)

dupg, ..., dusg, duy
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Where the subexpressions expand as follows:

$X : {z1 = 21,22 = T2, .., Zlncon] = Tncon] }

$Yimv : {Z[ncon+1] = Y15 Tlncont+2] = Y25 -+ T[ncontM] = YM }
$Umy : {Tlcon+1] = U1, Tlncon+2] = U2, -+ Tfncont+M] = UM }

Note that these formulae do not use all the data. A conditional window is computed, and
observations outside the window are discarded. There needs to be at least one observation
within the conditional window, otherwise, the denominator is undefined.

Note that it’s not necessary to compute all of the expression, in each evaluation of the PDF
or CDF. Rather, the denominator (which is a multivariate PDF) and the first part of the
numerator (given later), can be computed when the object is constructed.

Also, note that it’s not necessary to integrate the expression, as such. The algorithms for
computing the multivariate PDFs and CDFs via kernel smoothing (also, given later), can
be combined.
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Appendix C (1):
Discrete Kernel Smoothing Formulae

Unstandardized discrete kernels, take the form:

k(z;bw) =
K(x;bw) =
hbw — bw —1
2

Where k and K are the kernel’s PMF and CDF, respectively.
And where bw is the (odd positive) bandwidth parameter.

Unstandardized discrete kernels have zero mass outside the interval [-hbw, +hbw].

We can define additive-component distributions (or kernel mapping functions), as:

k*(x; k,xf,bw) = k(z — z};bw)
K*(z; K, z},bw) = K(x — 2} ; bw)

) 77

Where 27 is the (integer-valued) center of the of each additive-component distribution, and
x is the (integer-valued) point on the x-axis, where the function is evaluated.

Unbounded PMFs and CDFs can be computed, as follows:
fx (z; k, bw,n,x*, w) = Zwik‘*(x;k:,a:f,bw)

Fx(2z; K, bw,n,x*, w) = ZwiK*(x;K,x;‘,bw)

Where:

And where x* is a vector of (integer-valued) bins and h is a vector of frequencies, both of
which, are of length n, and i € [1,n].

In general, frequencies are integer-valued, however, there’s no requirement for this.
Lower-bounded PMFs and CDF's can be computed by modifying the expressions above:
1. Mass-estimates are truncated (i.e. equal to zero) below the lower limit.

2. Remaining estimates are scaled based on the truncated area, such that the remaining
mass-estimates sum to one.

3. The x and h values are reflected about the lower limit, prior to smoothing, otherwise,
mass-estimates near the lower limit tend to be too small.
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Appendix C (2):
Continuous Kernel Smoothing Formulae

Standardized continuous kernels, take the form:

Where k and K are the kernel’s PDF and CDF, respectively.
Standardized continuous kernels have zero density outside the interval [-1, 1].
We can define additive-component distributions (or kernel mapping functions), using:

k (33;745,331‘7]3“7) = @k(a@ _371‘))

2
K*(z; K, x},bw) = K(%(x — 7))

Where bw is the bandwidth, z} is the center of the additive-component distributions, and
z is a point on the x-axis, where the function is evaluated.

Univariate PDFs and CDF's can be computed, as follows:

- k™ (x; k, bw, 7}
[NETRERRS B SLELLLLE

. CK*(z; K, bw, x*
FX(J:;K,bW,n,x*):Z’ (2; K, bw, 7)

n

Where x* is a vector of length n, and i € [1,n].

Multivariate PDFs and CDFs can be computed, as follows:

) S (851 % 802 % o X $f)

fx(x;k,bw,n,m,x*) =

n
) (k*(xl;k,bwl,x;;u) X K" (223 b, bwa, &, 5)) X oo X k*(mm;k,bwm,m;M))

n
. > <$F1 X $Fy x ... X $Fm)
Fx(x; K,bw,n,m,x*) = -

Do <K*(x1;K, bwl,x@’l}) x K*(x9; K, bvvg,xf‘m]) X oo X K*(xm; K, bwm,x[i,m]*)>

n
Where bw is a bandwidth vector, x* is a matrix with n rows (observations) and m columns
(variables), and x is a vector of points on the x-plane, where the function is evaluated.
The numerator of univariate-conditional PDFs and CDFs can be computed, as follows:

5 ((852) % ((8£2)) % v ($F 1))  $m)

n

: 53 (((8£2)) % ((82)) X oo X (($Fm-1))) X $Fim)
Gy (x;k, K,bw,n,m,x*) =

gy (x; k,bw,n,m,x*) =

n
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Where, in general, the values of the subexpressions inside double brackets are precomputed.
(i.e. They’re computed when objects are constructed, not when top-level functions are
evaluated).

The numerator of multivariate-conditional PDFs and CDFs can be computed, as follows:

Jv (x; M, ncon, k, bw, n, x*)

qu ((($f1)) X (($f2)) X ..o X (($fncon)) X $f(ncon—‘,—l) X $f(ncon+2) X ~~$f(ncon+M))

n

Gv (x; M, ncon, k, K, bw,n,x*)
Zi ((($f1)) X (($f2)) X ... X (($fncon)) X $-F(ncon—i—l) X $F(ncon+2) X '~'$F(ncon+M))

n

Where M is the number of random variables and ncon is the number of conditions.
Weighted versions of these formulae are created by substituting:

3, ($SUB-EXPRESSION)
n

With:
> w;($SUB-EXPRESSION)

Subject to:



Spurdle, A. probhat 0.2.0 30

Appendix D:

Empirical-Like Formulae

An empirical cumulative distribution function, which is a step function, can be computed
by:

P(X < 2) = Fx(z;n,x") = W

Where [ is an indicator function, which equals 1, if the enclosed logical expression is true,
and equals 0, if false.

A proto-empirical-like distribution, which is also a step function, can be computed by
modifying the formula above, to give:

P(X <) =Gx(z;n,x*) = (Zil(z;’k_glx)) —1

Expanding on an earlier point, this function can be used to generate a sequence of points:

{(m’{,@x(ﬁ;n,x*)), (mS,éX(mg;n,x*)), ey (chwéx(xz;n, x*))}

An empirical-like distribution, which is a continuous function, can be computed by using
a cubic Hermite spline to interpolate this sequence.
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Appendix E:
Data Preparation

> data.prep (eval=FALSE, echo=TRUE)

data (Traffic, package="MASS")

traffic.table = table (Traffic$y [Traffic$limit=="yes"])
traffic.x = as.integer (names (traffic.table) )
traffic.x = COL (traffic.x, "naccidents")

traffic.h = as.vector (traffic.table)

region = COL (datasets::state.region, "region")

iris = datasets::iris

iris.Species = as.character (iris$Species)

iris.Species = COL (iris.Species, "Species")
iris.Sepal.Length = iris$Sepal.Length

iris.Sepal.Length = COL (iris.Sepal.Length, "Sepal Length")

quakes = datasets::quakes
quakes = as.matrix (quakes)[,-5]

trees = datasets::trees

trees as.matrix (trees)

#Girth (-> cm)

trees [,"Girth"] = 2.54 * trees [,"Girth"]
#Height (-> m)

trees [,"Height"] = 0.3048 * trees [,"Height"]
#Volume (-> m ~ 3)

trees [,"Volume"] = 0.0283168 * trees [,"Volume"]

Height = COL.of (trees, "Height")

data (unemployment, package="fclust")
unemployment = as.matrix (unemployment) [,-2]

31
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Appendix F:
Fuzzy Clustering
(And Weighted Multivariate Kernel Smoothing)

Fuzzy clustering computes a membership matrix, from some data.

The values in the membership matrix represent the membership of each data point in
each cluster, with each row representing one data point and each column representing one
cluster.

(Note that row weights, not column weights, sum to one).

In some situations, is may be of interest to identify the clusters, only. In other situations,
it may be of interest to identify the clusters, and model the properties one or more of those
clusters.

It’s possible to model each cluster using weighted kernel smoothing.
The following computes the membership matrix for three clusters:
> membership = FKM.gk (unemployment, k=3, seed=2)$U

I’'m going to extract the weights of the first cluster, and transform them, so that they sum
to one:

> w = membership [,1]
w / sum (w)

>w
And a weighted model:
> wfh.1 = pdfmv.cks (unemployment, w=w)

> plot (wfh.1)
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>k =1-w/ max (w)
> plot (unemployment, pch=16, col=rgb (k, k, k) )
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And for the other two clusters:

w = membership [,2]
wfh.2 = pdfmv.cks (unemployment, w = w / sum (w) )
w = membership [,3]
wfh.3 = pdfmv.cks (unemployment, w = w / sum (w) )

vV V V V

All three:

> plot_2x2 (wfh.1,, wfh.2, wfh.3, "cluster 1",, "cluster 2", "cluster 3")
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