
Quantile Regression Forests - An R-Vignette

Lukas Schiesser

1 Introduction

The following few pages try to give a more detailed guideline to the use of
quantile regression forests in R.
After installing the package it can be loaded by the command:

> library(quantregForest)

Datasets Two datasets will be considered to illustrate how and when to use
which methods for quantile regression forests. As example of a small dataset
Ozone from the package gss (Gu, 2014) with 330 observations of 10 variables
and secondly a large data set named CASP with 45′370 available observations
of 9 variables from the UCI Machine Learning Repository (Lichman, 2013) are
used. In the following even not all observations of the second set are used since
the desired effect can already be highlighted with less.

2 Quantile Regression Forests

The first step when working with quantile regression forests is to grow such a
forest. The help file of the function quantregForest

> help(quantregForest)

specifies the right format for the input. The dataset has to be divided into
predictor variables and a response variable. The predictor variables have to be
made available either as a matrix or a data frame; the response has to be a
numeric vector. Moreover the response has to be continuous. Binary or count
responses are not allowed. The other input arguments are ignored for the mo-
ment and discussed later.

The dataset Ozone consists of 9 predictor variables and the response variable
upo3 which is stored in the first column:

> data(ozone,package="gss")

> xozone <- ozone[-1]

> yozone <- ozone$upo3

Now predictors xozone and response yozone can be given as input to quantregForest:

1

2

> qrfozone <- quantregForest(xozone,yozone)

The function quantregForest returns an object of class quantregForest, for
which print, plot and predict methods are available. In qrfozone the fol-
lowing information is stored:

> print(qrfozone) # or simply just type qrfozone

Call:

quantregForest(x = xozone, y = yozone)

Number of trees: 100

No. of variables tried at each split: 3

The command print produces the output given above. It provides a summary
over the input which was given to quantregForest.

> qrfozone$origNodes

This command returns the calculated nodes for the grown forest (330 values for
each of the 100 trees), observation 1 lies in the nodes in row 1, observation 2 in
the nodes in row 2 etc. This is a difference to randomForest, where per default
these values are not saved.
To obtain the values of the response variable used to fit the model we can write:

> qrfozone$origObs

This information is saved because it is used by the prediction algorithm.
The input parameter ntree determines how many trees are grown in the ran-
dom forest on which quantile regression forests are based on. Empirical evidence
suggests that the performance of the prediction remains good even when using
only few trees. Therefore the default setting in the current version is 100 trees.
More parameters for tuning the growth of the trees are mtry and nodesize.
mtry sets the number of variables to try for each split when growing the tree.
The same default is used as in randomForest, which is one third of the number
of predictors. The parameter nodesize fixes the minimal number of instances
in each terminal node, determining how many observations at least lie in the
same node. The default setting here is 10. As for the number of trees, varying
this parameter does in general not make a big difference (quantile regression
forests are very stable concerning these parameters) thus the default setting can
often be used.
In analogy to randomForest there exists an input argument importance to
compute a variable importance measure and related to that an input argument
quantiles. These are discussed further in Section 4.
To summarize, growing quantile regression forests is basically the same as grow-
ing random forests but more information on the nodes is stored. The most
important part of the package is the prediction function which is discussed in
the next section.

3

3 Prediction

The prediction function in the current use has five input arguments with the
following defaults:

> predict(object, newdata=NULL,

+ quantiles=c(0.1,0.5,0.9),

+ all=FALSE, obs=1)

object has to be of class quantregForest, i.e. a quantile regression forest grown
as described in Section 2.
Consider first the simple input

> predict(qrfozone)

where only the input object is set as the quantile regression forest grown for the
Ozone data. In this form, the function predict performs out-of-bag prediction
on the dataset Ozone, i.e. for each of the grown trees prediction for the data
points which were not used for fitting the tree is done (no new data is involved).
The output is a 330 × 3 matrix with the predicted 0.1, 0.5 and 0.9 quantiles.
If we only want to calculate one specific quantile, for example the median, we
could type:

> predict(qrfozone,quantiles=0.5)

The input for quantiles can be an arbitrary vector with values between 0 and 1.
The default is (0.1, 0.5, 0.9) as seen above.
To predict quantiles for new data the input newdata has to be changed to a
matrix or data frame with new observations in the rows.
Consider thus prediction for Ozone when only growing the quantile regression
forest on the first 329 data points and use the 330th observation as new sample
point:

> xozone329 <- ozone[-330,-1]

> yozone329 <- ozone$upo3[-330]

> qrfozone329 <- quantregForest(xozone329,yozone329)

> predict(qrfozone329,quantiles=0.5,newdata=ozone[330,-1])

quantile= 0.5

[1,] 4

Per default only one observation per node is used for prediction. This can be
set with the input argument all with default all=FALSE (one observation per
node used) and when setting all=TRUE, all observation per node are used. The
use of only one observation per node is of advantage especially when working
with large datasets since the algorithm can be very slow otherwise. Numerical
experiments suggest that the performance remains good.
Nevertheless, this option should be handled with care in cases with big datasets

4

and few new sample points as input for newdata where setting all=FALSE may
be significantly slower than choosing all=TRUE.
The advantage of the fast implementation using only one observation per node
for prediction can for example be seen when performing out-of-bag prediction
on the large dataset CASP with response variable RMSD and 8 predictors when
10′000 observations are used to fit the model and the quantiles for 1′000 new
sample points are predicted:

> casp=read.csv("http://archive.ics.uci.edu/ml/machine-learning-databases/00265/CASP.csv")

> xcasp <- casp[1:10000,-1]

> ycasp <- casp$RMSD[1:10000]

> qrfcasp <- quantregForest(xcasp,ycasp)

> system.time(predict(qrfcasp,quantiles=0.5,newdata=casp[10001:11000,-1]))

user system elapsed

10.95 1.17 12.21

As comparison consider the same setting but now all observations are used for
prediction (all=TRUE):

> system.time(predict(qrfcasp,quantiles=0.5,newdata=casp[10001:11000,-1],all=TRUE))

user system elapsed

35.53 0.48 36.03

We observe that the execution time in this case is indeed much longer when
using all observations instead of only one observation per node for prediction.
Finally, there exists the option to change the number of observations per node
used for prediction by the input argument obs, which is only available for default
setting all=FALSE. The value 3 is chosen as example:

> predict(qrfozone,quantiles=0.5,obs=3)

The default of obs is 1. Numerical experiments have shown that the results are
already satisfying for obs=1, so it is recommended to use the default here.
The question remains when to use which method, i.e. use all observations for pre-
diction or only several observations per node. It depends mainly on the number
of observations in the training dataset (ntrain) and the number of observations
in test data (ntest). To summarize, consider the following cases:

� Predict the quantiles for ntrain small and arbitrary ntest or out-of-bag
prediction: all=FALSE (default) or all=TRUE can be used since the results
do not differ much and both options are fast.

� Predict the quantiles for ntrain large and ntest small (e.g. single new data
point): Use all=TRUE since it is much faster.

� Predict the quantiles for ntrain large and ntest large or out-of-bag predic-
tion: Use all=FALSE (default) since it is remarkably faster.

5

> plot(qrfozone)

5 10 15 20 25 30

0
10

20
30

90 % prediction intervals on out−of−bag data

predicted median values

ob
se

rv
ed

 r
es

po
ns

e

●

● ●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

inside prediction interval
outside predicition interval

Figure 1: Estimated 90 % prediction intervals for the Ozone dataset

A method to plot data for class quantregForest is also made available in the
package. With the command plot the 90 % prediction interval for out-of-bag
prediction is plotted. The input object has to be of class quantregForest, see
Figure 1 for the Ozone dataset. The red dots mark the observations which lie
outside the prediction interval, the green ones lie inside. The grey bars represent
the prediction intervals.
Again, per default all=FALSE is used which is reasonable since out-of-bag pre-
diction is performed. Nevertheless, the option all=TRUE exists although it is
recommended to use the default. The option to change the number of observa-
tions used for prediction is also available, but again it is recommended to use
the default.

> plot(qrfozone,all=TRUE)

> plot(qrfozone,obs=3)

6

4 Variable Importance

A variable importance measure for quantile regression forests can be obtained
by the following steps:
First, when growing the tree with quantregForest the additional option importance

has to be set to TRUE, e.g. for the dataset Ozone:

> qrfozone <- quantregForest(xozone,yozone,importance=TRUE)

The quantiles for which the measure should be computed can be set by the
input argument quantiles. The default setting is quantiles=c(0.1,0.5,0.9).
Arbitrary vectors with values between 0 and 1 are allowed.
The importance measure can then be extracted either using

> qrfozone$importance

or the function importance, both yield the same output:

> importance(qrfozone)

quantile= 0.1 quantile= 0.5 quantile= 0.9

vdht 1.501621 0.9888700 5.893826

wdsp 1.848444 -0.5006413 1.057341

hmdt 5.405922 9.8663577 12.283538

sbtp 15.315859 35.1979809 42.123174

ibht 20.115267 11.7133518 11.468469

dgpg 5.530880 7.1951674 9.964748

ibtp 13.222175 32.7651123 52.684763

vsty 6.515244 5.0602011 2.775703

day 6.176072 6.0697588 4.002195

The quantiles for which the measure should be returned can be set by the input
argument quantiles, e.g.

> importance(qrfozone,quantile=0.5)

Per default the measures for all computed quantiles are returned. Only values
for which the measure was already computed with quantregForest are allowed.
To visualize the variable importance measure the function varImpPlot.qrf can
be used, see Figure 2.
Again, the quantiles for which the measure should be visualized can be set by
the input argument quantiles. The same conditions need to be fulfilled as for
importance.
Additional options determining the design of the plot are available: sort deter-
mines if predictors should be sorted increasingly by the value of their importance
measure, which.sort determines which quantile is relevant for the sorting and
symbols and color determine if the plotted points should be symbols and/or
coloured, consider e.g. the following possible input:

> varImpPlot.qrf(qrfozone,quantiles=c(0.5,0.9),

+ symbols=FALSE,color=TRUE,which.sort=2)

For more details refer to the respective help files.

7

> varImpPlot.qrf(qrfozone)

vdht

wdsp

hmdt

dgpg

day

vsty

ibtp

sbtp

ibht

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50

qrfozone

%IncQuantileLoss

● quantile= 0.1
quantile= 0.5
quantile= 0.9

Figure 2: Variable importance plot for Ozone

8

5 Applications

Quantile regression can be used in many different problems where one is not only
interested in the conditional mean of a distribution but in the whole distribution.
Two applications will be described here as they are highlighted in the original
paper on quantile regression forests by Meinshausen (Meinshausen, 2006).

Outlier Detection The first application discussed here is outlier detection.
For illustrating this purpose, consider the Ozone dataset, where three data
points are manipulated, those with indices 50, 150 and 200. Then the 99%
quantiles are predicted and the indices of observations larger than the respective
quantile are given as output.

> ozoneoutliers <- ozone

> ozoneoutliers$upo3[c(50,150,200)] <- ozoneoutliers$upo3[c(50,150,200)]*100

> x <- ozoneoutliers[-1]

> y <- ozoneoutliers$upo3

> qrf <- quantregForest(x,y)

> which(y>predict(qrf,quantile=0.99))

[1] 50 128 150 200 220 252

Prediction Intervals As already seen in the Figure 1, it is quite easy to plot
prediction intervals when working with quantile regression forests. A main con-
clusion that can be achieved by visualizing the prediction intervals is the relia-
bility of a prediction, as the length of the prediction intervals differs strongly. As
an example consider the CASP dataset, where the model is fitted on 10′000 ob-
servations and the quantiles for 500 points are predicted. The result is displayed
in Figure 3 where we can conclude that for some observations the prediction is
more reliable than for others.

> quantiles <- c(0.05,0.5,0.95)

> quant <- predict(qrfcasp,quantiles=quantiles,newdata=casp[11000:11500,-1])

> z <- quant[,3]-quant[,1]

> or <- order(z)

> ynew <- casp$RMSD[11000:11500]

> n <- length(ynew)

> # center and order the quantiles

>

> med <- quant[or,2]-quant[or,2]

> upp <- quant[or,3]-quant[or,2]

> low <- quant[or,1]-quant[or,2]

> ytrain <- ynew[or]-quant[or,2]

9

> # Plot the centred observations and the prediction intervals

>

> plot(1:n,ynew[or]-quant[or,2],pch=20,xlab="ordered samples",

+ ylab="observed response and prediction

+ intervals(centred)",type="n",main="90% prediction intervals")

> dist <- 0.01

> for (i in 1:n){

+ polygon(c(i-dist,i+dist,i+dist,i-dist),

+ c(upp[i],upp[i],low[i],low[i]) ,col=rgb(0.8,0.8,0.8) ,border=NA)

+ }

> for (i in 1:n){

+ lines(c(i-dist,i+dist) , c(upp[i],upp[i]))

+ lines(c(i-dist,i+dist) , c(low[i],low[i]))

+ }

> inpred <- (ytrain<= upp) & (ytrain>=low)

> for (i in 1:n) points(i,ynew[or[i]]-quant[or[i],

+ 2],col=as.numeric(inpred)[i]+2,pch=20)

0 100 200 300 400 500

−
10

−
5

0
5

10
15

90% prediction intervals

ordered samples

ob
se

rv
ed

 r
es

po
ns

e
an

d
pr

ed
ic

tio
n

in
te

rv
al

s(
ce

nt
re

d)

●●●●●
●●
●●●●●●●

●
●●●●●●●●

●●●●
●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●●●
●●

●

●

●●
●
●●
●
●
●

●

●●
●●
●

●

●

●

●
●

●
●

●

●

●

●●●

●
●

●●

●●

●●

●

●

●

●

●

●

●●

●●

●

●
●
●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●●●

●

●

●

●●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

Figure 3: Prediction intervals ordered according to their length for 500 samples
of the CASP dataset.

10

References

Gu, C. (2014). Smoothing spline anova models: R package gss. Journal of
Statistical Software 58 (5), 1–25.

Lichman, M. (2013). UCI machine learning repository.

Meinshausen, N. (2006). Quantile regression forests. J. Mach. Learn. Res. 7,
983–999.

