
Quick introduction of randtoolbox

Christophe Dutang and Petr Savicky

September 2009

1

2

Random simulation or Monte-Carlo methods rely on the fact we have access to random numbers. Even
if nowadays having random sequence is no longer a problem, for many years producing random numbers
was a big challenge. According to Ripley (1990), simulation started in 1940s with physical devices. Using
physical phenomena to get random numbers is referred in the literature as true randomness.

However, in our computers, we use more frequently pseudo-random numbers. These are defined as
deterministic sequences, which mimic a sequence of i.i.d. random numbers chosen from the uniform
distribution on the interval [0, 1]. Random number generators used for this purpose receive as input an
initial information, which is called a user specified seed, and allow to obtain different output sequences of
numbers from [0, 1] depending on the seed. If no seed is supplied by the user, we use the machine time to
initiate the sequence.

Since we use pseudo-random numbers as a proxy for random numbers, an important question is, which
properties the RNG should have to work as a good replacement of the truly random numbers. Essentially, we
need that the applications, which we have, produce the same results, or results from the same distribution, no
matter, whether we use pseudo-random numbers or truly random numbers. Hence, the required properties
may be formulated in terms of computational indistinguishability of the output of the generator from the
truly random numbers, if the seed is not known. The corresponding mathematical theory is developed in
complexity theory, see http://www.wisdom.weizmann.ac.il/˜oded/c-indist.html.

The best known random number generators are used for cryptographic purposes. These generators are
chosen so that there is no known procedure, which could distinguish their output from truly random numbers
within practically available computation time, if the seed is not known. For simulations, this requirement is
usually relaxed. However, even for simulation purposes, considering the hardness of detecting the difference
between the generated numbers and truly random ones is a good measure of the quality of the generator.
In particular, the well-known empirical tests of random number generators such as Diehard1 or TestU01
L’Ecuyer & Simard (2007) are based on relatively easy to compute statistics, which allow to distinguish the
output of bad generators from truly random numbers. More about this may be found in section Examples
of distinguishing from truly random numbers.

A simple parameter of a generator is its period. Recent generators have huge periods, which cannot be
exhausted by any practical computation. Another parameter, suitable mainly for linear generators, is so
called equidistribution. This parameter measures the uniformity of several most significant bits of several
consecutive numbers in the sequence over the whole period. If a generator has good equidistribution, then
we have a reasonable guarantee of practical independence of several consecutive numbers in the sequence.
For linear generators, determining equidistribution properties may be done by efficient algebraic algorithms
and does not need to really generate the whole period.

Ripley (1990) lists the following properties

• output numbers are almost uniformly distributed,

• output numbers are independent,

• the period between two identical numbers is sufficiently long,

• unless a seed is given, output numbers should be unpredictable.

1The Marsaglia Random Number CDROM including the Diehard Battery of Tests of Randomness, Research Sponsored by
the National Science Foundation (Grants DMS-8807976 and DMS-9206972), copyright 1995 George Marsaglia.

http://www.wisdom.weizmann.ac.il/~oded/c-indist.html

1 THE RUNIF INTERFACE 3

The statistical software R provides several random number generators described in ’?RNGkind()’. The
default generator is called Mersenne-Twister and achieves high quality, although it fails some tests based on
XOR operation. Still, there are reasons to provide better and more recent RNGs as well as classic statistical
tests to quantify their properties. The rest of this chapter is two-folded: first we present the use of RNGs
through the runif() interface, second we present the same use with dedicated functions (not modifying
base R default RNGs). See the overall man page with the command ?randtoolbox.

1 The runif interface

In R, the default setting for random generation are (i) uniform numbers are produced by the Mersenne-
Twister algorithm and (ii) normal numbers are computing through the numerical inversion of the standard
normal distribution function. This can be checked by the following code

> RNGkind()

[1] "Wichmann-Hill" "Inversion"

The function RNGkind() can also be used to set other RNGs, such as Wichmann-Hill, Marsaglia-Multicarry,
Super-Duper, Knuth-TAOCP or Knuth-TAOCP-2002 plus a user-supplied RNG. See the help page for
details.

Random number generators provided by R extension packages are set using
RNGkind("user-supplied"). The package randtoolbox assumes that this function is not called by
the user directly. Instead, it is called from the functions set.generator() and put.description()
used for setting some of a larger collection of the supported generators.

The function set.generator() eases the process to set a new RNG in R. Here is one short example
on how to use set.generator() (see the man page for detailed explanations).

> RNGkind()

[1] "Wichmann-Hill" "Inversion"

> library(randtoolbox)
> paramParkMiller <- c(mod=2ˆ31-1, mult=16807, incr=0)
> set.generator(name="congruRand", parameters=paramParkMiller, seed=1)
> get.description()

18446744073709551616184467440737095516161844674407370955161618446744073709551616$name
[1] "congruRand"

1 THE RUNIF INTERFACE 4

$parameters
mod

"18446744073709551616"
mult

"18446744073709551616"
incr

"18446744073709551616"

$state
seed

"18446744073709551616"

$authors
[1] "Unknown"

> RNGkind()

[1] "user-supplied" "Inversion"

> runif(10)

[1] 7.8e-06 1.3e-01 7.6e-01 4.6e-01
[5] 5.3e-01 2.2e-01 4.7e-02 6.8e-01
[9] 6.8e-01 9.3e-01

Random number generators in randtoolbox are represented at the R level by a list containing
mandatory components name, parameters, state and possibly an optional component authors. The
function set.generator() internally creates this list from the user supplied information and then runs
put.description() on this list in order to really initialize the generator for the functions runif() and
set.seed(). If set.generator() is called with the parameter only.dsc=TRUE, then the generator
is not initialized and only its description is created. If the generator is initialized, then the function
get.description() may be used to get the actual state of the generator, which may be stored and
used later in put.description() to continue the sequence of the random numbers from the point, where
get.description() was called. This may be used, for example, to alternate between the streams of
random numbers generated by different generators.

From the runif() interface, you can use any other linear congruential generator with modulus at most
264 and multiplier, which is either a power of 2 or the product of the modulus and the multiplier is at
most 264. The current version of the package also allows to use Well-Equidistributed Long-period Linear
generators (WELL).

To get back to the original setting of RNGs in R, we just need to call set.generator with default
RNG.

2 DEDICATED FUNCTIONS 5

> set.generator("default")
> RNGkind()

[1] "Mersenne-Twister"
[2] "Inversion"

2 Dedicated functions

The other way to use RNGs is to directly use dedicated functions. For instance to get the previous example,
we can simply use

> setSeed(1)
> congruRand(10, mod = 2ˆ31-1, mult = 16807, incr = 0)

[1] 7.8e-06 1.3e-01 7.6e-01 4.6e-01
[5] 5.3e-01 2.2e-01 4.7e-02 6.8e-01
[9] 6.8e-01 9.3e-01

where setSeed function initiates the seed for RNGs implemented in randtoolbox and congruRand calls
the congruential generator.

They are many other RNGs provided by RNGs in addition to linear congruential generator, WELL gen-
erators, SFMersenne-Twister generators and Knuth-TAOCP double version. See ?pseudo.randtoolbox
for details.

This package also implements usual quasi random generators such as Sobol or Halton sequences (see
?quasi.randtoolbox). See the second chapter for an explanation on quasi RNGs.

REFERENCES 6

References

L’Ecuyer, P. & Simard, R. (2007), ‘Testu01: A c library for empirical testing of random number generators’,
ACM Trans. on Mathematical Software 33(4), 22. 2

Ripley, B. D. (1990), Stochastic Simulation, John Wiley & Sons. 2

	The runif interface
	Dedicated functions

