
Using rbambools package

Wolfgang Kaisers, CBiBs HHU Dusseldorf

June 20, 2014

A short notice in advance: During the last release change, the variable ’nGa-
pAligns’ was replaced by ’nAlignGaps’ because the new term describes the con-
tained value less ambiguously than the old one.

1 What this package is made for

BAM files are a important and powerful file format in Bioinformatics. This
package pursues several objectives:

� Provide a technical (reading and writing) access to BAM files from within
R.

� Give an authentic representation of the informational structure inside
BAM files as programming interface.

� Provide a fast, C-based access to special (cumulative) aspects of the stored
information.

These objectives transform into three implementational layers:

� The samtools C-library (written by Heng Li).

� C-based align and align-gap container.

� A R S4 class library.

The samtools library is (almost) a copy of the library originally written by
Heng Li. All reading and writing transactions are done via samtools. There is
C-code which handle align data for whole ranges and C-code for accumulation
of information about splice-sites from gapped aligns.
The R-part of the code contains objects which communicate directly with sam-
tools for reading and writing files, managing of file-header data, managing data
for single aligns and functions which transform align data into data.frame for-
mat. Then there are objects that calculate and keep align-gap information for
whole BAM-files and to summarize align-gap data over several BAM-files.
Align-gaps are emphasized here because they are highly informative represen-
tations of genomic splice-sites in RNA-seq data.

1



2 SAM file format

Data in BAM files is compressed and optionally indexed data in SAM file for-
mat. The current definition of the SAM file format [2] can be found here:

http://samtools.sourceforge.net/SAM1.pdf.

BAM files contain sequence alignment data which is the result of potentially
incomplete matching sequence snippets to a reference sequence. In practice the
snippets are DNA sequences which come from short read sequencing of DNA or
RNA extracted from a biological probe and the reference sequence is a genome
reference. Usually one BAM file contains align data from one biological probe
where the read number is in the magnitude of 100 million reads. The size of the
corresponding compressed files is in the range of 10 Gbyte. A very important
feature of BAM files is that sorted BAM files can be indexed and indexed files
allow random access. This allows very fast access to aligns that are located in
arbitrary regions of the reference genome.

BAM files are divided in a header section and an alignment section.

2.1 The header section

The header section contains the following information:

Tag Description Information

HD Header line Format version and sorting
SQ Reference sequence dictionary Indexed reference sequences (Chromosomes)
RG Read group Sequencing technology
PG Program Alignment program
CO Comment

There are accessor functions in this package for reading and writing the listed
fields. The header section is stored and retrieved as binary structure (bamHeader)
which is converted into a tag delimited string representation (bamHeaderText).
All processing steps on BAM-header data work on the string representation.
rbamtools-objects parse and compose strings from and to object slots which
then can be accessed via script code.

2.1.1 The reference sequence dictionary

The reference sequence dictionary section contains a list of reference sequences
(usually chromosomes). Off the six fields (declared in the SAM file format spec-
ification) usually only two are used:

Tag Description
SN Reference sequence name
LN Reference sequence length

The reference sequence dictionary section misses an index entry (refid) which is

2

http://samtools.sourceforge.net/SAM1.pdf


used in alignment structures and is described below ( 2.2.1).

2.2 The alignment section

The alignment section contains a series of align datasets. Each align describes
the coordinates of the identified sequence matches in the reference sequence.
The information for each align basically consists of:

Field Content
QNAME Align name (read identifier)
RNAME Reference sequence identifier
POS Mapping position: 0-based
CIGAR Matching type string
FLAG A set of bitwise flags.

2.2.1 The RNAME identifier: refid

Although RNAME associates with a textual entry, usually this field contains
a number which identifies a sequence in the header section. To make things
complicated, RNAME is a ”0-based” sequential identifier which is not explicitly
included in the ”Reference sequence dictionary” (SQ). So, RNAME=0 means
the first SQ entry and the ”0” is not present in the header. We call this missing
value refid throughout this document and there are functions in this package
that automatically generate and use this id. The refid value is used by the sam-

tools library as sequence identifier in align-structures and for defining ranges
in index based random access.

2.2.2 Position

The position entry gives the align start position. In order to check the analogy
between query and reference sequence see the given position in refid defined
string.
In order to find the exact matching position it’s necessary to notice the base
of the position notation. We distinguish ”0-based” and ”1-based” position no-
tations. They differ by the index of the starting position (and therefore all
positions).The first position in a ”0-based” notation is 0 whereas the first posi-
tion in a ”1-based” notation is 1:

0-based 0 1 2
1-based 1 2 3

Both notations appear in samtools which makes the correct handling somehow
confusing. The SAM file format specification says ( [2], section 1.4): ”POS: 1-
based leftmost mapping POSition of the first machting base”. Samtools source
code comments (bam.h, line 164) state the contrary: ”pos 0-based leftmost co-
ordinate”. As to expreriences with ”tophat 2.0.0” and annotation data (Ensembl
and UCSC), the latter seems to be true.

3



In order to reflect the technical file content, two functions (position on bamA-

lign objects and as.data.frame on bamRange objects) return the file contained
value (which is 0-based). In order to get values that are congruent with anno-
tation (and IGV genome-browser data) the position values have to be increased
by one.

The bamGapList objects which operate on align gaps contain ”1-based” posi-
tions. So, overlapping with annotation data, can be done without correction.

2.2.3 Navigation on reference sequence

Printing the reference sequence results in characters that are ordered from left
to right in ascending order of their position coordinate (consistent with ordi-
nary reading succession). We refer to this image when two or more locations
are compared. Lower coordinates are assumed to be on the ”left” side and higher
coordinates are assumed to be on the ”right” side.

So, for genes coding on the ”+” strand, ”left” would be synonymous to ”up-
stream” and ”right” would be synonymous to ”downstream”.

2.2.4 CIGAR string

Alignments algorithms usually tolerate to some extend inexact matching. The
type of matching is described in the CIGAR string (see [2] 1.4, Nr. 6). The
CIGAR string is made up of CIGAR-items. A CIGAR-item consists of a inte-
ger number and a character. The number counts the affected positions (cigar-
length). The character describes the type of operation (cigar-type). The follow-
ing table shows relevant operations:

Operation Label Description
M Match Exact match of x positions
N Alignment gap Next x positions on ref don’t match
D Deletion Next x positions on ref don’t match
I Insertion Next x positions on query don’t match

(x = cigar-length)

The operations ”N” and ”D” are mechanistic identical but they describe biologi-
cal different entities: ”D” means genomic deletions, where few nucleotides on the
genome get lost whereas ”N” means gaps which occur in RNA-seq alignments.
These gaps are due to DNA-splicing events and their size can achieve magnitude
of 103 − 105.

First example: The shown alignment is an exact match and will give position

= 2 (0-based!) and CIGAR = 6M:

AAGTCTAGAA (ref)

GTCTAG (query)

Second example: We see an alignment with two nucleotides (”GA”) inserted into
the reference. The align entries will be position=3 (0-based!) and CIGAR=3M2I2M:

4



AAAGTCGATGAA (ref)

GTC TG (query)

Third example: Here we have a deletion on the reference. The ”C” in the query
sequence has no match. The align entries will be position=3 and CIGAR=2M1D3M:

AAGT TAGAA (ref)

GTCTAG (query)

Fourth example: This is a gapped alignment (due to a splicing event in RNA-
seq). It will give the entries position=3 and CIGAR=3M7N4M:

CCCTACGTCCCAGTCAC (ref)

TAC TCAC (query)

We see the alignment gap (”GTCCCAG”). From the ”GT” and ”AG” at the
gap boundaries, one can assume that this splice-site is on the ”+” strand.

2.3 Gapped alignments

A special focus of functionality inside this package are Alignment gaps. Align-
ment gaps in RNA-seq experiments are viewed as phenomenons that rely on bi-
ological splicing mechanisms during protein-biosynthesis and the resulting exon-
intron structure of the genome.

-

CTCCGACAGACAGGACACCAGCTGTATGGCCG

left exon right exon

��
���

�XXXXXX

2.4 Gap-sites

Gap-sites are alignment gaps (=gap-regions) that are shared by one or more
aligns. The nucleotides on the reference sequence that are skipped in the align-
ment (i.e. the reference region which is depicted by ”N” cigar items) form the
gap-region. Gap-sites are also characterized by the fact that they are bordered
by M-segments on either side. The amount of information about the existance of
gap-site in the alignment is proportional to the number of matching nucleotides
that make up the framing M-segments. The calculated derived values on gap-
sites therefore center on three measures:

� The number of aligns that define the gap-site.

5



� The Length of the framing M-segments.

� The number of different length values in the framing M-segments.

� The number of alignments (probes, number of BAM-files) in which the
gap-site is found.

Gap-sites are of special interest in RNA-seq experiments because they arise from
mRNA sequence which spans a processed splice site (splicing results in removal
of intronic sequence ranges from pre-mRNA). Gapped alignments contain highly
specific information about splicing events. Of central interest in RNA-seq ex-
periments is the identification and quantification of splicing events.

In order to describe and illustrate the parameters that are calculated and kept
within this package we show the following:

2.4.1 Example

The following table example shows a short reference sequence and three different
alignments that define a gap-site. The reference nucleotides that consitute the
gap-region are printed in red:

qname position CIGAR
AG CCTTGATG align1 3 2M6N8M
CAG CCTTGAT align2 2 3M6N7M
CCAG CCT align3 1 4M6N3M
CCCAGGTCCAGCCTTGATGTCC (reference) (0-based)

For each gapped align from which the gap-site is constituted, three values con-
cerning the number of matching nucleotides are kept:

� lcl (left cigar length) is the length of the left adjacent match in the CIGAR
string.

� rcl (right cigar length) is the length of the right adjacent match in the
CIGAR string.

� mcl (minimum cigar length) is the minimum of the lcl and rcl value for
each align.

For these parameters we have values in the example:

qname position CIGAR lcl rcl mcl
align1 3 2M6N8M 2 8 2
align2 2 3M6N7M 3 7 3
align3 1 4M6N3M 4 3 3

2.4.2 Gap-site coordinates

For each gap-site, localisation-coordinates are defines as:

� refid

6



� lend (left-end) is the (1-based) coordinate of the last matching nucleotide
on the left side: CCCAGGTCCAGCCTTGATGTCC

� rstart (right-start) is the (1-based) coordinate of first matching nucleotide
on the right side: CCCAGGTCCAGCCTTGATGTCC

We call all aligns that share identical localisation-coordintates gap-site-defining-
aligns. In order to derive a lower boundary for the size of the adjacent exons
are calculated:

� lstart (left-start) is the (1-based) coordinate of the leftmost nucleotide for
which a match exsists in the set of left adjacent matching regions:
CCCAGGTCCAGCCTTGATGTCC.
The position is calculated by lstart = lend−max(lcl) + 1.

� rend (right-end) is the (1-based) coordinate of the rightmost nucleotide
for which a match exists in the set of right adjacent matching regions:
CCCAGGTCCAGCCTTGATGTCC.
The position is calculated by rend = rstart + max(rcl)− 1.

As derivative, the number of nucleotides in the gap-region (denoted gaplen)
is calculated as gaplen = rend − lstart − 1. Alltogether, the gap-site and the
adjacent putative matching regions in this example are:

CCCAGGTCCAGCCTTGATGCCTTGATGTCC.

The associated numeric values for the shown example are:

Name value base
refid 0 0 We assume, there is only one reference sequence
lstart 2 1 Leftmost match position (C)
lend 5 1 Last match on left side (G)
rstart 12 1 First match on right side (C)
rend 20 1 Rightmost match position (G)
gaplen 6 Number of nucleotides in gap

2.4.3 Quantification of align numbers

The number of gap-site-defining-aligns are quantified in:

� nAligns, the number of aligns that define the gap-site.

� nProbes, the number of alignments (BAM-files) in which this gap-site is
found.

In the present example, nAligns = 3 and nProbes = 1.

2.4.4 Quantification of informational support for gap-site’s

In order to quantify the information content for each gap-site lcl and mcl values
are stored as single byte values inside of an unsigned long long integer. We define
n as the number of bytes they contain. On a 32-bit operating system there is

7



n = 4 and on a 64-bit operating system n = 8. With that, we van view lcl

and mcl as n-dimensional vectors: lcl = (lcli)i=1,...,n and mcl = (mcli)i=1,...,n

in which values are placed in descending order.

� nlstart, the number of different match start positions, which equals the
number of different values in the lcl vector.
nlstart := #{lgli : i = 1, . . . , n}.

� lm sum, the number of matching nucleotides on the left side of the gap.
lm sum :=

∑l
i=1 gli.

� qsm, the sum of the four largest mcl values (quartet sum of minimal cigar

length):
∑4

i=1 mcli

2.4.5 Gap quality score (gqs)

The gap quality score is calculated as

gqs = 10
nlstart

n

2qsm

4
= 10

#{lgli : i = 1, . . . , n}
n

2
∑4

i=1 mcli
4

The score quantifies number of align start positions and matching nucleotides in
order to distinguish biological existing splice-sites from alignment phenomenons.
The stored information accumulates with increasing the number of included
alignments (BAM-files). The score is given as a positive integer value and the
maximum reachable number is 10 * read-length.

The higher the score the more likely is the fact that a gap-site represents a
splice-site. Be aware that gqs does not quantify gene expression.

3 Object types inside rbamtools package

The description of object types in this section starts with reading and writing
access to BAM files, proceeds to objects which elementary data inside BAM
files and ends with the description of more complex containers.

3.1 Included example files within rbamtools

There are two example files included which are located in the ”/inst/extdata”
subdirectory. The directory contains a sorted BAM file ”accepted hits.bam”and
the corresponding index file ”accepted hits.bam.bai”.
They were produced (using the extractRanges function) from a RNA-seq ex-
periment. A human probe was sequenced using an Illumina Hiseq sequencer.
Fastq-reads were aligned with tophat against homo sapiens UCSC reference
genome. Complex aligns (i.e. nCigar>1) were extracted for genes KLHL17
(chr1) and SNRNP25 (chr16). The BAM file contains 3333 aligns.

3.2 Reading and writing access

Immediate reading and writing access is provided by bamReader and bamWriter

Objects.

8



3.3 bamReader

An object of class bamReader is constructed and returnd by the function bam-

Reader in the following way:

> library(rbamtools)

> bam<-system.file("extdata","accepted_hits.bam",package="rbamtools")

> # Open bam file

> reader<-bamReader(bam)

An opened bamReader can be used to access the BAM header section and to
read aligns sequenitally. bamReader can also be used to sort and index BAM
files.

Sorting large BAM files requires some time and produces intermediate files. So
the recommended way of sorting large BAM files is to use the samtools command
line version. Sorting BAM files within R can be done with:

> bamSort(reader,prefix="my_sorted",byName=FALSE,maxmem=1e+9)

Sorted BAM files can be indexed. Indexing results in a second file which is
usually named as the BAM file itself with an added suffix ”.bai”. An index file
can be created with:

> create.index(reader,idx_filename="index_file_name.bai")

Omitting the idx_filename argument results in adding the ”.bai” suffix to the
filename of the BAM file which is then automatically located in the same direc-
tory as the BAM file itself:

> create.index(reader)

The creation of indexes for large BAM files (10 GB) takes some minutes time
but can readily be done with this routine and of course has to be done only once
per file.
Index files must be loaded before they can be used:

> idx<- system.file("extdata", "accepted_hits.bam.bai", package="rbamtools")

> load.index(reader,idx)

The reader object can be checked for for loaded index with:

> index.initialized(reader)

[1] TRUE

A shortcut for opening a BAM file and loading the ”standard” index at the same
time is:

> reader<-bamReader(bam,idx=TRUE)

9



3.4 Tabled reference sequences: getRefData

A data.frame with the reference sequences contained in the BAM header can be
obtained with:

> getRefData(reader)

ID SN LN

1 0 chr1 249250621

2 1 chr16 90354753

The returned data.frame contains in the first column (ID) the mentioned re-
fid 2.2.1 value which is not part of the header but uses as identifier for aligns
and ranges.

3.5 bamWriter

For creation of a bamWriter object, a bamHeader and a filename must be given.
The most convenient way of obaining a bamHeader class is retrieving one from
an opened bamReader object.

> header<-getHeader(reader)

> writer<-bamWriter(header,"test.bam")

> # Write aligns using bamSave

> bamClose(writer)

Aligns can be written to a BAM file either from single instances of bamAlign’s
or from whole bamRange objects. Section 1.4

4 Elementary data structures

The content of BAM files can be divided in header section and alignment

section.

4.1 Structures for header section

The complete header information (in binary representation) can be retrieved
from a BAM file with the function getHeader. An object of this type is needed
for creation of a bamWriter object. In order to get Access to the data itself, the
binary data has to be converted into a string representation which is maintained
inside an object of class bamHeaderText:

> header<-getHeader(reader)

> htxt<-getHeaderText(header)

The header section is divided into several seqments (as described above) with
data tags that describe the origin of the contained alignments. For each segment
there is a class which can be be obtained by calling the appropriate function on
a bamHeaderText object:

10



Segment ID Description S4 class Retrieving function
HD The header line headerLine headerLine
SQ Reference sequence dictionary refSeqDict refSeqDict
RG Read group
PG Program headerProgram header Program
CO Comment

Creating a complete bamHeader object from scratch can be done with the fol-
lowing code:

> bh<-new("bamHeaderText")

> headl<-new("headerLine")

> setVal(headl,"SO","coordinate")

> dict<-new("refSeqDict")

> addSeq(dict,SN="chr1",LN=249250621)

> addSeq(dict,SN="chr16",LN=90354753)

> dict

An object of class "refSeqDict"

SN LN AS M5 SP UR

1 chr1 249250621 0

2 chr16 90354753 0

> prog<-new("headerProgram")

> setVal(prog,"ID","1")

> setVal(prog,"PN","tophat")

> setVal(prog,"CL","tophat --library-type fr-unstranded hs_ucsc_index reads.fastq")

> setVal(prog,"VN","2.0.0")

> bh<-bamHeaderText(head=headl,dict=dict,prog=prog)

> #getHeaderText(bh)

> header<-bamHeader(bh)

4.2 Structures for alignment section

Single aligns can be retreaved from opened reader via getNextAlign:

> align<-getNextAlign(reader)

The alignment section in BAM files is a series of alignment (align) records. The
data inside of each record is represented by a bamAlign object. Section 1.4 [2]
describes the information content for each align in detail. The fields and the
corresponding bamAlign accessors are listed below:

11



Field Description Accessor
QNAME Name name
FLAG Multiple Flags flag
RNAME refid 2.2.1 refID
POS Mapping position 2.2.2 position (0-based!)
MAPQ Mapping quality mapQuality
CIGAR CIGAR string cigarData

Number of cigar entries nCigar
RNEXT Ref name of mate segment mateRefID
PNEXT Position of mate segment matePosition
SEQ segment sequence alignSeq
QUAL Pred-scaled Quality String alignQual

The accessors can be used in the following way:

> name(align)

> flag(align)

> refID(align)

> position(align)

> mapQuality(align)

> cigarData(align)

> nCigar(align)

> mateRefID(align)

> matePosition(align)

> alignSeq(align)

> alignQual(align)

The flag field contains multiple bit-coded flags which are kept together inside
an integer value:

Bit Description Accessor
0x1 Paired align paired
0x2 Proper pair properPair
0x4 Unmapped unmapped
0x8 Mate umapped mateUnmapped
0x10 Reverse Strand reverseStrand
0x20 Mate reverse Strand mateReverseStrand
0x40 First in pair firstInPair
0x80 Second in pair secondInPair
0x100 Secondary align secondaryAlign
0x200 Not passing quality control failedQC
0x400 PCR or optical duplicate pcrORopt_duplicate

The following code demonstrates the usage of the flag-accessors:

> paired(align)

> properPair(align)

> unmapped(align)

> mateUnmapped(align)

> reverseStrand(align)

> mateReverseStrand(align)

12



> firstInPair(align)

> secondInPair(align)

> secondaryAlign(align)

> failedQC(align)

> pcrORopt_duplicate(align)

The same accessors can also be used to set the accordant values:

> unmapped(align)<-TRUE

4.2.1 Creating bamAlign objects from scratch

The bamAlign function can be used to create bamAlign objects from scratch:

> align<-bamAlign("HWUSI-0001","ATGTACGTCG","Qual/Strng","4M10N6M",refid=0,position=100)

> align

Class : bamAlign

refId : 0

Position : 100

Cigar Data :

Length Type

0 4 M

1 10 N

2 6 M

> name(align)

[1] "HWUSI-0001"

> alignSeq(align)

[1] "ATGTACGTCG"

> alignQual(align)

[1] "Qual/Strng"

> cigarData(align)

Length Type

0 4 M

1 10 N

2 6 M

> refID(align)

[1] 0

> position(align)

[1] 100

The created bamAlign objects can be added to a bamRange list or be written
to a BAM-file via bamWriter .

13



5 Complex and cumulative container

5.1 Align lists for specific reference regions: bamRange

bamRange objects manage a list of bamAlign’s. As BAM files usually contain
alignment results against a reference-genome, bamRange objects contain list of
all aligns that match between a given start and stop position on a given chro-
mosome. Region coordinates are thereby defined by a refid 2.2.1 and a start
and stop position.

5.1.1 Reading bamRange from bamReader

In order to create a bamRange object, an index-initialized bamReader object
and a numeric coordinates-vector of length three are passed to the bamRange

function.

There are several ways to provide the coordinates for which the aligns are to be
retrieved. The first way is to specify a circumscribed genomic region (e.g. where
a gene of interest is located). The names for the coordinates are not required
and only added for explanational purposes:

> coords<-c(0,899000,900000)

> names(coords)<-c("refid","start","stop")

> range<-bamRange(reader,coords)

> size(range)

[1] 0

The second way is to specify coordinates for a whole reference sequence (chro-
mosome). As can be seen from the output of the getRefData function, the
coordinates for the whole first chromosome should be given as:

> getRefData(reader)

ID SN LN

1 0 chr1 249250621

2 1 chr16 90354753

> coords<-c(0,0,249250621)

> names(coords)<-c("refid","start","stop")

> range<-bamRange(reader,coords)

> size(range)

[1] 2216

The function getRefCoords is used here as shortcut:

> coords<-getRefCoords(reader,"chr1")

> coords

[1] 0 0 249250621

> range<-bamRange(reader,coords)

> size(range)

14



[1] 2216

bamRange objects keep a pointer to a current align structure for iteration pur-
poses. Addidionally there are some summarizing values stored (which are dis-
played by show) which describe the range inside the reference from which the
bamRange object was read (seqid,qrBegin,qrEnd,complex) and some statistis
(size,qSeqMinLen,qSeqMaxLen). Most of the values are printed upon show:

> range

Class : bamRange

Size : 2.216

Seqid : 0

qrBegin : 0

qrEnd : 249.250.621

Complex : 0

rSeqLen(LN) : 249.250.621

qSeqMinLen : 101

qSeqMaxLen : 101

Refname : chr1

> getCoords(range)

seqid begin end

0 0 249250621

> getSeqLen(range)

min max

101 101

> getParams(range)

seqid qrBegin qrEnd complex rSeqLen qSeqMinLen qSeqMaxLen

0 0 249250621 0 249250621 101 101

> getRefName(range)

[1] "chr1"

The (0-based) positions of the leftmost and rightmost matching nucleotides in
the align-list are not included by default but can be separately calculated:

> getAlignRange(range)

min_pos max_end

14398 29867

5.1.2 Accessing aligns in bamReader

bamReader objects keep a list of bamAlign objects. The objects can sequen-
tially accessed or a data.frame with the align data can be retrieved. Therefore
bamRange objects internally keep a pointer to the current align. When no cur-
rent align object is set, the next call to getNextAlign will set the current to
the first align in list. When the last align in list is reached, the next call to
getNextAlign will return NULL.
Sequential access to bamRange objects can be done with getNextAlign:

15



> align<-getNextAlign(range)

getNextAlign Sequential access to all contained aligns in a bamRange object
can be done with

> rewind(range)

> while(!is.null(align))

+ {

+ # Process align data here

+ align<-getNextAlign(range)

+ }

A fast way to get tabled align information out of bamRange objects is to use
as.data.frame.

> rdf<-as.data.frame(range)

5.2 gapList

gapList objects represent a list of align gaps. They contain one record for single
each align-gap present in align data. Each align-gap can be linked to a single
align in the BAM file (via refid and position coordinates).

The function gapList takes an open and indexed instance of bamReader and a
set range coordinates (refid,start,stop). The function will scan all aligns that are
overlap with the given range in the opened BAM file for gapped aligns. For every
contained align gap, the refid and the position of the align, the match length on
both sides (left_cigar_len, right_cigar_len) and the (1-based) positions
of the last nucleotide the left side of the gap (left_stop) and the (1-based)
position of the first nucleotide on the right side of the gap (right_start).

> coords<-getRefCoords(reader,"chr1")

> gl<-gapList(reader,coords)

> gl

An object of class 'gapList'. size: 2297

nAligns: 2216 nAlignGaps: 2297

> dfr<-as.data.frame(gl)

> dfr[1:6,c(1:3,5:8)]

refid position left_cigar_len left_stop gaplen right_start right_cigar_len

0 0 14729 100 14829 140 14970 1

1 0 14729 100 14829 140 14970 1

2 0 14729 100 14829 140 14970 1

3 0 14729 100 14829 140 14970 1

4 0 14729 100 14829 140 14970 1

5 0 14729 100 14829 140 14970 1

The columns 4 and 9 contain the type of the adjacent cigar items (which should
always be ’M’) are omitted.

The size function returns the number of gaps contained in the object. The
functions nAligns and nAlignGaps return the total number of aligns and the
number of gapped aligns in the scanned range respectively:

16



> size(gl)

> nAligns(gl)

> nAlignGaps(gl)

5.3 gapSiteList

gapSiteList objects contain pooled align-gap information. The single gaps are
condensed by refid, left-stop and right-start. So each combination of coordinates
appears only once in the list. The number of aligns in which each gap has been
found is counted into the value nAligns.

Two gapSitList objects can be merged to one. The basic coordinates of the
contained gap-sites (refid, lend, rstart) are compared. Gap-sites with no coun-
terpart are just copied into the new list whereas gap-sites with couterpart are
merged into one record. In this merging process, the core coordinates are just
copied. The following table gives an overview over the calculations which are
done for merging:

Column name Site identificator Resulting value
id New running index will be created
refid + Copied
lstart Minimum
lend + Copied
rstart + Copied
rend Maximum
gaplen Copied
nAligns Sum
nProbes Sum
nlstart (See text)
lm_sum (See text)
lcl (See text)
mcl (See text)

For lm_sum, lcl and mcl, there are specialiced merging operations.

> coords<-getRefCoords(reader,"chr1")

> sl<-siteList(reader,coords)

[gap_site_list_fetch] Fetched list of size 32.

> size(sl)

[1] 32

> nAligns(sl)

[1] 2216

> nAlignGaps(sl)

[1] 2297

17



> sl

An object of class 'gapSiteList'. size: 32

nAligns: 2216 nAlignGaps: 2297

> df<-as.data.frame(sl)

> head(df)

id refid lstart lend rstart rend gaplen nAligns nProbes nlstart lm_sum

1 1 0 14730 14829 14970 15052 140 553 1 8 772

2 2 0 14944 15038 15796 15888 757 201 1 8 601

3 3 0 15909 15947 16607 16702 659 29 1 8 196

4 4 0 15953 16027 16607 16669 579 4 1 4 220

5 5 0 16730 16765 16854 16941 88 5 1 5 108

6 6 0 16682 16765 16858 16957 92 34 1 8 358

lcl mcl

1 1633837924 842150450

2 1163550303 757935406

3 387456295 387456295

4 640172875 438445608

5 236198180 236198180

6 690630740 690563632

5.4 bamGapList

bamGapList Objects are designed to contain information about gap-sites for a
complete BAM file (i.e. for all refid’s). bamGapList’s can be merged, so it’s
possible to cumulate information about gap-sites from a large number of BAM
files (e.g. 50). As the whole collection and merging process is done in C, the
whole process usually runs with a processing rate > 1.000.000 aligns/sec (on a
desktop machine).

> bsl<-bamGapList(reader)

> bsl

An object of class 'bamGapList'. size: 39

nAligns: 3.230 nAlignGaps: 3.443

> size(bsl)

[1] 39

> nAligns(bsl)

[1] 3230

> nAlignGaps(bsl)

[1] 3443

> summary(bsl)

18



ID SN LN start size nAligns nAlignGaps

1 0 chr1 249250621 0 32 2216 2297

2 1 chr16 90354753 0 7 1014 1146

> dfr<-as.data.frame(bsl)

> head(dfr)

id seqid lstart lend rstart rend gaplen nAligns nProbes nlstart qsm nmcl

0 1 chr1 14730 14829 14970 15052 140 553 1 8 200 8

1 2 chr1 14944 15038 15796 15888 757 201 1 8 181 8

2 3 chr1 15909 15947 16607 16702 659 29 1 8 115 8

3 4 chr1 15953 16027 16607 16669 579 4 1 4 138 4

4 5 chr1 16730 16765 16854 16941 88 5 1 5 95 5

5 6 chr1 16682 16765 16858 16957 92 34 1 8 172 8

gqs

0 1000

1 905

2 575

3 345

4 296

5 860

6 Miscellaneous functions

6.1 bamCount and bamCountAll

The bamCount counts aligns and CIGAR-items in align ranges defined by coor-
dinates. The function returns a named integer vector of length 10.
The bamCountAll counts aligns and CIGAR-items for whole BAM-files (repre-
sented by a bamReader). The function optionally takes a verbose argument
which controls the textual output during runtime. The function returns a
data.frame. Each line contains counts for one reference sequence, each column
contains data for one CIGAR-OP type. Columns with total counts, referene
sequence id (ID) and reference sequence length (LN) are added.

> bam<-system.file("extdata","accepted_hits.bam",package="rbamtools")

> coords<-c(0,0,14730)

> count<-bamCount(reader,coords)

> count

M I D N S H P = X nAligns

30 0 2 13 0 0 0 0 0 15

> count<-bamCountAll(reader,verbose=TRUE)

[bamCountAll] Counting chr1 [ 1/2]

[bamCountAll] Counting chr16 [ 2/2]

[bamCountAll] Finished.

> count

M I D N S H P = X nAligns ID LN

chr1 4577 18 46 2297 0 0 0 0 0 2216 0 249250621

chr16 2164 4 0 1146 0 0 0 0 0 1014 1 90354753

19



6.2 countNucs

The countNucs counts occurrence of the nucleotides ACGT in bamAlign and
bamRange objects. An integer vector of length 4 is returned. The names give
the nucleotide which is counted at each position. The syntax is identical for
bamAlign

> align<-bamAlign("HWUSI-0001","ACCGGGTTTT","Qual/Strng","4M10N6M",refid=0,position=100)

> countNucs(align)

A C G T N

1 2 3 4 0

and bamRange

> bam<-system.file("extdata","accepted_hits.bam",package="rbamtools")

> reader<-bamReader(bam,idx=TRUE)

> coords<-c(0,0,14730)

> range<-bamRange(reader,coords)

> countNucs(range)

A C G T N

237 490 533 255 0

objects.

6.3 nucStats

nucStats for bamReader The nucStats function counts occurrence of the
nucleotides ACGT in whole BAM files via opened bamReader objects. Any other
character values are subsumed in the value N. The last two columns contain
values for GC content and AG/GC ratio. The function returns a data.frame
with one row for each reference sequence which is listed in the BAM-header
section.

> nucStats(reader)

nAligns A C G T N gcc at_gc_ratio

chr1 2216 37756 72232 61721 52102 5 0.5835076 0.7137739

chr16 1014 28090 25298 31102 17921 3 0.5835076 0.7137739

nucStats for BAM file names The nucStats function counts occurrence
of the the nucleotides ACGT for a given list of BAM file names. The last two
columns contain values for GC content and AG/GC ratio. The function returns
a data.frame with one row for each given BAM file name.

> nucStats(bam)

nAligns A C G T N gcc at_gc_ratio

1 3230 65846 97530 92823 70023 8 0.5835076 0.7137739

20



6.4 create.idx.batch

The create.idx.batch is intended to create index files for a batch of given
BAM-files. The names of the created BAM-index files can optionally be added.
The standard name for BAM-index files is the name of the BAM file plus an
added suffix ”.bai”. The third (optional) argument is rebuild . When rebuild is
FALSE the function will only create not already existing BAM-index files. When
rebuild is TRUE the function will build BAM-index for all given BAM-files.

Sometimes (especially when BAM-files have been copied), they may be error-
neous. Rebuilding index files is a way to check the integrity of a BAM-file.

> bam<-system.file("extdata","accepted_hits.bam",package="rbamtools")

> create.idx.batch(bam)

6.5 reader2fastq, range2fastq

The reader2fastq and range2fastq take (optionally random subsets) of whole
BAM-files (via bamReader) or selected ranges (via bamRange) and copy aligns
to fastq files.
For handling of aligns inside whole BAM-files, use the reader2fastq function.
Aligns are read from BAM files via getNextAlign. For an opened file, there
is a pointer to the last retrieved align kept. So multiple calls to getNextAlign

will retrieve subsequent aligns.
This comes into play when there are precedent calls to getNextAlign or a subset
has been drawn via a given logical vector. When a logical vector is given, there
will be a call to getNextAlign for every entry in the vector. The function then
returns the number of checked aligns. When EOF is reached before the vector is
processed, the number of checked aligns is smaller than the length of the given
logical vector. When no logical vector is given, the function returns the number
of written aligns.

> bam<-system.file("extdata","accepted_hits.bam",package="rbamtools")

> reader<-bamReader(bam)

> reader2fastq(reader,"out.fastq")

> bamClose(reader)

> # Reopen in order to point to first align

> reader<-bamReader(bam)

> index<-sample(1:100,20)

> reader2fastq(reader,"out_subset.fastq",which=index)

The function range2fastq writes all aligns in a bamRange object into a com-
pressed fastq file. Optionally, a logical vector (where length must be equal to
size of range) can be given. In this case only the depicted aligns are copied into
the fastq file and the remaining alings are skipped.

> bam<-system.file("extdata","accepted_hits.bam",package="rbamtools")

> reader<-bamReader(bam,idx=TRUE)

> coords<-as.integer(c(0,0,249250621))

> range<-bamRange(reader,coords)

> range2fastq(range,"rg.fq.gz")

> index<-sample(1:size(range),100)

> range2fastq(range,"rg_subset.fq.gz",which=index)

21



6.6 Functions for reading and displaying Phred quality
scores

Phred quality scores Q are defindes as Q = −10log10P where P is the base
calling error probability.

getQualDf takes a bamReader and returns a data.frame. The data.frame has
94 rows which represent values from 0 to 93 ( [1]). The number of columns
equals the maximum sequence length in the given bamRange.

> qdf<-getQualDf(range)

> qdf[32:38,1:10]

1 2 3 4 5 6 7 8 9 10

31 2 2 1 0 1 0 0 1 1 1

32 0 2 0 3 0 2 0 0 0 0

33 0 0 1 1 3 0 2 1 1 1

34 1 3 1 0 0 0 0 0 0 0

35 0 7 7 7 7 8 7 7 7 6

36 0 0 0 0 0 0 0 0 0 0

37 0 0 0 2 2 2 2 3 0 1

> qdr<-getQualDf(range,prob=TRUE)

> qrr<-round(qdr,2)

> qrr[32:38,1:10]

1 2 3 4 5 6 7 8 9 10

32 0.13 0.13 0.07 0.00 0.07 0.00 0.00 0.07 0.07 0.07

33 0.00 0.13 0.00 0.20 0.00 0.13 0.00 0.00 0.00 0.00

34 0.00 0.00 0.07 0.07 0.20 0.00 0.13 0.07 0.07 0.07

35 0.07 0.20 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00

36 0.00 0.47 0.47 0.47 0.47 0.53 0.47 0.47 0.47 0.40

37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

38 0.00 0.00 0.00 0.13 0.13 0.13 0.13 0.20 0.00 0.07

getQualQuantiles takes a bamReader and a vector of quantiles (must be be-
tween 0 and 1) and returns a data.frame. The data.frame contains one row for
each quantile and also as many columns as the maximum sequence length.

> qt<-getQualQuantiles(range,c(0.25,0.5,0.75))

> qt[,1:10]

1 2 3 4 5 6 7 8 9 10

q_25 23 32 30 32 33 32 30 31 29 27

q_50 24 34 34 35 35 35 35 35 35 35

q_75 30 35 35 36 36 36 36 36 36 36

22



plotQualQuant takes a bamReader and plots the 0.1, 0.25, 0.5, 0.75 and 0.9
quantiles for all occurring sequence positions.

> plotQualQuant(range)

0 20 40 60 80 100

0

10

20

30

40

50

Phred Quantiles for sequence

sequence position

ph
re

d 
sc

or
e

10% 25% 50% 75% 90%

6.7 Functions for calculation and displaying align-depth

Align depth means quantification of present matches for each nucleotide position
in a given range.

The alignDepth member function calculates align depth for a given bam-
Range object. From the bamRange object, the range is extracted and for each
nucleotide position whithin this range the numbers of align matches are calcu-
lated. When alignDepth is called wich gap=TRUE, the function counts aligns
solely for gap-adjacent match regions (cigar-op’s).

Whe extract a bamRange for the WASH7

> # WASH7P coordinates

> coords<-as.integer(c(0,16950,17400))

> range<-bamRange(reader,coords)

> bamClose(reader)

> ad<-alignDepth(range)

> ad

Class : alignDepth

Seqid : 0

23



qrBegin : 16.950

qrEnd : 17.400

Complex : 0

rSeqLen(LN) : 249.250.621

qSeqMinLen : 101

qSeqMaxLen : 101

refname : chr1

16951 16952 16953 16954 16955 16956

8 5 5 5 4 15

> getParams(ad)

seqid qrBegin qrEnd complex rSeqLen qSeqMinLen qSeqMaxLen

0 16950 17400 0 249250621 101 101

gap

0

> plotAlignDepth(ad,col="lightblue")

17000 17100 17200 17300 17400

0

100

200

300

400

500

alignDepth

position

al
ig

nD
ep

th

Refname: chr1

References

[1] PJA Cock, CJ Fields, N Goto, ML Heuer, and Rice PM. The sanger fastq
file format for sequences with quality scores and the solexa/illumina fastq
variants. Nucleic Acids Research, 38:1767–1771, 2010.

[2] The SAM Format Specication Working Group. The sam format specication
(v1.4-r985). http://samtools.sourceforge.net/SAM1.pdf.

24

http://samtools.sourceforge.net/SAM1.pdf

	What this package is made for
	SAM file format
	The header section
	The reference sequence dictionary

	The alignment section
	The RNAME identifier: refid
	Position
	Navigation on reference sequence
	CIGAR string

	Gapped alignments
	Gap-sites
	Example
	Gap-site coordinates
	Quantification of align numbers
	Quantification of informational support for gap-site's
	Gap quality score (gqs)


	Object types inside rbamtools package
	Included example files within rbamtools
	Reading and writing access
	bamReader
	Tabled reference sequences: getRefData
	bamWriter

	Elementary data structures
	Structures for header section
	Structures for alignment section
	Creating bamAlign objects from scratch


	Complex and cumulative container
	Align lists for specific reference regions: bamRange
	Reading bamRange from bamReader
	Accessing aligns in bamReader

	gapList
	gapSiteList
	bamGapList

	Miscellaneous functions
	bamCount and bamCountAll
	countNucs
	nucStats
	create.idx.batch
	reader2fastq, range2fastq
	Functions for reading and displaying Phred quality scores
	Functions for calculation and displaying align-depth


