
Fast Design of Risk Parity Portfolios
Zé Vinícius and Daniel P. Palomar

Hong Kong University of Science and Technology (HKUST)
2019-01-07

Contents

1 Vanilla risk parity portfolio 1

2 Modern risk parity portfolio 3

3 Comparison with other packages 5

Appendix I: Risk concentration formulations 8

Appendix II: Numerical algorithms for the risk parity portfolio 9

Appendix III: Computational time 11

References 19

This vignette illustrates the design of risk parity portfolios, widely used by practitioners in the
financial industry, with the package riskParityPortfolio, gives a description of the algorithms
used, and compares the performance against existing packages.

1 Vanilla risk parity portfolio

A risk parity portfolio denotes a class of portfolios whose assets verify the following equalities:

wi

∂f(w)

∂wi

= wj

∂f(w)

∂wj

, ∀i, j,

where f is a positively homogeneous function of degree one that measures the total risk of the portfolio and
w is the portfolio weight vector. In other words, the marginal risk contributions for every asset in a risk
parity portfolio are equal. A common choice for f , for instance, is the standard deviation of the portfolio,
which is usually called volatility, i.e., f(w) =

√
wT Σw, where Σ is the covariance matrix of the assets.

With that particular choice of f , the risk parity requirements become

wi(Σw)i = wj(Σw)j , ∀i, j.

A natural extension of the risk parity portfolio is the so called risk budget portfolio, in which the marginal
risk contributions match preassigned quantities. Mathematically,

wi(Σw)i = biw
T Σw, ∀i,

where b , (b1, b2, ..., bN) (with 1T b = 1 and b ≥ 0) is the vector of desired marginal risk contributions.
In the case that Σ is diagonal and with the constraints 1T w = 1 and w ≥ 0, the risk budgeting portfolio

is

wi =

√
bi/

√
Σii

∑N

k=1

√
bk/

√
Σkk

, i = 1, . . . , N.

However, for non-diagonal Σ or with other additional constraints or objective function terms, a closed-form
solution does not exist and some optimization procedures have to be constructed. The previous diagonal
solution can always be used and is called naive risk budgeting portfolio.

1

With the goal of designing risk budget portfolios, Spinu proposed in [1] to solve the following convex
optimization problem:

minimize
x≥0

1

2
xT Σx −

N
∑

i=1

bi log(xi),

where the portfolio can be recovered as w = x/(1T x).
It turns out, as shown in [1], that the unique solution for the optimization problem stated above precisely

attains the desired risk budget requirements. Such solution can be computed using convex optimization
packages, such as CVXR, but faster algorithms such as Newton method and the cyclical coordinate descent
method, proposed by [1] and [2], are implemented in this package.

A simple code example on how to design a risk parity portfolio is as follows:

library(riskParityPortfolio)

library(PerformanceAnalytics) # for the color palette

generate synthetic data

set.seed(42)

N <- 10

V <- matrix(rnorm(N^2), nrow = N)

Sigma <- cov(V)

compute risk parity portfolio

portfolio <- riskParityPortfolio(Sigma)

plot the portfolio designed

barplot(portfolio$w, main = "Portfolio Weights", xlab = "stocks", ylab = "dollars",

beside = TRUE, col = rainbow8equal[1], legend = c("riskParityPortfolio"),

args.legend = list(bg = "white"))

riskParityPortfolio

Portfolio Weights

stocks

d
o
lla

rs

0
.0

0
0
.0

5
0
.1

0
0
.1

5

2

plot the risk contributions

barplot(portfolio$risk_contribution,

main = "Risk Contribution of the Portfolios", xlab = "stocks", ylab = "dollars",

beside = TRUE, col = rainbow8equal[1], legend = c("riskParityPortfolio"),

args.legend = list(bg = "white"))

riskParityPortfolio

Risk Contribution of the Portfolios

stocks

d
o
lla

rs

0
.0

0
0
0

0
.0

0
1
0

0
.0

0
2
0

0
.0

0
3
0

As presented earlier, the risk parity portfolios are designed in such a way as to ensure equal risk contribution
from the assests, which can be noted in the chart above.

2 Modern risk parity portfolio

The design of risk parity portfolios as solved by [1] and [2] is of paramount importance both for academia
and industry. However, practitioners would like the ability to include additional constraints and objective
terms desired in practice, such as the mean return, box constraints, etc. In such cases, the risk-contribution
constraints cannot be met exactly due to the trade-off among different objectives or additional constraints.

Let us explore, for instance, the effect of including the expected return as an additional objective in the
optimization problem. The problem can be formulated as

minimize
w

R(w) − λµwT
µ

subject to 1T w = 1, w ≥ 0,

where R(w) =
∑N

i=1

(

wi (Σw)i − biw
T Σw

)2
is the risk concentration function or risk parity function, wT

µ

is the expected return, and λµ is a trade-off parameter.

N <- 100

V <- matrix(rnorm(N^2), nrow = N)

Sigma <- cov(V)

mu <- runif(N)

lmd_sweep <- c(0, 10^seq(-5, 2, .25))

3

mean_return <- c()

risk_parity <- c()

for (lmd_mu in lmd_sweep) {

rpp <- riskParityPortfolio(Sigma, mu = mu, lmd_mu = lmd_mu,

formulation = "rc-double-index")

mean_return <- c(mean_return, rpp$mean_return)

risk_parity <- c(risk_parity, rpp$risk_parity)

}

plot(risk_parity, mean_return, type = "b", pch = 19, cex = .6, col = "blue",

xlab = "Risk Parity", ylab = "Expected Return",

ylim = c(min(mean_return), max(mean_return)),

xlim = c(min(risk_parity), max(risk_parity)),

main = "Expected Return vs Risk Parity")

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
.5

0
.6

0
.7

0
.8

0
.9

Expected Return vs Risk Parity

Risk Parity

E
x
p

e
c
te

d
 R

e
tu

rn

Similarly, the riskParityPortfolio package allows us to include the variance as an objective term, so
that the actual optimization problem can be expressed as

minimize
w

R(w) + λvarw
T Σw

subject to 1T w = 1, w ≥ 0,

In the code, that can be done by passing a positive value to the parameter lmd_var. Let’s check the
following illustrative example that depicts the trade-off between volatility and risk parity:

N <- 10

Sigma <- diag(c(1:N))

lmd_sweep <- c(10 ^ (seq(-5, 5, .25)))

variance <- c()

risk_parity <- c()

4

for (lmd_var in lmd_sweep) {

rpp <- riskParityPortfolio(Sigma, lmd_var = lmd_var)

variance <- c(variance, rpp$variance)

risk_parity <- c(risk_parity, rpp$risk_parity)

}

volatility <- sqrt(variance)

plot(risk_parity, volatility, type = "b", pch = 19, cex = .6, col = "blue",

xlab = "Risk Parity", ylab = "Volatility",

ylim = c(min(volatility), max(volatility)),

xlim = c(min(risk_parity), max(risk_parity)),

main = "Volatility vs Risk Parity")

0 2 4 6 8

0
.5

9
0

.6
0

0
.6

1
0

.6
2

0
.6

3

Volatility vs Risk Parity

Risk Parity

V
o

la
ti
lit

y

3 Comparison with other packages

Others R packages with the goal of designing risk parity portfolios do exist, such as FinCovRegularization,
cccp, and RiskPortfolios. Let’s check how do they perform against riskParityPortfolio. (Note that
other packages like FRAPO use cccp under the hood.)

library(FinCovRegularization)

library(cccp)

library(RiskPortfolios)

generate synthetic data

set.seed(42)

N <- 10

#V <- matrix(rnorm(N^2), nrow = N) # with this, RiskPortfolios::optimalPortfolio() fails

V <- matrix(rnorm(N*(N+N/5)), N+N/5, N) # with this, FinCovRegularization::RiskParity() fails

Sigma <- cov(V)

5

uniform initial guess for the portfolio weights

w0 <- rep(1/N, N)

compute risk parity portfolios using different methods

rpp <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-double-index")

#> Warning in riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-double-

#> index"): The problem is a vanilla risk parity portofolio, but a nonconvex

#> formulation has been chosen. Consider not specifying the formulation

#> argument in order to get the guaranteed global solution.

riskport_w <- optimalPortfolio(Sigma = Sigma, control = list(type = 'erc',

constraint = 'lo'))

riskport_risk_contribution <- c(riskport_w * (Sigma %*% riskport_w))

fincov_w <- RiskParity(Sigma)

fincov_risk_contribution <- c(fincov_w * (Sigma %*% fincov_w))

cccp_w <- c(getx(rp(w0, Sigma, mrc = w0, optctrl = ctrl(trace = FALSE))))

cccp_risk_contribution <- c(cccp_w * (Sigma %*% cccp_w))

barplot(rbind(rpp$w, fincov_w, cccp_w, riskport_w),

main = "Portfolios Weights", xlab = "stocks", ylab = "dollars",

beside = TRUE, col = rainbow8equal[1:4],

legend = c("riskParityPortfolio", "FinCovRegularization", "cccp",

"RiskPortfolios"), args.legend = list(bg = "white"))

riskParityPortfolio

FinCovRegularization

cccp

RiskPortfolios

Portfolios Weights

stocks

d
o
lla

rs

0
.0

0
0
.0

5
0
.1

0
0
.1

5

barplot(rbind(rpp$risk_contribution, fincov_risk_contribution, cccp_risk_contribution,

riskport_risk_contribution),

main = "Risk Contribution of the Portfolios", xlab = "stocks", ylab = "dollars",

beside = TRUE, col = rainbow8equal[1:4],

legend = c("riskParityPortfolio", "FinCovRegularization", "cccp",

"RiskPortfolios"),

args.legend = list(x = "bottomright", bg = "white"))

6

riskParityPortfolio

FinCovRegularization

cccp

RiskPortfolios

Risk Contribution of the Portfolios

stocks

d
o

lla
rs

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

Depending on the condition number of the covariance matrix, we found that the packages
FinCovRegularization and RiskPortfolios may fail unexpectedly. Apart from that, the other
functions perform the same.

Now, let’s see a comparison, in terms of computational time, of our cyclical coordinate descent imple-
mentation against the rp() function from the cccp package and the optimalPortfolio() function from the
RiskPortfolios package. (For a fair comparison, instead of calling our function riskParityPortfolio(),
we call directly the core internal function risk_parity_portfolio_ccd_spinu(), which only computes the
risk parity weights, just like rp() and optimalPortfolio().)

library(microbenchmark)

library(cccp)

library(RiskPortfolios)

library(riskParityPortfolio)

N <- 100

V <- matrix(rnorm(N^2), ncol = N)

Sigma <- cov(V)

b <- rep(1/N, N)

use risk_parity_portfolio_nn with default values of tolerance and number of iterations

op <- microbenchmark(

rp_cccp = rp(b, Sigma, b, optctrl = ctrl(trace = FALSE)),

cyclical = riskParityPortfolio:::risk_parity_portfolio_ccd_spinu(Sigma, b, 1e-6, 50),

optPort = optimalPortfolio(Sigma = Sigma, control = list(type = 'erc', constraint = 'lo')),

times = 10L)

print(op)

#> Unit: microseconds

#> expr min lq mean median uq

#> rp_cccp 20802.308 21296.002 21816.2412 21698.8210 22076.164

#> cyclical 81.397 86.853 108.9281 110.5755 127.543

#> optPort 774961.996 777536.461 786977.0560 780237.5665 786267.072

#> max neval

7

#> 23714.65 10

#> 139.14 10

#> 820621.23 10

par(mar = c(7, 4, 4, 2))

boxplot(op, main = "Time comparison [milliseconds]",

xlab = NULL, ylab = NULL,

unit = "ms", outline = FALSE, las = 2)

rp
_
c
c
c
p

c
y
c
lic

a
l

o
p
tP

o
rt

1e−01

1e+00

1e+01

1e+02

1e+03

Time comparison [milliseconds]

As it can be observed, our implementation is orders of maginitude faster than the interior-point method
used by cccp and the formulation used by RiskPortfolios.

Appendix I: Risk concentration formulations

In general, with different constraints and objective functions, exact parity cannot be achieved and one
needs to define a risk term to be minimized: R(w) =

∑N

i=1 (gi (w))
2
, where the gi’s denote the different

risk contribution errors, e.g., gi = wi (Σw)i − biw
T Σw. A double-index summation can also be used:

R(w) =
∑N

i,j=1 (gij (w))
2
.

We consider the risk formulations as presented in [3]. They can be passed through the keyword argument
formulation in the function riskParityPortfolio().

The name of the formulations and their mathematical expressions are presented as follows.
Formulation “rc-double-index”:

R(w) =
N

∑

i,j=1

(

wi (Σw)i − wj (Σw)j

)2

Formulation “rc-vs-theta”:

R(w, θ) =

N
∑

i=1

(wi (Σw)i − θ)
2

Formulation “rc-over-var-vs-b”:

R(w) =

N
∑

i=1

(

wi (Σw)i

wT Σw
− bi

)2

8

Formulation “rc-over-b double-index”:

R(w) =
N

∑

i,j=1

(

wi (Σw)i

bi

−
wj (Σw)j

bj

)2

Formulation “rc-vs-b-times-var”:

R(w) =

N
∑

i=1

(

wi (Σw)i − biw
T Σw

)2

Formulation “rc-over-sd vs b-times-sd”:

R(w) =

N
∑

i=1

(

wi (Σw)i√
wT Σw

− bi

√
wT Σw

)2

Formulation “rc-over-b vs theta”:

R(w, θ) =

N
∑

i=1

(

wi (Σw)i

bi

− θ

)2

Formulation “rc-over-var”:

R(w) =

N
∑

i=1

(

wi (Σw)i

wT Σw

)2

Appendix II: Numerical algorithms for the risk parity portfolio

In this appendix we describe the algorithms implemented for both the vanilla risk parity portfolio and the
modern risk parity portfolio that may contain additional objective terms and constraints.

3.1 Algorithms for the vanilla risk parity formulation

We now describe the implementation of the Newton method and the cyclical (coordinate) descent algorithm
for the vanilla risk parity formulations presented in [1] and [2].

Consider the risk budgeting equations

wi (Σw)i = bi wT Σw, i = 1, . . . , N

with 1T w = 1 and w ≥ 0.
If we define x = w/

√
wT Σw, then we can rewrite the risk budgeting equations compactly as

Σx = b/x

with x ≥ 0 and we can always recover the portfolio by normalizing: w = x/(1T x).
Spinu [1] realized that precisely that equation corresponds to the gradient of the function f(x) =

1
2 xT Σx − bT log(x) set to zero, which is the optimality condition for its minimization.

So we can finally formulate the risk budgeting problem as the following convex optimization problem:

minimize
x≥0

1

2
xT Σx − bT log(x).

Roncalli et al. [2] proposed a slightly different formulation (also convex):

minimize
x≥0

√
xT Σx − bT log(x).

Unfortunately, even though these two problems are convex, they do not conform with the typical classes
that most solvers embrace (i.e., LP, QP, QCQP, SOCP, SDP, GP, etc.).

Nevertheless, there are several simple iterative algorithms that can be used, like the Newton method and
the cyclical coordinate descent algorithm.

9

3.1.1 Newton method

The Newton method obtains the iterates based on the gradient ∇f and the Hessian H of the objective function
f(x) as follows:

x(k+1) = x(k) − H−1(x(k))∇f(x(k))

In practice, one may need to use the backtracking method to properly adjust the step size of each iteration
[4].

• For the function f(x) = 1
2 xT Σx − bT log(x), the gradient and Hessian are given by

∇f(x) = Σx − b/x

H(x) = Σ + Diag(b/x2).

• For the function f(x) =
√

xT Σx − bT log(x), the gradient and Hessian are given by

∇f(x) = Σx/
√

xT Σx − b/x

H(x) =
(

Σ − ΣxxT Σ/xT Σx
)

/
√

xT Σx + Diag(b/x2).

3.1.2 Cyclical coordinate descent algorithm

This method simply minimizes in a cyclical manner with respect to each element of the variable x (denote
x−i = [x1, . . . , xi−1, 0, xi+1, . . . , xN]T), while helding the other elements fixed.

• For the function f(x) = 1
2 xT Σx − bT log(x), the minimization w.r.t. xi is

minimize
xi>0

1

2
x2

i Σii + xi(x
T
−iΣ·,i) − bi log xi

with gradient ∇if = xiΣii + (xT
−iΣ·,i) − bi/xi. Setting the gradient to zero gives us the second order

equation
x2

i Σii + xi(x
T
−iΣ·,i) − bi = 0

with positive solution given by

x⋆
i =

−(xT
−iΣ·,i) +

√

(xT
−iΣ·,i)2 + 4Σiibi

2Σii

.

• The derivation for the function f(x) =
√

xT Σx − bT log(x) follows similarly. The update for xi is given
by

x⋆
i =

−(xT
−iΣ·,i) +

√

(xT
−iΣ·,i)2 + 4Σiibi

√
xT Σx

2Σii

.

3.2 Successive convex approximation algorithm for the modern risk parity for-

mulation

Many practical formulations deployed to design risk parity portfolios lead to nonconvex problems, specially
when additional objective terms such as mean return or variance, or additional constraints, namely, shortselling,
are taken into account. To circumvent the complications that arise in such formulations, Feng & Palomar [3]
proposed a method called sucessive convex approximation (SCA). The SCA method works by convexifying
the risk concentration term at some pre-defined point, casting the nonconvex problem into a much simpler
strongly convex optimization problem. This procedure is then iterated until convergence is achieved. It is
important to highlight that the SCA method always converges to a stationary point.

At the k-th iteration, the SCA method aims to solve

10

minimize
w

∑n

i=1

(

gi(w
k) + (∇gi(w

k))T (w − wk)
)2

+ τ ||w − wk||22 + λF (w)

subject to wT 1 = 1, w ∈ W,
(1)

where the first order Taylor expasion of gi(w) has been used.
After some mathematical manipulations described in detail in [3], the optimization problem above can be

rewritten as

minimize
w

1

2
wT Qkw + wT qk + λF (w)

subject to wT 1 = 1, w ∈ W,
(2)

where

Qk , 2(Ak)T Ak + τI, (3)

qk , 2(Ak)T g(wk) − Qkwk, (4)

and

Ak ,
[

∇wg1

(

wk
)

, ..., ∇wgn

(

wk
)]T

(5)

g
(

wk
)

,
[

g1

(

wk
)

, ..., gn

(

wk
)]T

. (6)

The above problem is a quadratic program (QP) which can be efficiently solved by standard R libraries.
Furthermore, it is straightforward that adding the mean return or variance terms still keeps the structure of
the problem intact.

Appendix III: Computational time

In the subsections that follows we explore the computational time required by method = "sca", method =

"alabama", and method = "slsqp" for some of the formulations presented above. Additionally, we compare
method = "alabama" and method = "slsqp" without using the gradient of the objective function.

3.3 Experiment: formulation “rc-over-var vs b”

set.seed(42)

N <- 100

V <- matrix(rnorm(N^2), ncol = N)

Sigma <- V %*% t(V)

w0 <- riskParityPortfolio(Sigma, formulation = "diag")$w

res_slsqp <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var vs b",

method = "slsqp")

#> Warning in riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var

#> vs b", : The problem is a vanilla risk parity portofolio, but a nonconvex

#> formulation has been chosen. Consider not specifying the formulation

#> argument in order to get the guaranteed global solution.

res_slsqp_nograd <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var vs b",

method = "slsqp", use_gradient = FALSE)

#> Warning in riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var

11

#> vs b", : The problem is a vanilla risk parity portofolio, but a nonconvex

#> formulation has been chosen. Consider not specifying the formulation

#> argument in order to get the guaranteed global solution.

res_alabama <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var vs b",

method = "alabama")

#> Warning in riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var

#> vs b", : The problem is a vanilla risk parity portofolio, but a nonconvex

#> formulation has been chosen. Consider not specifying the formulation

#> argument in order to get the guaranteed global solution.

res_alabama_nograd <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var vs b",

method = "alabama", use_gradient = FALSE)

#> Warning in riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var

#> vs b", : The problem is a vanilla risk parity portofolio, but a nonconvex

#> formulation has been chosen. Consider not specifying the formulation

#> argument in order to get the guaranteed global solution.

res_sca <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var vs b",

method = "sca")

#> Warning in riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var

#> vs b", : The problem is a vanilla risk parity portofolio, but a nonconvex

#> formulation has been chosen. Consider not specifying the formulation

#> argument in order to get the guaranteed global solution.

plot(res_slsqp_nograd$elapsed_time, res_slsqp_nograd$obj_fun, type = "b",

pch=19, cex=.6, col = "blue", xlab = "Elapsed time (seconds)",

ylab = "Objective function", main = "Convergence trend versus CPU time",

ylim = c(0, 0.01))

lines(res_alabama$elapsed_time, res_alabama$obj_fun, type = "b", pch=18, cex=.8,

col = "red")

lines(res_alabama_nograd$elapsed_time, res_alabama_nograd$obj_fun, type = "b", pch=17,

cex=.8, col = "purple")

lines(res_slsqp$elapsed_time, res_slsqp$obj_fun, type = "b", pch=16, cex=.8,

col = "green")

lines(res_sca$elapsed_time, res_sca$obj_fun, type = "b", pch=15, cex=.8,

col = "black")

legend("topright", legend=c("alabama-nograd",

"alabama",

"slsqp-nograd",

"slsqp",

"sca"),

col=c("purple", "red", "blue", "green", "black"), lty=c(1, 1, 1), cex=0.8, bg = "white")

12

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
.0

0
0

0
.0

0
4

0
.0

0
8

Convergence trend versus CPU time

Elapsed time (seconds)

O
b

je
c
ti
ve

 f
u

n
c
ti
o

n
alabama−nograd
alabama
slsqp−nograd
slsqp
sca

3.4 Experiment: formulation “rc vs b-times-var”

res_slsqp <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc vs b-times-var",

method = "slsqp")

#> Warning in riskParityPortfolio(Sigma, w0 = w0, formulation = "rc vs b-

#> times-var", : The problem is a vanilla risk parity portofolio, but

#> a nonconvex formulation has been chosen. Consider not specifying the

#> formulation argument in order to get the guaranteed global solution.

res_slsqp_nograd <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc vs b-times-var",

method = "slsqp", use_gradient = FALSE)

#> Warning in riskParityPortfolio(Sigma, w0 = w0, formulation = "rc vs b-

#> times-var", : The problem is a vanilla risk parity portofolio, but

#> a nonconvex formulation has been chosen. Consider not specifying the

#> formulation argument in order to get the guaranteed global solution.

res_alabama <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc vs b-times-var",

method = "alabama")

#> Warning in riskParityPortfolio(Sigma, w0 = w0, formulation = "rc vs b-

#> times-var", : The problem is a vanilla risk parity portofolio, but

#> a nonconvex formulation has been chosen. Consider not specifying the

#> formulation argument in order to get the guaranteed global solution.

res_alabama_nograd <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc vs b-times-var",

method = "alabama", use_gradient = FALSE)

#> Warning in riskParityPortfolio(Sigma, w0 = w0, formulation = "rc vs b-

#> times-var", : The problem is a vanilla risk parity portofolio, but

#> a nonconvex formulation has been chosen. Consider not specifying the

#> formulation argument in order to get the guaranteed global solution.

res_sca <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc vs b-times-var",

method = "sca")

#> Warning in riskParityPortfolio(Sigma, w0 = w0, formulation = "rc vs b-

#> times-var", : The problem is a vanilla risk parity portofolio, but

13

#> a nonconvex formulation has been chosen. Consider not specifying the

#> formulation argument in order to get the guaranteed global solution.

plot(res_slsqp_nograd$elapsed_time, res_slsqp_nograd$obj_fun, type = "b",

pch=19, cex=.6, col = "blue", xlab = "Elapsed time (seconds)",

ylab = "Objective function", main = "Convergence trend versus CPU time",

ylim = c(0, 0.009))

lines(res_alabama$elapsed_time, res_alabama$obj_fun, type = "b", pch=18, cex=.8,

col = "red")

lines(res_alabama_nograd$elapsed_time, res_alabama_nograd$obj_fun, type = "b", pch=17,

cex=.8, col = "purple")

lines(res_slsqp$elapsed_time, res_slsqp$obj_fun, type = "b", pch=16, cex=.8,

col = "green")

lines(res_sca$elapsed_time, res_sca$obj_fun, type = "b", pch=15, cex=.8,

col = "black")

legend("topright", legend=c("alabama-nograd",

"alabama",

"slsqp-nograd",

"slsqp",

"sca"),

col=c("purple", "red", "blue", "green", "black"), lty=c(1, 1, 1), cex=0.8)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
.0

0
0

0
.0

0
4

0
.0

0
8

Convergence trend versus CPU time

Elapsed time (seconds)

O
b

je
c
ti
ve

 f
u

n
c
ti
o

n

alabama−nograd
alabama
slsqp−nograd
slsqp
sca

3.5 Experiment: formulation “rc-over-sd vs b-times-sd”

res_slsqp <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-sd vs b-times-sd",

method = "slsqp")

#> Warning in riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-

#> sd vs b-times-sd", : The problem is a vanilla risk parity portofolio,

#> but a nonconvex formulation has been chosen. Consider not specifying the

14

#> formulation argument in order to get the guaranteed global solution.

res_slsqp_nograd <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-sd vs b-times-sd",

method = "slsqp", use_gradient = FALSE)

#> Warning in riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-

#> sd vs b-times-sd", : The problem is a vanilla risk parity portofolio,

#> but a nonconvex formulation has been chosen. Consider not specifying the

#> formulation argument in order to get the guaranteed global solution.

res_alabama <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-sd vs b-times-sd",

method = "alabama")

#> Warning in riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-

#> sd vs b-times-sd", : The problem is a vanilla risk parity portofolio,

#> but a nonconvex formulation has been chosen. Consider not specifying the

#> formulation argument in order to get the guaranteed global solution.

res_alabama_nograd <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-sd vs b-times-sd",

method = "alabama", use_gradient = FALSE)

#> Warning in riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-

#> sd vs b-times-sd", : The problem is a vanilla risk parity portofolio,

#> but a nonconvex formulation has been chosen. Consider not specifying the

#> formulation argument in order to get the guaranteed global solution.

res_sca <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-sd vs b-times-sd",

method = "sca")

#> Warning in riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-

#> sd vs b-times-sd", : The problem is a vanilla risk parity portofolio,

#> but a nonconvex formulation has been chosen. Consider not specifying the

#> formulation argument in order to get the guaranteed global solution.

plot(res_slsqp_nograd$elapsed_time, res_slsqp_nograd$obj_fun, type = "b",

pch=19, cex=.6, col = "blue", xlab = "Elapsed time (seconds)",

ylab = "Objective function", main = "Convergence trend versus CPU time",

ylim = c(0, 0.01))

lines(res_alabama$elapsed_time, res_alabama$obj_fun, type = "b", pch=18, cex=.8,

col = "red")

lines(res_alabama_nograd$elapsed_time, res_alabama_nograd$obj_fun, type = "b", pch=17,

cex=.8, col = "purple")

lines(res_slsqp$elapsed_time, res_slsqp$obj_fun, type = "b", pch=16, cex=.8,

col = "green")

lines(res_sca$elapsed_time, res_sca$obj_fun, type = "b", pch=15, cex=.8,

col = "black")

legend("topright", legend=c("alabama-nograd",

"alabama",

"slsqp-nograd",

"slsqp",

"sca"),

col=c("purple", "red", "blue", "green", "black"), lty=c(1, 1, 1), cex=0.8, bg = "white")

15

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
.0

0
0

0
.0

0
4

0
.0

0
8

Convergence trend versus CPU time

Elapsed time (seconds)

O
b

je
c
ti
ve

 f
u

n
c
ti
o

n
alabama−nograd
alabama
slsqp−nograd
slsqp
sca

3.6 Experiment with real market data

Now, let us query some real market data (from the package sparseIndexTracking) and check the time
comparison of the different methods.

library(sparseIndexTracking)

library(xts)

data(INDEX_2010)

Sigma <- cov(INDEX_2010$X)

N <- nrow(Sigma)

w0 <- rep(1/N, N)

res_slsqp <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var vs b",

method = "slsqp")

#> Warning in riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var vs b", : The problem is a vanilla

#> portofolio, but a nonconvex formulation has been chosen. Consider not specifying the formulation argument

#> the guaranteed global solution.

res_slsqp_nograd <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var vs b",

method = "slsqp", use_gradient = FALSE)

#> Warning in riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var vs b", : The problem is a vanilla

#> portofolio, but a nonconvex formulation has been chosen. Consider not specifying the formulation argument

#> the guaranteed global solution.

res_alabama <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var vs b",

method = "alabama")

#> Warning in riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var vs b", : The problem is a vanilla

#> portofolio, but a nonconvex formulation has been chosen. Consider not specifying the formulation argument

#> the guaranteed global solution.

res_alabama_nograd <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var vs b",

method = "alabama", use_gradient = FALSE)

#> Warning in riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var vs b", : The problem is a vanilla

#> portofolio, but a nonconvex formulation has been chosen. Consider not specifying the formulation argument

#> the guaranteed global solution.

16

res_sca <- riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var vs b",

method = "sca")

#> Warning in riskParityPortfolio(Sigma, w0 = w0, formulation = "rc-over-var vs b", : The problem is a vanilla

#> portofolio, but a nonconvex formulation has been chosen. Consider not specifying the formulation argument

#> the guaranteed global solution.

plot(res_alabama_nograd$elapsed_time, res_alabama_nograd$obj_fun, type = "b",

pch=19, cex=.6, col = "purple", xlab = "Elapsed time (seconds)",

ylab = "Objective function", main = "Convergence trend versus CPU time")

lines(res_alabama$elapsed_time, res_alabama$obj_fun, type = "b", pch=18, cex=.8,

col = "red")

lines(res_slsqp_nograd$elapsed_time, res_slsqp_nograd$obj_fun, type = "b", pch=17,

cex=.8, col = "blue")

lines(res_slsqp$elapsed_time, res_slsqp$obj_fun, type = "b", pch=16, cex=.8,

col = "green")

lines(res_sca$elapsed_time, res_sca$obj_fun, type = "b", pch=15, cex=.8,

col = "black")

legend("topright", legend=c("alabama-nograd",

"alabama",

"slsqp-nograd",

"slsqp",

"sca"),

col=c("purple", "red", "blue", "green", "black"), lty=c(1, 1, 1), cex=0.8,

bg = "white")

0 10 20 30 40

0
.0

0
0

0
0

0
.0

0
0

1
0

0
.0

0
0

2
0

0
.0

0
0

3
0

Convergence trend versus CPU time

Elapsed time (seconds)

O
b

je
c
ti
ve

 f
u

n
c
ti
o

n

alabama−nograd
alabama
slsqp−nograd
slsqp
sca

It can be noted that the "alabama" and "slsqp" greatly benefit from the additional gradient information.
Despite that fact, the "sca" method still performs faster. Additionally, in some cases, the "sca" method
attains a better solution than the other methods.

17

3.7 Design of high dimensional risk parity portfolio

In order to efficiently design high dimensional portfolios that follows the risk parity criterion, we implement
the cyclical coordinate descent algorithm proposed by [2]. In brief, this algorithm optimizes for one portfolio
weight at a time while leaving the rest fixed.

The plot below illustrates the computational scaling of both Newton and cyclical algorithms. Note that the
cyclical algorithm is implemented for two different formulations used by [1] and [2], respectively. Nonetheless,
they output the same solution, as they should.

library(microbenchmark)

library(riskParityPortfolio)

sizes <- c(10, 50, 100, 200, 300, 400, 500, 600, 700)

size_seq <- c(1:length(sizes))

times <- matrix(0, 3, length(sizes))

for (i in size_seq) {

V <- matrix(rnorm(1000 * sizes[i]), nrow = sizes[i])

Sigma <- V %*% t(V)

bench <- microbenchmark(

newton = riskParityPortfolio(Sigma, method_init="newton"),

cyclical_spinu = riskParityPortfolio(Sigma, method_init="cyclical-spinu"),

cyclical_roncalli = riskParityPortfolio(Sigma, method_init="cyclical-roncalli"),

times = 10L, unit = "ms", control = list(order = "inorder", warmup = 4))

times[1, i] <- median(bench$time[c(TRUE, FALSE, FALSE)] / 10 ^ 6)

times[2, i] <- median(bench$time[c(FALSE, TRUE, FALSE)] / 10 ^ 6)

times[3, i] <- median(bench$time[c(FALSE, FALSE, TRUE)] / 10 ^ 6)

}

colors <- c("#0B032D", "#FFB997", "red")

plot(size_seq, times[1,], type = "b", pch=15, cex=.75, col = colors[1],

xlab = "Portfolio size N", ylab = "CPU time [ms]", xaxt = "n")

grid()

lines(size_seq, times[2,], type = "b", pch=16, cex=.75, col = colors[2])

lines(size_seq, times[3,], type = "b", pch=17, cex=.75, col = colors[3])

axis(side = 1, at = size_seq, labels = sizes)

legend("topleft", legend = c("newton", "cyclical-spinu", "cyclical-roncalli"),

col=colors, pch=c(15, 16, 17), lty=c(1, 1, 1), bty="n")

18

0
1

0
2

0
3

0
4

0
5

0
6

0

Portfolio size N

C
P

U
 t

im
e

 [
m

s
]

10 50 100 200 300 400 500 600 700

newton

cyclical−spinu

cyclical−roncalli

References

[1] F. Spinu, “An algorithm for computing risk parity weights,” SSRN, 2013.

[2] T. Griveau-Billion, J. Richard, and T. Roncalli, “A fast algorithm for computing high-dimensional risk
parity portfolios,” ArXiv preprint, 2013.

[3] Y. Feng and D. P. Palomar, “SCRIP: Successive convex optimization methods for risk parity portfolios
design,” IEEE Trans. Signal Process., vol. 63, no. 19, pp. 5285–5300, Oct. 2015.

[4] Boyd S. and L. Vandenberghe, Convex optimization. Cambridge University Press, 2009.

19

	Vanilla risk parity portfolio
	Modern risk parity portfolio
	Comparison with other packages
	Appendix I: Risk concentration formulations
	Appendix II: Numerical algorithms for the risk parity portfolio
	Appendix III: Computational time
	References

