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1 Introduction

1.1 Model
Package robmixglm implements the method of Beath (2017). This assumes
that data consists of a mixture of two types of observations: standard and out-
lier. The standard group consists of subjects from a standard generalised linear
model (GLM), and the outlier group consists of subjects from an overdispersed
generalised linear model (Aitkin, 1996) obtained by incorporating a normally
distributed random effect into the linear predictor. In a standard generalised
linear model we have the link function g (µi) = xT

i β (McCullagh and Nelder,
1989, p. 27), where xi is a vector of covariates for observation i with the first
element 1 corresponding to the intercept. For the robust model with class ci = 1
for standard and ci = 2 for outliers, and the normally distributed random effect
λi ∼ N

(
0, τ2

)
, the link function is

g (µi|ci, λi) =

{
xT
i β, ci = 1

xT
i β + λi, ci = 2

with the proportion of standard observations and outliers π1, π2 respectively,
where π1 + π2 = 1 and these are assumed constant over xi. Estimates of the
parameters are obtained through a GEM algorithm. One advantage of the
modell is that it is not restricted to GLMs, but can be applied to any model
with a linear predictor.

1.2 Outlier Probability
Given an observed outcome yi then f1 (yi) and f2 (yi) are the values of the
density functions for the standard and outlier points respectively, evaluated at
the maximum likelihood estimates. Then the probability that the subject is in
class 2, the outlier class, is:

P (ci = 2|yi) =
π̂2f2 (yi)

π̂1f1 (yi) + π̂2f2 (yi)
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1.3 Outlier Test
A difficulty with a hypothesis test for the presence of outliers is that the null
hypothesis is for a parameter on the edge of the parameter space, that is π2 = 0.
A consequence is that the likelhood ratio test no longer has the asympptotic
chi-square distribution under the null hypothesis. This requires that the null
distribution is simulated, known as the Bootstrap Likelihood Ratio Test (BLRT)
(McLachlan, 1987) or equivalently a parametric bootstrap (Davison and Hink-
ley, 1997, Section 4.2). The observed test statistic is then compared to the
simulated distribution to obtain a p-value.

An alternative to the BLRT is to use an information criteria, which has
the advantage of being much faster but is not as reliable as the BLRT. The
basis of an information criteria is a function of the log likelihood penalised by
the number of parameters in the model. Two information criteria (McLachlan
and Peel, 2000, Chapter 6) are available Akaike’s Information Criteria (AIC)
where AIC = −2LL + 2npar and Bayesian Information Criteria (BIC) where
BIC = 2LL + log (nobs)npar, where LL is the log likelihood for the fitted
model, npar is the number of parameters in the model and nobs is the number of
observations. Of the two, BIC has been preferred by a number of authors, for
example Fraley and Raftery (1998), for determining the number of components
in a mixture model.

1.4 robmixglm function
The basic function is robmixglm(formula,family,offset,data) where the pa-
rameters have the same meaning as for the glm function. The parameter family
is a string describing the error distribution and link for the generalised linear
model. Valid families are shown in Table 1.

family error distn. link
gausssian gaussian or normal identitly
binomial binomial logit
poisson Poisson log

truncpoisson truncated Poisson log
gamma gamma log

Table 1: robmixglm Families

2 Brain versus Body Weight
This data comprises the average brain and body weights for 28 land animals
(Rousseeuw and Leroy, 1987). Of interest is to find if there is a relationship
between brain and body mass and any deviations from this relationship. The
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data are obtained from the MASS package. Given the right skewness of the data,
it is first log-transformed for both variables.

> library(MASS)
> data(Animals)
> Animals$logbrain <- log(Animals$brain)
> Animals$logbody <- log(Animals$body)

First is fitted a standard linear model, and then the robust model. If AIC
or BIC are to be used to compare the models, then it is important to use glm
rather than lm, as otherwise the log likelihoods are not comparable with those
from robmixglm, thus preventing comparison of AIC and BIC between the fitted
models.

> brainbody.glm <- glm(logbrain~logbody, data=Animals)
> summary(brainbody.glm)

Call:
glm(formula = logbrain ~ logbody, data = Animals)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.2890 -0.6763 0.3316 0.8646 2.5835

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.55490 0.41314 6.184 1.53e-06 ***
logbody 0.49599 0.07817 6.345 1.02e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 2.345692)

Null deviance: 155.427 on 27 degrees of freedom
Residual deviance: 60.988 on 26 degrees of freedom
AIC: 107.26

Number of Fisher Scoring iterations: 2

> brainbody.glm.rob <- robmixglm(logbrain~logbody, data=Animals)
> summary(brainbody.glm.rob)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.92968 0.16567 11.65 <2e-16 ***
logbody 0.74495 0.02895 25.73 <2e-16 ***
Outlier p. 0.29842
Tau-sq 9.97408
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Figure 1: Observed and Fitted for Brain versus Body Weight

Sigma-sq 0.14977
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

logLik AIC BIC
-41.09157 92.18313 98.84415

The robust model estimates that there are about 30% outliers.Comparing
AIC these are lower for the robust model, indicating a better fit. There is a
large decrease in s2 for the robust model, decreasing from 1.5322 = 2.347 down
to 0.14977, with a corresponding increase in the value of the test statistics. The
lines for each fitted model can then be plotted as shown in Figure 1.

> plot(Animals$logbody, Animals$logbrain)
> abline(brainbody.glm, col="red")
> abline(brainbody.glm.rob, col="green")

As a rough guide to which is the appropriate model we can compare AIC
and BIC for the two models.

> aitable <- data.frame(model=c("Standard", "Robust"),
+ aic=c(AIC(brainbody.glm), AIC(brainbody.glm.rob)),
+ bic=c(BIC(brainbody.glm), BIC(brainbody.glm.rob)))
> print(aitable)

model aic bic
1 Standard 107.25779 111.25440
2 Robust 92.18313 98.84415
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Figure 2: Outlier Probabilities for Brain versus Body Weight

This shows clearly the better fit of the robust model with lower AIC and BIC.
The presence of outliers can also be tested using outlierTest, performing a
bootstrap likelihood ratio test (BLRT), for a more accurate result than com-
paring information criteria.

> outlierTest(brainbody.glm.rob, showProgress=FALSE)

p value 0.0050

This again shows clearly that there are outliers present. The outlying obser-
vations can be identified by plotting the posterior probability of being in the
outlier class against the observation, as shown in Figure 2. Outliers can be
identified as having an outlier probability of greater than 0.9.

> plot(outlierProbs(brainbody.glm.rob))

It appears that there are 5 outliers, with a possible another. These can be
printed out as follows.

> print(data.frame(Animals,
+ outlierprob=as.numeric(outlierProbs(brainbody.glm.rob)))
+ [outlierProbs(brainbody.glm.rob) > 0.8,])

body brain logbrain logbody outlierprob
Dipliodocus 11700.00 50.0 3.912023 9.367344 1.0000000
Human 62.00 1320.0 7.185387 4.127134 0.9999969
Triceratops 9400.00 70.0 4.248495 9.148465 1.0000000
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Figure 3: Residual versus Fitted for Brain versus Body Weight

Rhesus monkey 6.80 179.0 5.187386 1.916923 0.9996808
Chimpanzee 52.16 440.0 6.086775 3.954316 0.8658167
Brachiosaurus 87000.00 154.5 5.040194 11.373663 1.0000000

The 3 outliers on the lower side of the fitted line are dinosaurs, as would be
expected as retiles usually have smaller brains, and on the high side are humans,
rhesus monkeys and possibly chimpanzees, again as would be expected as apes
have larger brains. We can produce plots of residual versus fitted for both the
the standard and robust models, as shown in Figure 3. With the robust model
the outliers are much more obvious. This comes about for two reasons: with the
robust model the estimate of the residual variance is much lower and the fitted
line is no longer dragged towards the outliers, so the residuals are increased.

> resdata <- data.frame(
+ model=factor(rep(1:2, each=dim(Animals)[1]),
+ labels=c("Standard", "Robust")),
+ fitted=c(fitted(brainbody.glm), fitted(brainbody.glm.rob)),
+ residual=c(residuals(brainbody.glm), residuals(brainbody.glm.rob)))
> xyplot(residual~fitted|model, data=resdata)

3 Carrot Damage
This is analysis of an experiment to determine the dose-response for insecticide
on carrot fly on carrots conducted at the National Vegetable Research Station
Phelps (1982). The analysis presented in that paper included an offset which
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will be ignored here. Of interest is that observation 14 appears to be an outlier.
This data has been previosly analysed in Williams (1987) and McCullagh and
Nelder (1989), to demonstrate techniques for detecting outliers. We obtain the
data from the robustbase package.

> library(robustbase)
> data(carrots)

Fitting the two models:

> carrots.glm <- glm(cbind(success, total-success)~logdose+factor(block),
+ family="binomial", data=carrots)
> summary(carrots.glm)

Call:
glm(formula = cbind(success, total - success) ~ logdose + factor(block),

family = "binomial", data = carrots)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.9200 -1.0215 -0.3239 1.0602 3.4324

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.0226 0.6501 3.111 0.00186 **
logdose -1.8174 0.3439 -5.285 1.26e-07 ***
factor(block)B2 0.3009 0.1991 1.511 0.13073
factor(block)B3 -0.5424 0.2318 -2.340 0.01929 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.344 on 23 degrees of freedom
Residual deviance: 39.976 on 20 degrees of freedom
AIC: 128.61

Number of Fisher Scoring iterations: 4

> carrots.robustmix <- robmixglm(cbind(success, total-success)~logdose+
+ factor(block), family="binomial", data=carrots)
> summary(carrots.robustmix)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.4609 0.8372 2.940 0.00329 **
logdose -2.0632 0.4416 -4.672 2.99e-06 ***
factor(block)B2 0.1765 0.2808 0.628 0.52971
factor(block)B3 -0.5305 0.2709 -1.958 0.05025 .
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Outlier p. 0.2482
Tau-sq 0.4509
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

logLik AIC BIC
-57.91094 127.8219 134.8902

To compare the results of the two models we can extract the coefficients and
place them in a table:

> carrot.results <- data.frame(
+ StdEst=format(summary(carrots.glm)$coefficients[1:4, 1],
+ digits=4),
+ StdSE=format(summary(carrots.glm)$coefficients[1:4, 2],
+ digits=4),
+ Stdp=format.pval(summary(carrots.glm)$coefficients[1:4, 4],
+ digits=4, eps=0.0001),
+ RobEst=format(summary(carrots.robustmix)$coefficients[1:4, 1],
+ digits=4),
+ RobSE=format(summary(carrots.robustmix)$coefficients[1:4, 2],
+ digits=4),
+ Robp=format.pval(summary(carrots.robustmix)$coefficients[1:4, 4],
+ digits=4, eps=0.0001))
> print(carrot.results, quote=FALSE)

StdEst StdSE Stdp RobEst RobSE Robp
(Intercept) 2.0226 0.6501 0.001863 2.4609 0.8372 0.003286
logdose -1.8174 0.3439 < 1e-04 -2.0632 0.4416 < 1e-04
factor(block)B2 0.3009 0.1991 0.130733 0.1765 0.2808 0.529715
factor(block)B3 -0.5424 0.2318 0.019286 -0.5305 0.2709 0.050249

Test for outliers and plot the outlier probabilities in Figure 4. This shows
clearly that observation 14, with an outlier probability close to one, is the only
outlier.

> outlierTest(carrots.robustmix, showProgress=FALSE)

p value 0.0040

> plot(outlierProbs(carrots.robustmix))

A plot incorporating the observed and predicted for both models is shown in
Figure 5. This shows clearly again that observation 14 is the outlier observation.
Observed versus fitted is shown in Figure 6. This shows the outlier and also
that there is no systematic variation.
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Figure 4: Outlier Probabilities for Carrot Damage

> plot(1:dim(carrots)[1], carrots$success/carrots$total,
+ xlab="Observation", ylab="Proportion")
> points(1:dim(carrots)[1], fitted(carrots.glm), pch=2, col="red")
> points(1:dim(carrots)[1], fitted(carrots.robustmix), pch=3, col="blue")

> plot(fitted(carrots.robustmix), carrots$success/carrots$total,
+ xlab="Fitted Proportion", ylab="Observed Proportion")
> abline(a=0.0, b=1.0, col="red")

4 Diabetes Data
This data was from a study of the prevalence of cardiovascular risk factors such
as obesity and diabetes for African Americans (Willems et al., 1997). The data
are from Heritier et al. (2009), and are slightly modified from Harrell (2015).
Data was available for 403 subjects screened for diabetes, reduced to 372 after
removal of cases with missing data. The data are part of the robmixglm package.
Fit the standard and robust models:

> diabdata.glm <- glm(glyhb~age+gender+bmi+waisthip+frame,
+ data=diabdata)
> summary(diabdata.glm)

Call:
glm(formula = glyhb ~ age + gender + bmi + waisthip + frame,
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Figure 5: Observed and Fitted for Carrot Damage Models
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Figure 6: Observed versus Fitted for Carrot Damage
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data = diabdata)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.2195 -1.1379 -0.4676 0.2614 10.2285

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.340044 1.563959 -0.217 0.8280
age 0.041324 0.007136 5.791 1.51e-08 ***
gendermale 0.063536 0.256950 0.247 0.8048
bmi 0.039969 0.019888 2.010 0.0452 *
waisthip 3.163880 1.687404 1.875 0.0616 .
framemedium 0.115422 0.289920 0.398 0.6908
framesmall -0.049235 0.365635 -0.135 0.8930
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 4.307101)

Null deviance: 1830.8 on 371 degrees of freedom
Residual deviance: 1572.1 on 365 degrees of freedom
AIC: 1607.8

Number of Fisher Scoring iterations: 2

> diabdata.robustmix <- robmixglm(glyhb~age+gender+bmi+waisthip+frame,
+ data=diabdata)
> summary(diabdata.robustmix)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.002330 0.559404 5.367 8.01e-08 ***
age 0.013899 0.002585 5.376 7.63e-08 ***
gendermale 0.018244 0.090133 0.202 0.8396
bmi 0.010404 0.007077 1.470 0.1415
waisthip 1.056508 0.575110 1.837 0.0662 .
framemedium -0.052746 0.109855 -0.480 0.6311
framesmall -0.184365 0.137615 -1.340 0.1803
Outlier p. 0.235691
Tau-sq 20.235727
Sigma-sq 0.340610
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

logLik AIC BIC
-630.1581 1280.316 1319.505
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Figure 7: Outlier Probabilities for Diabetic Data

Test for outliers and plot the outlier probabilities in Figure 7.

> outlierTest(diabdata.robustmix, showProgress=FALSE)

p value 0.0010

> plot(outlierProbs(diabdata.robustmix))

The observed versus fitted may be plotted as in Figure 8. This shows a
generally increasing variance at higher predicted values and an increase in the
mean, suggesting that there may be alternative, for example a gamma with log
link, which may be a better fit to the data.

> plot(fitted(diabdata.robustmix), diabdata$glyhb)
> abline(a=0.0, b=1.0, col="red")

It is often of interest to simplify a model. This may be performed simply
for reasons of parsinonomy, as a simpler model will be easier to understand. It
also has the adavantage of removing some covariates that are highly correlated.
Removing the covariates will result in a reduction in the standard errors and a
consequential decrease in p-values. It does have the disadvantage that it may
produce a spurious improvement in fit, especially when the number of covariates
compared to observations. There are a number of ways of avoiding this problem,
for example dividing the data into training and validation data sets. For a
general introduction see James et al. (2013, Chapter 6). The advantage of
robmixglm is that it is likelihood based, so can be used a part of any method
that requires a likelihood.
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Figure 8: Observed versus Fitted for Diabetic Data

Two main methods exist: complete subset regression and step wise regres-
sion. In complete subset regression models are fitted for all possible subsets of
the covariates, then based on some fitting criteria the best is chosen. This has
the disadvantage of possibly taking a long time, but guaranteeing that the best
fitting subset is found. For step wise regression, starting with a specified model,
models of greater or lesser complexity are fitted, with models varying by only
one covariate at each step. The best model based on a fitting criteria is chosen
and the process repeated. If back wise then only smaller models are allowed,
for forward larger models and forward/backward both. The disadvantage of
this method is that it may not find the best model, but it may be considerably
faster.

The step function, a simplified version of stepAIC described in Venables and
Rispley (1999), allows for step wise model selection based on the AIC statistic.
Here we use the default of backward and forward selection, and start with the
full model. The first parameter of the function defines the models to be fitted,
and the second defines the terms from which the model is selected. Further
parameters are defined in the documentation for step. The function produces
a large amount of output, giving the AIC and change for each fitted model, so
this has been removed using the trace=FALSE parameter.

> diabdata.step <- step(diabdata.robustmix,
+ glyhb ~ age + gender + bmi + waisthip + frame,
+ trace = FALSE)
> summary(diabdata.step)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.582896 0.474757 5.440 5.31e-08 ***
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Figure 9: BMI by Frame

age 0.014560 0.002537 5.739 9.54e-09 ***
bmi 0.015162 0.005771 2.627 0.00861 **
waisthip 1.267878 0.541608 2.341 0.01923 *
Outlier p. 0.236816
Tau-sq 20.131911
Sigma-sq 0.342148
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

logLik AIC BIC
-631.4526 1276.905 1304.338

The resulting model has excluded frame and gender, and resulted in an
increased level of evidence for bmi. The reason is the correlation between BMI
and frame, as shown in Figure 9.

> library(lattice)
> bwplot(bmi~frame, data=diabdata)
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