Managing R Packages with
roxyPackage

m.eik michalke

January 29, 2013

R packages consist of numerous files in various formats, like *.R, *.Rd,
DESCRIPTION, NAMESPACE or CITATION, ordered in a specific directory struc-
ture. roxyPackage tries to automatically generate most of these structures
and files, so that you can concentrate on writing the actual R code for your
package. If your code includes roxygen2-style documentation, this package
can update your docs as well. It is also capable of creating a local package
repository, including limited support for generating Mac OS X, Windows
and Debian packages.

1 Getting started

Apart from installing roxyPackage and having written some R code, no further re-
quirements for building your first R package need to be fulfilled. I tried to keep the
dependencies for roxyPackage to a minimum, and basically they come down to roxy-
gen2! (used to generate the documentation) and XiMpLe? (used to generate the HTML
and RSS files of the repository).

To demonstrate this, we will start with an extremely simple one: Let’s assume you
would like to have an R package called "examplePackage” and have just written a first
function for it, called "simpleExample”, which does nothing but return NULL:

simpleExample <- function(){NULL}

To transform this code into a package, save it as a file called "examplePack-
age/R/simpleExample.R", that is, create a directory with the package name and in
it another one named "R". If you were to create the package manually,® you would
now at least write a DESCRIPTION file with meta information like the license, version
number and release date, a NAMESPSACE file to export the function so it can acually be

Thttp://cran.r-project.org/web/packages/roxygen2
2http://www.reaktanz.de/?c=hacking&s=XiMpLe
3see http://cran.r-project.org/doc/manuals/R-exts.html

seen and used after the package was loaded, and a *-package.Rd file, which has the
meta information in Rd format so it’s accessible via the R help system. In a minute,
all of this will be done automatically by roxyPackage.

Before this, we need to add at least one roxygen2 command to the function code,
which will make sure that the function is exported and user accessible:

#' Qexport
simpleExample <- function(){NULL}

This must be done for every function, class etc. you would like to export. But that’s
about it — we can now call roxy.package() to create a valid R package. Of course
you have to tell the function some things:

e where is the source directory of the package ("~/myRcode/examplePackage")
e where is the R library the package can be installed to (e.g., "~/R")

e in which directory should the repository be created (e.g., "~/myRcode/repo")
e what is the package version number, description, author, its dependencies etc.

This is what such a call would look like:

roxy.package (
pck.source.dir=""/myRcode/examplePackage",
pck.version="0.01-1",
R.1libs=""/R",
repo.root=""/myRcode/repo",
pck.description=data.frame(
Package="examplePackage",
Type="Package",
Title="An R Example Package',
Author="Ernst A. Délle <e.a.doelle@example.com>",
AuthorsR="c(person(given=\"Ernst\", family=\"Délle\",
email=\"e.a.doelle@example.com\",
role=c(\"aut\", \"cre\")))",
Maintainer="Ernst A. Délle <e.a.doelle@example.com>",
Depends="R (>= 2.10.0)",
Description="Provides a great function to produce NULL results.",
License="GPL (>= 3)",
Encoding="UTF-8",
LazyLoad="yes",
URL="http://example.com/doelleInnovations"”,
stringsAsFactors=FALSE))

The data.frame which is used for the pck.description can include every valid field
of R DESCRIPTION files,* except "Version:” and "Date:”, as these have their own param-

4see http://cran.r-project.org/doc/manuals/R-exts.html#The-DESCRIPTION-file

eters (pck.version and pck.date, which defaults to Sys.Date()), and "Authors@R”
was simplified to "AuthorsR”.

At a first glance this maybe look like a lot. But as you can see, except for of course
the version number and release date, most of this information will probably remain
the same over time, so you can write all of this in a script and then run the script to
generate/update your package.

If you run the above call to roxy.package(), the R console will display verbose
status information:

R environment
R.home: /usr/lib/R
R.libs: ~/R
repo: created ~/myRcode/repo/pckg/examplePackage.
Updating collate directive in /home/user/myRcode/examplePackage/DESCRIPTION
Updating namespace directives
Writing examplePackage-package.Rd
repo: created ~/myRcode/repo/src/contrib.

repo: examplePackage_0.01-1.tar.gz copied to src/contrib.
* installing *source* package ‘examplePackage’

*% R

** preparing package for lazy loading

** help

% installing help indices

** building package indices ...

** testing if installed package can be loaded

* DONE (examplePackage)

build: package built and installed.

Processing packages:
/home/user/myRcode/repo/src/contrib/examplePackage_0.01-1.tar.gz
done

repo: src/contrib/PACKAGES (unix) updated.

Now, if you inspect the project directory, you will see that the new files DESCRIPTION,
NAMESPACE, R/examplePackage-package.R and man/examplePackage-package.Rd have
been added, and you will also find a directory structure in the specified repository lo-
cation.

2 Why the local repository?

I assumed, if you build a package of your R code you probably want to share your work
with others. Of course you can upload your package to CRAN. But there might be
reasons to have your own repository, for example, if your release pace is considerably
higher than the volunteers running CRAN are able to cope with.

Since roxyPackage needed to save its packages somewhere anyway, it seemed obvious
to organize this place like an R package repository. So effectively, you can simply copy
the generated repository directory to your webserver, and you’re done. Packages in
that repository can then easily be installed from an R session:

> install.packages ("examplePackage", repos="http://myRepoURL.example.com")

If you’re running a Debian GNU /Linux based system, roxyPackage can also “debian-
ize™ your package, build Debian source and binary packages, and add an additional
Debian package repository hosting your R packages (see "deb" action below).

3 More actions

The tasks performed at each call of roxy.package() are called "actions”. The default
is to run the actions "roxy" and "package", i.e., roxygenize the code documentation
and build/install the source package.

There are a number of additional actions, and most of them run out of the box
without the need to provide more information:

"cite": Use the data from pck.description to write a proper CITATION file.

"license": Try to detect the software license of this package from the "License” info
in pck.description, and add a copy as the LICENSE file; will let you know if
it doesn’t know the license you specified.

"doc": Update pdf documentation, including vignettes if found in inst/doc.
"log": Generate initial ChangeLog or update a present ChangeLog file.

"cl2news": Look for a ChangeLog file in the package root directory, and translate it
into an inst/NEWS.Rd file.

"news2rss": Look for an inst/NEWS.Rd file and translate it into an RSS feed for
the repository; you need to provide a value for the URL parameter for this to
work, where the URL should point to the root location where your repository is
available.

"html": Generate updated HTML index files® throughout the repository, very similar
to the HTML pages CRAN provides for its packages; will also include links to the
RSS feed and provide HTML versions of the citation info and news/changelog.

"win": Build a Windows binary package (only works for pure R packages).

"macosx": Build a Mac OS X binary package (only works for pure R packages).

5in accordance with the ”Debian R Policy”, http://lists.debian.org/debian-

devel/2003/12/msg02332.html
6for a practical example, see http://R.reaktanz.de/pckg/index.html

"deb": Build Debian source and/or binary packages (only works on Debian based
operating systems); this will also set up a Debian package repository inside the
defined repository directory and generate the documentation’ on how to use
it, and also needs the URL parameter to work, as well as probably additional
configuration via the deb.options parameter.

"check": Run R CMD check on the package.

So, let’s re-run roxy.package (), to get a copy of the GPL into our sources, HTML
index files for the repository and information on how to cite the package properly:

roxy.package (
pck.source.dir=""/myRcode/examplePackage",
pck.version="0.01-1",
R.1ibs=""/R",
repo.root=""/myRcode/repo",
pck.description=data.frame(
Package="examplePackage",
Type="Package",
Title="An R Example Package',
Author="Ernst A. Dolle <e.a.doelle@example.com>",
AuthorsR="c(person(given=\"Ernst\", family=\"Délle\",
email=\"e.a.doelle@example.com\",
role=c(\"aut\", \"cre\")))",
Maintainer="Ernst A. D6lle <e.a.doelle@example.com>",
Depends="R (>= 2.10.0)",
Description="Provides a great function to produce NULL results.",
License="GPL (>= 3)",
Encoding="UTF-8",
LazyLoad="yes",
URL="http://example.com/doelleInnovations",
stringsAsFactors=FALSE),
actions=c(
"roxy",
"cite",
"html",
"license",
"package"
J))

This is what we’re told:

R environment
R.home: /usr/lib/R

"for a practical example, see http://R.reaktanz.de/pckg/roxyPackage/deb_repo.html

R.libs: ~/R
license: saved a copy of the GNU General Public License (GPL) as LICENSE
Updating collate directive in /home/user/myRcode/examplePackage/DESCRIPTION
cite: updated ~/myRcode/examplePackage/inst/CITATION.
cite: updated ~/myRcode/repo/pckg/examplePackage/citation.html.

repo: examplePackage_0.01-1.tar.gz copied to src/contrib.
* installing *source* package ‘examplePackage’

*% R

** inst

** preparing package for lazy loading

** help

% installing help indices

** building package indices ...

** testing if installed package can be loaded

* DONE (examplePackage)

build: package built and installed.

Processing packages:
/home/user/myRcode/repo/src/contrib/examplePackage_0.01-1.tar.gz
done

repo: src/contrib/PACKAGES (unix) updated.

html: created CSS file ~/myRcode/repo/pckg/web.css

html: copied RSS image to ~/myRcode/repo/pckg/feed-icon-14x14.png

html: updated ~/myRcode/repo/pckg/examplePackage/index.html

html: updated pckg index ~/myRcode/repo/pckg/index.html

html: updated global index ~/myRcode/repo/index.html

3.1 Handling Changelogs

roxyPackage will try its best to be of help when it comes to handling the ChangeLog
of your package. The "log" action can generate an initial log file in a valid format
that the other actions can parse (see 3.1.1). It can also update log entries and add
new ones (see 3.1.2).

3.1.1 Changelog format

It’s a good idea to document the changes you make to your packages from one version
to another, i.e., keeping a ChangelLog. R packages can have this information in Rd
markup format as well, usually in NEWS.Rd. roxyPackage can translate ChangeLogs to
NEWS.Rds for you, if the structure of your changelog is understood. A working format
is to start each new entry with "Changes in version <version number>”, optionally
followed by a date string in the format ”(YYYY-MM-DD)”. After that, each log item
needs to be indented with spaces and itemized, e.g., by a dash or asterisk. You can
categorize log items by writing the category name with a colon at the beginning of a

line. This is what the inital changelog of our example package could look like:

Changelog for package examplePackage

Changes in version 0.01-1 (2012-04-22)
added:

- LICENSE and CITATION files
changed:

- initial release

You might also look at the function initChangeLog() to get started with a valid
file.

3.1.2 Maintaining a Changelog

It’s OK to maintain your ChangeLog manually with an editor of your choice, as long
as you stick to a valid format. To make this even easier, roxyPackage has some
dedicated functions and methods to deal with ChangeLogs 8. Typically, you want to
add entries to the package version you are currently working on, to document what
has been changed, added or fixed. You can do this directly within a roxy.package ()
call, using the "log" action in combination with a list of items given to the ChangeLog
argument:

roxy.package (
pck.source.dir=""/myRcode/examplePackage",
pck.version="0.01-1",
R.1ibs=""/R",
repo.root=""/myRcode/repo",
pck.description=data.frame(
Package="examplePackage",
Type="Package",
Title="An R Example Package",
Author="Ernst A. D6lle <e.a.doelle@example.com>",
AuthorsR="c(person(given=\"Ernst\", family=\"Délle\",
email=\"e.a.doelle@example.com\",
role=c(\"aut\", \"cre\")))",
Maintainer="Ernst A. Délle <e.a.doelle@example.com>",
Depends="R (>= 2.10.0)",
Description="Provides a great function to produce NULL results.",
License="GPL (>= 3)",
Encoding="UTF-8",
LazyLoad="yes",
URL="http://example.com/doellelInnovations",
stringsAsFactors=FALSE),

8have a look at the documentation for readChangeLog ()

actions=c(
"roxy",
"cite",
"html",
"license",
"log",
"package"
),
ChangeLog=1ist(
added=c ("new extra NULL feature", "new oblivion matrix"),
fixed=c("finally resolved the reandom results bug")

)
)

This would generate a new log entry for version 0.01-1 if none is present, otherwise
the entries in the named ChangeLog list would be appended to the existing entry and
its date stamp updated. In the list, the element names are treated as the names of
log sections, and each character string as a log entry item of that section. Duplicate
items will be ignored automatically, so you can simply append new ones to the list as
you see fit. However, it wouldn’t hurt to check the log from time to time, to convince
yourself it’s still in shape.

3.1.3 Generating RSS feeds

RSS technology allows you to spread the news on package updates instantly, after
interested users subscribed to the news feed. All you need to define additionally is the
URL parameter with the web address of your repository. After that, you can combine
the actions "cl2news", "news2rss" and "html" to generate an up-to-date RSS feed®
from your ChangeLog file.

3.2 Archiving packages

At some point, you might want to move old packages to an archive location. This
can also be done automatically with this package, by calling archive.packages().
If you do that and only include your local repository location as an argument, this
function will do nothing but print what it would actually do if you want it to. You
can then tweak its parameters to your liking, and if you would like to go for it, set
reallyDoIt=TRUE.

9for a practical example, see http://R.reaktanz.de/pckg/roxyPackage/RSS. xml

