
Downloading Department of Education College
Scorecard Data

Benjamin Skinner
2018-09-01

library(rscorecard)
df <- sc_init() %>%

sc_filter(region == 2, ccbasic == c(21,22,23), locale == 41:43) %>%
sc_select(unitid, instnm, stabbr) %>%
sc_year(2013) %>%
sc_get()

#> Request complete!
df
#> # A tibble: 8 x 4
#> instnm stabbr unitid year
#> * <chr> <chr> <int> <dbl>
#> 1 Pennsylvania State University-Penn State Wilkes-Bar~ PA 214643 2013
#> 2 Pennsylvania State University-Penn State New Kensin~ PA 214625 2013
#> 3 Paul Smiths College of Arts and Science NY 194392 2013
#> 4 Houghton College NY 191676 2013
#> 5 Hamilton College NY 191515 2013
#> 6 Morrisville State College NY 196051 2013
#> 7 Wells College NY 197230 2013
#> 8 Pennsylvania State University-Penn State Fayette- E~ PA 214759 2013

Bookend commands

sc_init()

Use sc_init() to start the command chain. The only real option is whether you want to use standard
variable names (as they are found in IPEDS) or the new developer-friendly variable names developed for the
Scorecard API. Unless you have good reason for doing so, I recommend using the default standard names. If
you want to use the developer-friendly names, set dfvars = TRUE. Whichever you choose, you’re stuck with
that option for the length of piped command chain; no switching from one type to another.

sc_get()

Use sc_get() as the last command in the chain. If you haven’t used sc_key to store your data.gov API key
in the system environment, then you must supply your key as an argument.

Subsetting commands

The following commands are structured to behave like dplyr. They can be placed in any order in the piped
command chain and each one relies (for the most part) on non-standard evaluation for its arguments. This
means that you don’t have to quote variable names.

1

https://CRAN.R-project.org/package=dplyr
https://cran.r-project.org/package=dplyr/vignettes/programming.html

sc_select()

Use sc_select() to select the variables (columns) you want in your final dataframe. These variables do not
have to be the same as those used to filter the data and are case insensitive. Separate the variable names
with commas. The Scorecard API requires that most of the variables be prepended with their category.
sc_select() uses a hash table to do this automatically for you so you do not have to know or include those
(and in fact should not). This command is the only one of the subsetting commands that is required to pull
data.

sc_filter()

Use sc_filter() to filter the rows you want in your final dataframe. Its main job is to convert idiomatic
R code into the format required by the Scorecard API. Like sc_select(), sc_filter prepends variable
categories automatically and variables are case insensitive. Like with dplyr::filter(), separate each
filtering expression with a comma.There are a few points to note owing to the idiosyncracies of the Scorecard
API. First, there are the conversions between R and the Scorecard, shown in the table below.

Scorecard R R example Conversion
, c() sc_filter(stabbr == c('KY','TN')) school.state=KY,TN
__not != sc_filter(stabbr != 'KY') school.state__not=KY
__range,.. #:# sc_filter(ccbasic==10:14) school.carnegie_basic__range=1..14
spaces (%20) ’ ’ sc_filter(instnm == 'New York') school.name=New%20York

A few notes:

1. While R can handle a mixture of discrete and ranged values of a single variable (c(1,2,5:10)), it does
not appear that Scorecard API can. You will either have to overselect and then filter the downloaded
dataframe or list every value discretely.

2. The Scorecard API does not appear to handle > or < symbols. This means that if you want to select a
range of values above a certain threshold (e.g., enrollments above 10,000 students), you may have to
give a range of from 10001 to an artifically large number. Same thing but reversed for values under a
certain threshold.

3. Ranged values are inclusive so 1:10 will convert to __range=1..10 and include both 1 and 10.

sc_year()

All Scorecard variables except those in the root and school categories take a year option. Simply set the data
year you want.

Two important points:

1. There is not a consistent scheme mapping data to year. In some cases, data year is the year of collection.
In school-year spans (e.g., 2010-2011), the data year is 2010. In some cases, the Scorecard data are
defaulted to a different year. You should consult the Scorecard Documentation to be sure you are
getting what you expect.

2. At this time is only possible to pull down a single year of data at a time.

sc_zip()

Use sc_zip() to subset the sample to those institutions within a certain distance around a given zip code.
Only one zip code may be given. The default is distance is 25 miles, but both the distance and metric (miles
or kilometers) can be changed.

2

https://collegescorecard.ed.gov/assets/FullDataDocumentation.pdf

Set API key

Once you’ve gotten your API key from https://api.data.gov/signup, you can store it usig sc_key(). In the
absence of a key value argument, sc_get() will search your R environment for DATAGOV_API_KEY. It will
complete the data request if found. sc_key() command will store your key in DATAGOV_API_KEY, which will
persist until the R session is closed.
NB: You must use a real key, of course...
sc_key('xx')

If you want a more permanent solution, you can add the following line (with your actual key, of course) to
your .Renviron file. See this appendix for more information.
NB: You must use a real key, of course...
DATAGOV_API_KEY=xx

More examples

Using area within zip code

public schools within 50 miles of midtown Nashville, TN
df <- sc_init() %>%

sc_filter(control == 1) %>%
sc_select(unitid, instnm, stabbr) %>%
sc_year(2013) %>%
sc_zip(37203, 50) %>%
sc_get()

#> Request complete!
df
#> # A tibble: 10 x 4
#> instnm stabbr unitid year
#> * <chr> <chr> <int> <dbl>
#> 1 Tennessee College of Applied Technology-Murfreesboro TN 221102 2013
#> 2 Nashville State Community College TN 221184 2013
#> 3 Tennessee College of Applied Technology-Hartsville TN 220279 2013
#> 4 Columbia State Community College TN 219888 2013
#> 5 Tennessee College of Applied Technology Nashville TN 248925 2013
#> 6 Volunteer State Community College TN 222053 2013
#> 7 Tennessee State University TN 221838 2013
#> 8 Austin Peay State University TN 219602 2013
#> 9 Middle Tennessee State University TN 220978 2013
#> 10 Tennessee College of Applied Technology-Dickson TN 219994 2013

Large pull

median earnings for students who first enrolled in a public
college in the New England or Mid-Atlantic regions: 10 years later
df <- sc_init() %>%

sc_filter(control == 1, region == 1:2, ccbasic == 1:24) %>%
sc_select(unitid, instnm, md_earn_wne_p10) %>%
sc_year(2009) %>%
sc_get()

3

https://api.data.gov/signup
ftp://cran.r-project.org/pub/R/web/packages/httr/vignettes/api-packages.html

#> Large request will require: 2 additional pulls.
#> Request chunk 1
#> Request chunk 2
#> Request complete!
df
#> # A tibble: 281 x 4
#> instnm md_earn_wne_p10 unitid year
#> <chr> <int> <int> <dbl>
#> 1 Erie Community College 26600 191083 2009
#> 2 Charter Oak State College NA 128780 2009
#> 3 Delaware State University 38100 130934 2009
#> 4 Gateway Community College 33000 130396 2009
#> 5 Delaware Technical Community College-Terry 30900 130907 2009
#> 6 Tunxis Community College 35800 130606 2009
#> 7 Central Connecticut State University 46400 128771 2009
#> 8 Norwalk Community College 34100 130004 2009
#> 9 Asnuntuck Community College 30200 128577 2009
#> 10 University of Massachusetts-Boston 46000 166638 2009
#> # ... with 271 more rows

4

	Bookend commands
	sc_init()
	sc_get()

	Subsetting commands
	sc_select()
	sc_filter()
	sc_year()
	sc_zip()

	Set API key
	More examples
	Using area within zip code
	Large pull

