Currently, there are 9 functions associated with the
sample
verb in the sgsR
package:
Algorithm | Description | Reference |
---|---|---|
sample_srs() |
Simple random | |
sample_systematic() |
Systematic | |
sample_strat() |
Stratified | Queinnec, White, & Coops (2021) |
sample_sys_strat() |
Systematic Stratified | |
sample_nc() |
Nearest centroid | Melville & Stone (2016) |
sample_clhs() |
Conditioned Latin hypercube | Minasny & McBratney (2006) |
sample_balanced() |
Balanced sampling | Grafström, A. Lisic, J (2018) |
sample_ahels() |
Adapted hypercube evaluation of a legacy sample | Malone, Minasny, & Brungard (2019) |
sample_existing() |
Sub-sampling an existing sample |
sample_srs
We have demonstrated a simple example of using the
sample_srs()
function in vignette("sgsR")
. We
will demonstrate additional examples below.
raster
The input required for sample_srs()
is a
raster
. This means that sraster
and
mraster
are supported for this function.
#--- perform simple random sampling ---#
sample_srs(
raster = sraster, # input sraster
nSamp = 200, # number of desired sample units
plot = TRUE
# plot )
#> Simple feature collection with 200 features and 0 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 431170 ymin: 5337710 xmax: 438550 ymax: 5343230
#> Projected CRS: UTM Zone 17, Northern Hemisphere
#> First 10 features:
#> geometry
#> 1 POINT (433750 5340030)
#> 2 POINT (436230 5342990)
#> 3 POINT (437390 5338450)
#> 4 POINT (431950 5337730)
#> 5 POINT (431910 5340650)
#> 6 POINT (431270 5338650)
#> 7 POINT (438550 5343070)
#> 8 POINT (432570 5340470)
#> 9 POINT (434810 5339150)
#> 10 POINT (436670 5342430)
sample_srs(
raster = mraster, # input mraster
nSamp = 200, # number of desired sample units
access = access, # define access road network
mindist = 200, # minimum distance sample units must be apart from one another
buff_inner = 50, # inner buffer - no sample units within this distance from road
buff_outer = 200, # outer buffer - no sample units further than this distance from road
plot = TRUE
# plot )
#> Simple feature collection with 200 features and 0 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 431130 ymin: 5337730 xmax: 438510 ymax: 5343230
#> Projected CRS: UTM Zone 17, Northern Hemisphere
#> First 10 features:
#> geometry
#> 1 POINT (435970 5340090)
#> 2 POINT (432050 5338170)
#> 3 POINT (438110 5342130)
#> 4 POINT (433730 5342470)
#> 5 POINT (435810 5343130)
#> 6 POINT (435550 5340170)
#> 7 POINT (435390 5342850)
#> 8 POINT (435030 5339930)
#> 9 POINT (434350 5338590)
#> 10 POINT (434650 5341030)
sample_systematic
The sample_systematic()
function applies systematic
sampling across an area with the cellsize
parameter
defining the resolution of the tessellation. The tessellation shape can
be modified using the square
parameter. Assigning
TRUE
(default) to the square
parameter results
in a regular grid and assigning FALSE
results in a
hexagonal grid.
The location of sample units can also be adjusted using the
locations
parameter, where centers
takes the
center, corners
takes all corners, and random
takes a random location within each tessellation. Random start points
and translations are applied when the function is called.
#--- perform grid sampling ---#
sample_systematic(
raster = sraster, # input sraster
cellsize = 1000, # grid distance
plot = TRUE
# plot )
#> Simple feature collection with 40 features and 0 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 431181.1 ymin: 5337849 xmax: 438556.7 ymax: 5343236
#> Projected CRS: UTM Zone 17, Northern Hemisphere
#> First 10 features:
#> geometry
#> 1 POINT (431697.4 5337849)
#> 2 POINT (432692.1 5337953)
#> 3 POINT (433686.7 5338056)
#> 4 POINT (434681.4 5338159)
#> 5 POINT (436670.7 5338366)
#> 6 POINT (437665.3 5338469)
#> 7 POINT (432588.8 5338947)
#> 8 POINT (434578.1 5339154)
#> 9 POINT (435572.8 5339257)
#> 10 POINT (436567.4 5339360)
#--- perform grid sampling ---#
sample_systematic(
raster = sraster, # input sraster
cellsize = 500, # grid distance
square = FALSE, # hexagonal tessellation
location = "random", # randomly sample within tessellation
plot = TRUE
# plot )
#> Simple feature collection with 163 features and 0 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 431106.5 ymin: 5337704 xmax: 438558.2 ymax: 5343229
#> Projected CRS: UTM Zone 17, Northern Hemisphere
#> First 10 features:
#> geometry
#> 1 POINT (437812.4 5342986)
#> 2 POINT (438511.2 5342620)
#> 3 POINT (437985.1 5342464)
#> 4 POINT (437658.8 5342686)
#> 5 POINT (438197.9 5341949)
#> 6 POINT (437808.3 5342379)
#> 7 POINT (436776.8 5342766)
#> 8 POINT (437254.1 5342242)
#> 9 POINT (436160 5342984)
#> 10 POINT (437489.7 5341841)
sample_systematic(
raster = sraster, # input sraster
cellsize = 500, # grid distance
access = access, # define access road network
buff_outer = 200, # outer buffer - no sample units further than this distance from road
square = FALSE, # hexagonal tessellation
location = "corners", # take corners instead of centers
plot = TRUE
)
#> Simple feature collection with 621 features and 0 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 431295.4 ymin: 5337763 xmax: 438369.7 ymax: 5343066
#> Projected CRS: UTM Zone 17, Northern Hemisphere
#> First 10 features:
#> geometry
#> 1 POINT (438199.1 5337763)
#> 2 POINT (438345.5 5338012)
#> 3 POINT (438345.5 5338012)
#> 4 POINT (438203.2 5338263)
#> 5 POINT (438349.5 5338512)
#> 6 POINT (438199.1 5337763)
#> 7 POINT (437910.5 5337766)
#> 8 POINT (438199.1 5337763)
#> 9 POINT (438349.5 5338512)
#> 10 POINT (438207.2 5338763)
sample_strat
The sample_strat()
contains two method
s to
perform sampling:
"Queinnec"
- Hierarchical sampling using a focal
window to isolate contiguous groups of stratum pixels, which was
originally developed by Martin Queinnec.
"random"
- Traditional stratified random sampling.
This method
ignores much of the functionality of the
algorithm to allow users the capability to use standard stratified
random sampling approaches without the use of a focal window to locate
contiguous stratum cells.
method = "Queinnec"
Queinnec, M., White, J. C., & Coops, N. C. (2021). Comparing airborne and spaceborne photon-counting LiDAR canopy structural estimates across different boreal forest types. Remote Sensing of Environment, 262(August 2020), 112510.
This algorithm uses moving window (wrow
and
wcol
parameters) to filter the input sraster
to prioritize sample unit allocation to where stratum pixels are
spatially grouped, rather than dispersed individuals across the
landscape.
Sampling is performed using 2 rules:
Rule 1 - Sample within spatially grouped stratum
pixels. Moving window defined by wrow
and
wcol
.
Rule 2 - If no additional sample units exist to
satisfy desired sample size(nSamp
), individual stratum
pixels are sampled.
The rule applied to a select each sample unit is defined in the
rule
attribute of output samples. We give a few examples
below:
#--- perform stratified sampling random sampling ---#
sample_strat(
sraster = sraster, # input sraster
nSamp = 200
# desired sample size # plot
) #> Simple feature collection with 200 features and 3 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 431130 ymin: 5337730 xmax: 438530 ymax: 5343150
#> Projected CRS: UTM Zone 17, Northern Hemisphere
#> First 10 features:
#> strata type rule geometry
#> x 1 new rule1 POINT (434910 5341610)
#> x1 1 new rule2 POINT (437990 5341190)
#> x2 1 new rule2 POINT (431890 5341390)
#> x3 1 new rule2 POINT (436070 5342630)
#> x4 1 new rule2 POINT (437870 5337970)
#> x5 1 new rule2 POINT (436990 5342970)
#> x6 1 new rule2 POINT (435990 5339470)
#> x7 1 new rule2 POINT (437850 5339070)
#> x8 1 new rule2 POINT (436670 5339270)
#> x9 1 new rule2 POINT (431550 5342570)
In some cases, users might want to include an existing
sample within the algorithm. In order to adjust the total number of
sample units needed per stratum to reflect those already present in
existing
, we can use the intermediate function
extract_strata()
.
This function uses the sraster
and existing
sample units and extracts the stratum for each. These sample units can
be included within sample_strat()
, which adjusts total
sample units required per class based on representation in
existing
.
#--- extract strata values to existing samples ---#
<- extract_strata(
e.sr sraster = sraster, # input sraster
existing = existing
# existing samples to add strata value to )
TIP!
sample_strat()
requires the sraster
input
to have an attribute named strata
and will give an error if
it doesn’t.
sample_strat(
sraster = sraster, # input sraster
nSamp = 200, # desired sample size
access = access, # define access road network
existing = e.sr, # existing sample with strata values
mindist = 200, # minimum distance sample units must be apart from one another
buff_inner = 50, # inner buffer - no sample units within this distance from road
buff_outer = 200, # outer buffer - no sample units further than this distance from road
plot = TRUE
# plot )
#> Simple feature collection with 400 features and 3 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 431110 ymin: 5337730 xmax: 438550 ymax: 5343230
#> Projected CRS: UTM Zone 17, Northern Hemisphere
#> First 10 features:
#> strata type rule geometry
#> 1 1 existing existing POINT (434450 5340930)
#> 2 1 existing existing POINT (433930 5341150)
#> 3 1 existing existing POINT (433430 5339910)
#> 4 1 existing existing POINT (437490 5339210)
#> 5 1 existing existing POINT (435890 5339630)
#> 6 1 existing existing POINT (435150 5342490)
#> 7 1 existing existing POINT (434290 5342550)
#> 8 1 existing existing POINT (436570 5337970)
#> 9 1 existing existing POINT (432790 5342830)
#> 10 1 existing existing POINT (437990 5340030)
The code in the example above defined the mindist
parameter, which specifies the minimum euclidean distance that new
sample units must be apart from one another.
Notice that the sample units have type
and
rule
attributes which outline whether they are
existing
or new
, and whether
rule1
or rule2
were used to select them. If
type
is existing (a user provided
existing
sample), rule
will be
existing as well as seen above.
sample_strat(
sraster = sraster, # input
nSamp = 200, # desired sample size
access = access, # define access road network
existing = e.sr, # existing samples with strata values
include = TRUE, # include existing sample in nSamp total
buff_outer = 200, # outer buffer - no samples further than this distance from road
plot = TRUE
# plot )
#> Simple feature collection with 200 features and 3 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 431110 ymin: 5337770 xmax: 438550 ymax: 5343190
#> Projected CRS: UTM Zone 17, Northern Hemisphere
#> First 10 features:
#> strata type rule geometry
#> 1 1 existing existing POINT (434450 5340930)
#> 2 1 existing existing POINT (433930 5341150)
#> 3 1 existing existing POINT (433430 5339910)
#> 4 1 existing existing POINT (437490 5339210)
#> 5 1 existing existing POINT (435890 5339630)
#> 6 1 existing existing POINT (435150 5342490)
#> 7 1 existing existing POINT (434290 5342550)
#> 8 1 existing existing POINT (436570 5337970)
#> 9 1 existing existing POINT (432790 5342830)
#> 10 1 existing existing POINT (437990 5340030)
The include
parameter determines whether
existing
sample units should be included in the total
sample size defined by nSamp
. By default, the
include
parameter is set as FALSE
.
method = "random
Stratified random sampling with equal probability for all cells
(using default algorithm values for mindist
and no use of
access
functionality). In essence this method perform the
sample_srs
algorithm for each stratum separately to meet
the specified sample size.
#--- perform stratified sampling random sampling ---#
sample_strat(
sraster = sraster, # input sraster
method = "random", # stratified random sampling
nSamp = 200, # desired sample size
plot = TRUE
# plot )
#> Simple feature collection with 200 features and 1 field
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 431110 ymin: 5337710 xmax: 438370 ymax: 5343230
#> Projected CRS: UTM Zone 17, Northern Hemisphere
#> First 10 features:
#> strata geometry
#> 1 1 POINT (437530 5343050)
#> 2 1 POINT (432250 5338110)
#> 3 1 POINT (438070 5339150)
#> 4 1 POINT (437530 5338170)
#> 5 1 POINT (433390 5342990)
#> 6 1 POINT (436810 5339390)
#> 7 1 POINT (434170 5340490)
#> 8 1 POINT (434370 5341970)
#> 9 1 POINT (433510 5340750)
#> 10 1 POINT (433150 5340890)
sample_sys_strat
sample_sys_strat()
function implements systematic
stratified sampling on an sraster
. This function uses the
same functionality as sample_systematic()
but takes an
sraster
as input and performs sampling on each stratum
iteratively.
#--- perform grid sampling on each stratum separately ---#
sample_sys_strat(
sraster = sraster, # input sraster with 4 strata
cellsize = 1000, # grid size
plot = TRUE # plot output
)#> Processing strata : 1
#> Processing strata : 2
#> Processing strata : 3
#> Processing strata : 4
#> Simple feature collection with 35 features and 1 field
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 431380 ymin: 5337723 xmax: 438398.7 ymax: 5343036
#> Projected CRS: UTM Zone 17, Northern Hemisphere
#> First 10 features:
#> strata geometry
#> 1 1 POINT (433732 5343036)
#> 2 1 POINT (435116.2 5342746)
#> 3 1 POINT (433442 5341651)
#> 4 1 POINT (434826.2 5341361)
#> 5 1 POINT (433989.1 5340814)
#> 6 1 POINT (434536.2 5339977)
#> 7 1 POINT (437594.5 5340781)
#> 8 1 POINT (435920.4 5339687)
#> 9 1 POINT (435083.3 5339140)
#> 10 1 POINT (437851.6 5338560)
Just like with sample_systematic()
we can specify where
we want our samples to fall within our tessellations. We specify
location = "corners"
below. Note that the tesselations are
all saved to a list file when details = TRUE
should the
user want to save them.
sample_sys_strat(
sraster = sraster, # input sraster with 4 strata
cellsize = 500, # grid size
square = FALSE, # hexagon tessellation
location = "corners", # samples on tessellation corners
plot = TRUE # plot output
)#> Processing strata : 1
#> Processing strata : 2
#> Processing strata : 3
#> Processing strata : 4
#> Simple feature collection with 1167 features and 1 field
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 431133.8 ymin: 5337703 xmax: 438471.4 ymax: 5343231
#> Projected CRS: UTM Zone 17, Northern Hemisphere
#> First 10 features:
#> strata geometry
#> 1 1 POINT (437909.4 5343215)
#> 2 1 POINT (437909.4 5343215)
#> 3 1 POINT (437777.6 5342958)
#> 4 1 POINT (437909.4 5343215)
#> 5 1 POINT (437909.4 5343215)
#> 6 1 POINT (437777.6 5342958)
#> 7 1 POINT (437489.3 5342943)
#> 8 1 POINT (437802.5 5342458)
#> 9 1 POINT (437489.3 5342943)
#> 10 1 POINT (437777.6 5342958)
This sampling approach could be especially useful incombination with
strat_poly()
to ensure consistency of sampling accross
specific management units.
#--- read polygon coverage ---#
<- system.file("extdata", "inventory_polygons.shp", package = "sgsR")
poly <- sf::st_read(poly)
fri #> Reading layer `inventory_polygons' from data source
#> `C:\Users\tgood\AppData\Local\Temp\RtmpS4i8tf\Rinst3e0c66941c3a\sgsR\extdata\inventory_polygons.shp'
#> using driver `ESRI Shapefile'
#> Simple feature collection with 632 features and 3 fields
#> Geometry type: MULTIPOLYGON
#> Dimension: XY
#> Bounding box: xmin: 431100 ymin: 5337700 xmax: 438560 ymax: 5343240
#> Projected CRS: UTM_Zone_17_Northern_Hemisphere
#--- stratify polygon coverage ---#
#--- specify polygon attribute to stratify ---#
<- "NUTRIENTS"
attribute
#--- specify features within attribute & how they should be grouped ---#
#--- as a single vector ---#
<- c("poor", "rich", "medium")
features
#--- get polygon stratification ---#
<- strat_poly(
srasterpoly poly = fri,
attribute = attribute,
features = features,
raster = sraster
)#> Assigning a new crs. Use 'project' to transform a SpatRaster to a new crs
#--- systematatic stratified sampling for each stratum ---#
sample_sys_strat(
sraster = srasterpoly, # input sraster from strat_poly() with 3 strata
cellsize = 500, # grid size
square = FALSE, # hexagon tessellation
location = "random", # randomize plot location
plot = TRUE # plot output
)#> Processing strata : 1
#> Processing strata : 2
#> Processing strata : 3
#> Simple feature collection with 173 features and 1 field
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 431131.8 ymin: 5337710 xmax: 438505.8 ymax: 5343209
#> Projected CRS: UTM Zone 17, Northern Hemisphere
#> First 10 features:
#> strata geometry
#> 1 1 POINT (431324.7 5343206)
#> 2 1 POINT (432954.6 5343149)
#> 3 1 POINT (433977.5 5343204)
#> 4 1 POINT (431893.3 5342604)
#> 5 1 POINT (432598.4 5342886)
#> 6 1 POINT (433564.6 5343032)
#> 7 1 POINT (434465.4 5342868)
#> 8 1 POINT (431373.1 5342295)
#> 9 1 POINT (433015.7 5342667)
#> 10 1 POINT (433857.3 5342688)
sample_nc
sample_nc()
function implements the Nearest Centroid
sampling algorithm described in Melville &
Stone (2016). The algorithm uses kmeans clustering where the number
of clusters (centroids) is equal to the desired sample size
(nSamp
).
Cluster centers are located, which then prompts the nearest neighbour
mraster
pixel for each cluster to be selected (assuming
default k
parameter). These nearest neighbours are the
output sample units.
#--- perform simple random sampling ---#
sample_nc(
mraster = mraster, # input
nSamp = 25, # desired sample size
plot = TRUE
)#> K-means being performed on 3 layers with 25 centers.
#> Simple feature collection with 25 features and 4 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 431230 ymin: 5338370 xmax: 438510 ymax: 5343170
#> Projected CRS: UTM Zone 17, Northern Hemisphere
#> First 10 features:
#> zq90 pzabove2 zsd kcenter geometry
#> 45598 15.50 87.1 3.81 1 POINT (432930 5340790)
#> 17949 16.30 94.8 2.80 2 POINT (431990 5342270)
#> 50700 11.10 89.3 2.53 3 POINT (437990 5340530)
#> 36188 13.00 73.5 3.33 4 POINT (431230 5341290)
#> 28425 9.93 65.6 2.58 5 POINT (432630 5341710)
#> 40961 22.30 92.6 5.41 6 POINT (437170 5341050)
#> 1306 12.30 50.5 3.40 7 POINT (434830 5343170)
#> 13247 13.60 90.9 3.11 8 POINT (434930 5342530)
#> 90880 8.64 40.4 2.27 9 POINT (435910 5338370)
#> 32927 6.83 13.4 1.80 10 POINT (433150 5341470)
Altering the k
parameter leads to a multiplicative
increase in output sample units where total output samples = \(nSamp * k\).
#--- perform simple random sampling ---#
<- sample_nc(
samples mraster = mraster, # input
k = 2, # number of nearest neighbours to take for each kmeans center
nSamp = 25, # desired sample size
plot = TRUE
)#> K-means being performed on 3 layers with 25 centers.
#--- total samples = nSamp * k (25 * 2) = 50 ---#
nrow(samples)
#> [1] 50
Visualizing what the kmeans centers and sample units looks like is
possible when using details = TRUE
. The $kplot
output provides a quick visualization of where the centers are based on
a scatter plot of the first 2 layers in mraster
. Notice
that the centers are well distributed in covariate space and chosen
sample units are the closest pixels to each center (nearest
neighbours).
#--- perform simple random sampling with details ---#
<- sample_nc(
details mraster = mraster, # input
nSamp = 25, # desired sample number
details = TRUE
)#> K-means being performed on 3 layers with 25 centers.
#--- plot ggplot output ---#
$kplot details
sample_clhs
sample_clhs()
function implements conditioned Latin
hypercube (clhs) sampling methodology from the clhs
package.
TIP!
A number of other functions in the sgsR
package help to
provide guidance on clhs sampling including calculate_pop()
and calculate_lhsOpt()
. Check out these functions to better
understand how sample numbers could be optimized.
The syntax for this function is similar to others shown above,
although parameters like iter
, which define the number of
iterations within the Metropolis-Hastings process are important to
consider. In these examples we use a low iter
value for
efficiency. Default values for iter
within the
clhs
package are 10,000.
sample_clhs(
mraster = mraster, # input
nSamp = 200, # desired sample size
plot = TRUE, # plot
iter = 100
# number of iterations )
The cost
parameter defines the mraster
covariate, which is used to constrain the clhs sampling. An example
could be the distance a pixel is from road access
(e.g. from calculate_distance()
see example below), terrain
slope, the output from calculate_coobs()
, or many
others.
#--- cost constrained examples ---#
#--- calculate distance to access layer for each pixel in mr ---#
<- calculate_distance(
mr.c raster = mraster, # input
access = access, # define access road network
plot = TRUE
# plot
) #>
|---------|---------|---------|---------|
=========================================
sample_clhs(
mraster = mr.c, # input
nSamp = 250, # desired sample size
iter = 100, # number of iterations
cost = "dist2access", # cost parameter - name defined in calculate_distance()
plot = TRUE
# plot )
sample_balanced
The sample_balanced()
algorithm performs a balanced
sampling methodology from the stratifyR / SamplingBigData
packages.
sample_balanced(
mraster = mraster, # input
nSamp = 200, # desired sample size
plot = TRUE
# plot )
#> Simple feature collection with 200 features and 0 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 431130 ymin: 5337730 xmax: 438470 ymax: 5343210
#> CRS: +proj=utm +zone=17 +ellps=GRS80 +units=m +no_defs
#> First 10 features:
#> geometry
#> 1 POINT (437910 5343210)
#> 2 POINT (432730 5343170)
#> 3 POINT (437530 5343170)
#> 4 POINT (431570 5343090)
#> 5 POINT (437470 5343090)
#> 6 POINT (431710 5343030)
#> 7 POINT (437890 5342890)
#> 8 POINT (431430 5342870)
#> 9 POINT (435450 5342870)
#> 10 POINT (436870 5342830)
sample_balanced(
mraster = mraster, # input
nSamp = 100, # desired sample size
algorithm = "lcube", # algorithm type
access = access, # define access road network
buff_inner = 50, # inner buffer - no sample units within this distance from road
buff_outer = 200
# outer buffer - no sample units further than this distance from road
) #> Simple feature collection with 100 features and 0 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 431210 ymin: 5337850 xmax: 438550 ymax: 5343230
#> CRS: +proj=utm +zone=17 +ellps=GRS80 +units=m +no_defs
#> First 10 features:
#> geometry
#> 1 POINT (435650 5342110)
#> 2 POINT (438170 5341990)
#> 3 POINT (433890 5342530)
#> 4 POINT (435050 5338710)
#> 5 POINT (437730 5338990)
#> 6 POINT (436710 5341370)
#> 7 POINT (432630 5342190)
#> 8 POINT (431770 5338070)
#> 9 POINT (432350 5342010)
#> 10 POINT (434790 5338790)
sample_ahels
The sample_ahels()
function performs the adapted
Hypercube Evaluation of a Legacy Sample (ahels) algorithm
usingexisting
sample data and an mraster
. New
sample units are allocated based on quantile ratios between the
existing
sample and mraster
covariate
dataset.
This algorithm was adapted from that presented in the paper below, which we highly recommend.
Malone BP, Minansy B, Brungard C. 2019. Some methods to improve the utility of conditioned Latin hypercube sampling. PeerJ 7:e6451 DOI 10.7717/peerj.6451
This algorithm:
Determines the quantile distributions of existing
sample units and mraster
covariates.
Determines quantiles where there is a disparity between sample units and covariates.
Prioritizes sampling within those quantile to improve representation.
To use this function, user must first specify the number of quantiles
(nQuant
) followed by either the nSamp
(total
number of desired sample units to be added) or the
threshold
(sampling ratio vs. covariate coverage ratio for
quantiles - default is 0.9) parameters.
#--- remove `type` variable from existing - causes plotting issues ---#
<- existing %>% select(-type)
existing
sample_ahels(
mraster = mraster,
existing = existing, # existing sample
plot = TRUE
# plot )
#> Simple feature collection with 251 features and 7 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 431110 ymin: 5337770 xmax: 438550 ymax: 5343190
#> Projected CRS: UTM Zone 17, Northern Hemisphere
#> First 10 features:
#> type.x zq90 pzabove2 zsd strata type.y rule geometry
#> 1 existing 3.40 18.0 0.63 1 new rule1 POINT (434450 5340930)
#> 2 existing 6.21 66.2 1.44 1 new rule2 POINT (433930 5341150)
#> 3 existing 3.56 10.9 0.71 1 new rule2 POINT (433430 5339910)
#> 4 existing 2.73 7.9 0.43 1 new rule2 POINT (437490 5339210)
#> 5 existing 8.41 40.5 2.35 1 new rule2 POINT (435890 5339630)
#> 6 existing 5.82 50.8 1.36 1 new rule2 POINT (435150 5342490)
#> 7 existing 7.46 19.5 2.08 1 new rule2 POINT (434290 5342550)
#> 8 existing 9.38 98.3 1.79 1 new rule2 POINT (436570 5337970)
#> 9 existing 10.10 66.4 2.39 1 new rule2 POINT (432790 5342830)
#> 10 existing 6.05 22.2 1.54 1 new rule2 POINT (437990 5340030)
TIP!
Notice that no threshold
, nSamp
, or
nQuant
were defined. That is because the default setting
for threshold = 0.9
and nQuant = 10
.
The first matrix output shows the quantile ratios between the sample and the covariates. A value of 1.0 indicates that the sample is representative of quantile coverage. Values > 1.0 indicate over representation of sample units, while < 1.0 indicate under representation.
sample_ahels(
mraster = mraster,
existing = existing, # existing sample
nQuant = 20, # define 20 quantiles
nSamp = 300
# desired sample size )
#> Simple feature collection with 500 features and 7 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 431110 ymin: 5337710 xmax: 438550 ymax: 5343210
#> Projected CRS: UTM Zone 17, Northern Hemisphere
#> First 10 features:
#> type.x zq90 pzabove2 zsd strata type.y rule geometry
#> 1 existing 3.40 18.0 0.63 1 new rule1 POINT (434450 5340930)
#> 2 existing 6.21 66.2 1.44 1 new rule2 POINT (433930 5341150)
#> 3 existing 3.56 10.9 0.71 1 new rule2 POINT (433430 5339910)
#> 4 existing 2.73 7.9 0.43 1 new rule2 POINT (437490 5339210)
#> 5 existing 8.41 40.5 2.35 1 new rule2 POINT (435890 5339630)
#> 6 existing 5.82 50.8 1.36 1 new rule2 POINT (435150 5342490)
#> 7 existing 7.46 19.5 2.08 1 new rule2 POINT (434290 5342550)
#> 8 existing 9.38 98.3 1.79 1 new rule2 POINT (436570 5337970)
#> 9 existing 10.10 66.4 2.39 1 new rule2 POINT (432790 5342830)
#> 10 existing 6.05 22.2 1.54 1 new rule2 POINT (437990 5340030)
Notice that the total number of samples is 500. This value is the sum
of existing units (200) and number of sample units defined by
nSamp = 300
.
sample_existing
Acknowledging that existing
sample networks exist is
important. There is significant investment into these samples, and in
order to keep inventories up-to-date, we often need to collect new data
at these locations. The sample_existing
algorithm provides
a method for sub-sampling an existing
sample network should
the financial / logistical resources not be available to collect data at
all sample units. The algorithm leverages latin hypercube sampling using
the clhs package
to effectively sample within an existing
network.
The algorithm has two fundamental approaches:
Sample exclusively using the sample network and the attributes it contains.
Should raster
information be available and
co-located with the sample, use these data as population values to
improve sub-sampling of existing
.
Much like the sample_clhs()
algorithm, users can define
a cost
parameter, which will be used to constrain
sub-sampling. A cost parameter is a user defined metric/attribute such
as distance from roads (e.g. calculate_distance()
),
elevation, etc.
existing
First we can create an existing
sample for our example.
Lets imagine we have a dataset of ~900 samples, and we know we only have
resources to sample 300 of them. We have some ALS data available
(mraster
), which we will use as our distributions to sample
within.
#--- generate existing samples and extract metrics ---#
<- sample_srs(raster = mraster, nSamp = 900, plot = TRUE) existing
Now lets sub-sample.
#--- sub sample using ---#
<- existing %>%
e extract_metrics(mraster = mraster, existing = .)
sample_existing(existing = e, nSamp = 300, plot = TRUE)
#> Simple feature collection with 300 features and 3 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 431150 ymin: 5337730 xmax: 438530 ymax: 5343230
#> Projected CRS: UTM Zone 17, Northern Hemisphere
#> First 10 features:
#> zq90 pzabove2 zsd geometry
#> 583 23.00 89.1 5.76 POINT (436010 5341190)
#> 55 23.60 91.3 7.09 POINT (438190 5339910)
#> 53 14.00 77.9 3.87 POINT (437030 5340330)
#> 732 12.30 84.1 3.40 POINT (432230 5340750)
#> 570 7.81 67.8 1.91 POINT (434690 5341170)
#> 11 4.87 20.5 1.39 POINT (435970 5342030)
#> 511 13.70 61.9 4.21 POINT (438330 5339110)
#> 495 17.10 79.3 4.63 POINT (433390 5341790)
#> 17 14.60 69.3 4.27 POINT (436290 5342850)
#> 867 19.90 84.3 4.43 POINT (437170 5342130)
TIP!
Notice that we used extract_metrics()
after creating our
existing. If the user provides a raster
for the algorithm
this isn’t neccesary (its done internally). If only sample units are
given, attributes must be provided and sampling will be conducted on
all included attributes.
We see from the output that we get 300 sample units that are a
sub-sample of existing
. The plotted output shows cumulative
frequency distributions of the population (all existing
samples) and the sub-sample (the 300 samples we requested).
raster
distributionsOur systematic sample of ~900 plots is fairly comprehensive, however
we can generate a true population distribution through the inclusion of
the ALS metrics in the sampling process. The metrics will be included in
internal latin hypercube sampling to help guide sub-sampling of
existing
.
#--- sub sample using ---#
sample_existing(
existing = existing, # our existing sample
nSamp = 300, # desired sample size
raster = mraster, # include mraster metrics to guide sampling of existing
plot = TRUE
# plot )
#> Simple feature collection with 300 features and 3 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 431110 ymin: 5337710 xmax: 438550 ymax: 5343230
#> CRS: +proj=utm +zone=17 +ellps=GRS80 +units=m +no_defs
#> First 10 features:
#> zq90 pzabove2 zsd geometry
#> 203 10.90 96.6 1.61 POINT (435150 5337750)
#> 223 12.70 89.3 2.98 POINT (436910 5343010)
#> 162 15.30 96.5 4.72 POINT (431170 5337830)
#> 850 4.25 41.9 0.87 POINT (434450 5341170)
#> 775 19.00 95.7 4.50 POINT (431490 5338070)
#> 462 15.20 93.5 3.72 POINT (436990 5342190)
#> 669 8.39 41.2 2.26 POINT (437670 5338490)
#> 872 2.68 6.9 0.43 POINT (438470 5338290)
#> 409 11.70 61.4 3.06 POINT (436870 5340190)
#> 202 8.27 34.4 2.07 POINT (434890 5341870)
The sample distribution again mimics the population distribution quite well! Now lets try using a cost variable to constrain the sub-sample.
#--- create distance from roads metric ---#
<- calculate_distance(raster = mraster, access = access)
dist #>
|---------|---------|---------|---------|
=========================================
#--- sub sample using ---#
sample_existing(
existing = existing, # our existing sample
nSamp = 300, # desired sample size
raster = dist, # include mraster metrics to guide sampling of existing
cost = 4, # either provide the index (band number) or the name of the cost layer
plot = TRUE
# plot )
#> Simple feature collection with 300 features and 4 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 431110 ymin: 5337730 xmax: 438550 ymax: 5343190
#> CRS: +proj=utm +zone=17 +ellps=GRS80 +units=m +no_defs
#> First 10 features:
#> zq90 pzabove2 zsd dist2access geometry
#> 836 5.35 10.6 1.31 79.310924 POINT (434010 5340950)
#> 820 19.80 89.9 5.93 212.751165 POINT (437410 5341850)
#> 405 7.57 16.6 2.09 2.213413 POINT (438090 5340050)
#> 892 14.20 54.6 3.64 166.046692 POINT (434190 5342850)
#> 658 15.30 91.2 3.53 302.855301 POINT (432230 5340890)
#> 209 15.70 93.9 3.28 563.215819 POINT (433590 5338030)
#> 207 16.30 93.6 2.01 368.544895 POINT (433910 5342250)
#> 101 10.70 74.7 2.96 321.737976 POINT (437610 5338570)
#> 375 18.80 79.8 3.62 292.244242 POINT (432010 5340710)
#> 215 3.83 4.9 0.78 31.952217 POINT (437810 5342630)
Finally, should the user wish to further constrain the sample based
on access
like other sampling approaches in
sgsR
that is also possible.
#--- ensure access and existing are in the same CRS ---#
::st_crs(existing) <- sf::st_crs(access)
sf
#--- sub sample using ---#
sample_existing(
existing = existing, # our existing sample
nSamp = 300, # desired sample size
raster = dist, # include mraster metrics to guide sampling of existing
cost = 4, # either provide the index (band number) or the name of the cost layer
access = access, # roads layer
buff_inner = 50, # inner buffer - no sample units within this distance from road
buff_outer = 300, # outer buffer - no sample units further than this distance from road
plot = TRUE
# plot )
#> Simple feature collection with 300 features and 4 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 431190 ymin: 5337710 xmax: 438530 ymax: 5343230
#> CRS: +proj=utm +zone=17 +ellps=GRS80 +units=m +no_defs
#> First 10 features:
#> zq90 pzabove2 zsd dist2access geometry
#> 450 22.70 87.0 5.19 118.90300 POINT (436830 5341430)
#> 242 8.17 15.4 2.65 196.19094 POINT (434950 5339150)
#> 180 14.00 96.3 2.36 143.62004 POINT (438370 5340730)
#> 459 9.70 41.7 2.64 99.58651 POINT (434630 5342290)
#> 434 14.10 78.6 2.90 61.83600 POINT (433550 5342130)
#> 190 9.71 26.0 2.72 130.68415 POINT (438230 5338090)
#> 117 3.93 18.8 0.96 77.90531 POINT (433270 5341070)
#> 220 6.48 81.5 1.36 82.85162 POINT (437130 5338030)
#> 350 17.50 94.1 4.62 133.22897 POINT (434890 5340550)
#> 439 17.00 86.2 4.40 75.81909 POINT (436190 5342230)
TIP!
The greater constraints we add to sampling, the less likely we will have strong correlations between the population and sample, so its always important to understand these limitations and plan accordingly.